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1 Introduction and summary

There are two standard approaches in the literature to geometrical string compactification

of the heterotic string. (Non-geometrical approaches involve e.g. free-fermionic models [1,

2] and Gepner constructions [3, 4].) Either strings are considered on singular (toroidal)

orbifolds or on smooth Calabi-Yau manifolds. The main advantage of orbifolds over smooth

Calabi-Yau spaces is that they are so simple that the heterotic string can be quantized on

them exactly [5, 6]. Therefore, one has access to the full spectrum of the theory; not just to

its zero modes. In addition, one can scan in a very systematic way through the parameter

space of heterotic orbifold compactifications in order to search for interesting models for
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string phenomenology (using e.g. [7]). This has resulted, for example, in a mini-landscape

of a few hundred MSSM models based on the heterotic E8 × E8
′ orbifold T 6/Z6-II [8, 9].

An orbifold can be considered as a Calabi-Yau space at a singular point in its mod-

uli space where symmetries get enhanced. To go away from the orbifold point in moduli

space the orbifold singularities have to be resolved (or deformed). In this blow-up pro-

cess certain (exceptional) cycles that were hidden inside the singularities acquire finite

volumes. From the heterotic orbifold model perspective this corresponds to turning on

Vacuum-Expectation-Values (VEVs) for twisted states, so-called blow-up modes, which

are localized at the singularities of the orbifold. Unfortunately, an exact string quantiza-

tion is out of reach at a generic point in moduli space and there is typically much less

symmetry. For example, it turns out that in full blow-up any mini-landscape model has

broken hypercharge [10, 11]. This might be interpreted in two ways: Either one does not

go to the full blow-up in order to keep hypercharge unbroken and our string vacuum is

very close to the orbifold point, or our string vacuum is at a generic point of the moduli

space and different constructions are needed for phenomenology. As discussed in [12, 13]

freely acting involutions can be used as an example for the second interpretation and an

MSSM orbifold model has been constructed on the heterotic T 6/Z2 × Z2 orbifold, which

in principle can avoid hypercharge breaking in full blow-up.

Furthermore, there have been various constructions of MSSM models in the context of

the heterotic string compactified on smooth Calabi-Yau manifolds. For example, a three

generation MSSM has been constructed in [14] on the Schoen manifold [15] using a stable

SU(5) vector bundle [16–18]. Similar constructions — yet not fully supersymmetric [19] —

can be found in e.g. [20]. Even though the Schoen manifold is just one particular Calabi-

Yau space, it is a typical example of a complete intersection Calabi-Yau: It can be obtained

as a set of hyper surfaces within a direct product of projective spaces.

Most heterotic models built on the Schoen manifold require complicated constructions

of stable SU(N) bundles. Therefore, one may wonder whether it is also possible to design

MSSM-like heterotic string models on the Schoen manifolds using line bundles. As has

been realized by various groups [21, 22] the analysis of line bundles on smooth Calabi-Yau

spaces, described as complete intersections in toric varieties, can be performed much easier

than their non-Abelian counterparts. The main reason for this is that for line bundle gauge

backgrounds the stability of the bundle reduces to solving simple Donaldson-Uhlenbeck-Yau

(DUY) equations [23, 24] in terms of the Kähler moduli [25, 26]. Moreover, the embedding

of line bundles into the ten-dimensional heterotic gauge group (E8 ×E8
′ or SO(32), where

we focus on the E8 × E8
′ case, but most of our results equally apply to the SO(32) case.)

can be characterized by vectors of integers [27, 28]. This makes it possible to perform

computer-aided scans for potentially phenomenologically viable models.

The Schoen manifold does not only provide an interesting example of a Calabi-Yau

constructed as a complete intersection. It can also be considered as a smooth limit of a

certain orbifold [29]. This orbifold has some special properties: It is a T 6/Z2 × Z2,rototrans

orbifold, where Z2,rototrans acts as a roto-translation, i.e. as a simultaneously performed

rotation and translation [30] (and [31] in the type II string context, where this kind of

orbifolds are called shift orbifolds). This has far reaching consequences for the structure
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of the fixed points and tori and, in turn, modifies the breaking of higher dimensional

supersymmetry to N = 1 in four dimensions for heterotic string compactifications. As we

will see, this necessarily results in vector-like spectra for this kind of orbifold geometry.

This is not a peculiar feature of this special orbifold, many more orbifolds with this

property are known. Recently, there has been a classification of all six-dimensional toroidal

orbifold geometries that give rise to four-dimensional N = 1 supersymmetry [32]. These

geometries can be arranged in two sets: The ones with Abelian point group and the

ones with non-Abelian point group. 23 of the 138 geometries with Abelian point group

share the property that they necessarily lead to non-chiral spectra for heterotic string

compactifications. (These are Z2 × Z2 variants, part of the classification of ref. [29].)

For the non-Abelian cases these numbers are essentially unknown. However, one explicit

example of a heterotic S3 orbifold [33] also turns out to produce only vector-like spectra.

We therefore expect that also a sizable portion of the non-Abelian point group orbifolds

will unavoidably be non-chiral in four dimensions.

Hence, it is an important question whether there exists an unavoidable no-go theorem

against four-dimensional chirality for all these heterotic orbifolds. Fortunately, we will

show that it is possible to circumvent this no-go by allowing for magnetized tori on the

orbifold. Concretely, we put magnetic fluxes on the tori of the Schoen orbifold and show

that four-dimensional chiral spectra can be realized. More than that, we will show that it

is even possible to obtain MSSM-like models in this way.

There is one technical subtlety in the construction of such orbifolds with magnetized

tori: As far as we know, contrary to conventional orbifolds, it is unknown how to quantize

the heterotic string exactly on them. We by-pass this obstruction in two ways: First, we

consider the whole construction in blow-up, i.e. on the smooth Schoen manifold. Second, we

show that one can start with a six-dimensional spectrum obtained from a standard heterotic

T 4/Z2 orbifold, which is a subspace of the partially blown-down Schoen manifold, using

conventional CFT techniques. Then, one can use field theoretical methods, discussed e.g.

in [34–36], to determine the consequences of the additional (magnetic) fluxes and to obtain

a chiral spectrum in four dimensions. Both approaches, i.e. the smooth approach and the

hybrid approach of combining CFT and field theoretical methods, will reproduce exactly

the same spectrum.

Paper overview. In section 2 we review the basics of heterotic orbifold models. In

addition we introduce the DW(0-2) orbifold which is of central interest in this work. Sec-

tion 3 provides an alternative description of the Schoen manifold as the resolution of this

DW(0-2) orbifold. In section 4 we describe the E8 × E8
′ heterotic string with line bundles

on the divisors of the Schoen manifold including magnetic fluxes on the tori of the under-

lying orbifold. Moreover, we identify the relevant consistency conditions for such gauge

backgrounds and compute the resulting chiral spectra in both, four and six, dimensions.

Then, we provide an example that mainly serves to illustrate various aspects of the general

theory developed in this paper. In section 5 we construct a specific example, which is

potentially phenomenologically interesting as it has the particle spectrum of the MSSM in

four dimensions. We analyze this example using two approaches: First, the smooth ap-
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proach and, second, the hybrid approach of combining CFT and field theoretical methods.

Finally, in section 6 we speculate on how to extend the standard heterotic CFT description

of orbifolds in the presence of magnetized tori.
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2 Heterotic Z2 × Z2 orbifolds

In this section we describe some basic geometrical properties of Z2×Z2 orbifolds and explain

how to determine whether such orbifolds can lead to heterotic (E8×E8
′) string models with

chiral spectra in four dimensions. We follow the classification scheme for these orbifolds

developed by Donagi-Wendland [29]. (See their table 1 for details and nomenclature). In

particular, we describe their DW(0-2) orbifold which can be considered as a certain singular

limit of the so-called Schoen manifold. However, for comparison purposes we first recall

some basic facts of Z2 × Z2 orbifolds and give some details of the more often considered

DW(0-1) orbifold.

2.1 General features of Z2 × Z2 orbifolds

We consider Z2 × Z2 orbifolds defined as

R
6/S (2.1)

where the space group S specifies an equivalence relation on R
6 as g X ∼ X for all g ∈ S

andX ∈ R
6. A general space group element g = (ϑ, ℓ) consists of a six-dimensional rotation

matrix ϑ and a translation ℓ. It acts on X ∈ R
6 as g X = ϑX + ℓ. The space group is

generated by two types of elements: The purely translational elements gi = (11, ei) are

determined by six basis vectors ei (i = 1, . . . , 6) that span a six-dimensional lattice and

hence define a six-torus. For simplicity, we identify R
6 = C3 and take as basis vectors

e1 = (1, 0, 0) , e2 = (i, 0, 0) , e3 = (0, 1, 0) ,

e4 = (0, i, 0) , e5 = (0, 0, 1) , e6 = (0, 0, i) . (2.2)

Consequently, we denote the torus coordinates by z = (z1, z2, z3) ∈ T 2
1 × T 2

2 × T 2
3 in this

complex basis. The remaining two generators of the space group, gθ and gω, involve Z2×Z2

rotations, denoted by θ and ω, possibly combined with some translations. When this is the
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case such elements are referred to as roto-translations. The phases of the rotations acting

on C3 are

vθ =

(
0,

1

2
,−

1

2

)
, and vω =

(
−
1

2
, 0,

1

2

)
, (2.3)

respectively.

The action of the space group elements is subsequently extended to the left-moving

sector of the heterotic worldsheet theory that describes the target space gauge degrees of

freedom. In a bosonic formulation this sector can be described by 16 left-moving coordi-

nates XI
L (I = 1, . . . , 16) living on a torus R16/ΛE8×E8

′ defined by the E8×E8
′ root lattice

ΛE8×E8
′ . The simplest way to extend the space group action is the shift embedding which

acts as: g XI
L = XI

L + 2π V I
g . Hence V : g 7→ Vg defines a group homomorphism of the

space group S to the Abelian group R
16 under addition. For a general space group element

g = gkθ g
l
ω gn1

1 · . . . · gn6
6 , with k, l = 0, 1 and ni ∈ Z, the local twist vg and shift vector Vg

can be expanded as

vg = k vθ + l vω , Vg = k Vθ + l Vω + niWi (2.4)

in terms of the gauge shift vectors Vθ and Vω and the discrete Wilson lines Wi where

summation over i from 1 to 6 is understood. In order that Vg defines a proper group

homomorphism, it is required that

2Vθ
∼= 2Vω

∼= 2Wi
∼= 0 , (2.5)

where ∼= means equal up to ΛE8×E8
′ lattice vectors.

The central consistency requirement of heterotic orbifold compactifications is modular

invariance. For a Z2 × Z2 orbifold it requires for all commuting space group elements

h, g that

Vh · Vg − vh · vg ≡ 0 , (2.6)

where ≡ indicates that both sides are equal up to integers. Combined with equation (2.5)

this leads to the following set of irreducible modular invariance conditions:

V 2
θ ≡ v2θ , V 2

ω ≡ v2ω , Vθ · Vω ≡ vθ · vω , Vθ ·Wi ≡ Vω ·Wi ≡ 0 , Wi ·Wj ≡ 0 , (2.7)

by going through all possible commuting choices of g, h ∈ S.

The spectrum of (twisted or untwisted) closed strings from the sector g ∈ S is dictated

by their left- and right-moving masses

M2
L =

1

2
P 2
sh + Ñg −

3

4
, M2

R =
1

2
p2sh −

1

4
, (2.8)

in terms of the (shifted) left- and right-moving momenta

Psh = P + Vg , psh = p+ vg , (2.9)
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e1

e2

e1

e2

e5

e6

θω–sector:

ω–sector:

θ–sector:

e3

e4

Figure 1. Fixed tori of the DW(0-1) orbifold. Every fixed torus intersects 4 + 4 other fixed tori

and the intersection loci are points in six dimensions.

where P ∈ ΛE8×E8
′ and p is from the vectorial or spinorial weight lattice of SO(8). Here, the

twist vector vg is extended to a four-dimensional vector with an extra 0 as first component.

Furthermore, Ñg is a (fractional or integer) number operator counting the number of left-

moving oscillators α̃−n acting on the left-moving ground state of the g-twisted sector. The

physical spectrum is subject to the level matching condition M2
L = M2

R. The massless

states in four dimensions have vanishing left- and right-moving masses, ML = MR = 0,

and are subject to the projection conditions

Vh · Psh − vh ·
(
psh +∆Ñg

)
≡

1

2

(
Vg · Vh − vg · vh

)
, (2.10)

for all space group elements h that commute with g, using ∆Ñ i
g = Ñ ī

g − Ñ i
g, i = 0, 1, 2, 3,

where Ñ ī
g and Ñ i

g are integer oscillator numbers counting the numbers of oscillators α̃ī
−n

and α̃i
−n acting on the ground state of the g-twisted sector, respectively.

2.2 The standard DW(0-1) Z2 × Z2 orbifold

Now, we consider the standard T 6/Z2 × Z2 orbifold which corresponds to the DW(0-1)

model of ref. [29] in order to see how four-dimensional chirality arises. In this case, the

elements gθ and gω act only as rotations, hence the space group S is generated by the

elements: gθ =
(
θ, 0

)
, gω =

(
ω, 0

)
and gi =

(
11, ei

)
.

When compactifying the heterotic string on this orbifold, massless strings are attached

to its fixed tori. There are 16 + 16 + 16 fixed tori associated to three twisted sectors with
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e3
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e5

e6

e1

e2

e5

e6

ω–sector:

θ–sector:

Figure 2. Fixed tori of the DW(0-2) orbifold. The fixed tori of the θ-sector never intersect the

ones from the ω-sector, as they lie displaced in the third torus.

orbifold elements gθ, gω and gθgω. These fixed tori are in one-to-one correspondence to the

space group elements:

(θ, niei) for n1 = n2 = 0 and n3, n4, n5, n6 = 0, 1 , (2.11a)

(ω, niei) for n3 = n4 = 0 and n1, n2, n5, n6 = 0, 1 , (2.11b)

(θω, niei) for n5 = n6 = 0 and n1, n2, n3, n4 = 0, 1 , (2.11c)

and are displayed in figure 1. At a given fixed torus there exists a six-dimensional N = 1

theory (i.e. N = 2 theory in four-dimensional language) with localized hypermultiplets on

it. Since every fixed torus intersects other fixed tori, six-dimensional N = 1 supersymmetry

is broken to N = 1 in four dimensions at the intersection points. Technically, each fixed

torus is orbifolded by the action of some other non-trivial elements because the orbifold

generators gθ and gω commute. For example, the fixed torus of (θ, 0) is orbifolded by (ω, 0)

and (θω, 0). Hence, the projection conditions (2.10) are active and reduce a hypermultiplet

in six dimensions to a four-dimensional chiral superfield, giving chiral matter.

For example, in the orbifold standard embedding, where the twists θ and ω are embed-

ded via the shifts Vθ =
(
0, 12 , -

1
2 , 0

5
)(
08
)
and Vω =

(
-12 , 0,

1
2 , 0

5
)(
08
)
, we obtain a theory

with 51 chiral 27-plets (3 untwisted and 3 · 16 twisted) and 3 untwisted chiral 27-plets of

E6 in four dimensions. This precisely corresponds to the hodge numbers of the DW(0-1)

orbifold: (h11, h21) = (51, 3).

2.3 The DW(0-2) Z2 × Z2 orbifold

Next, we turn to the orbifold T 6/Z2×Z2,rototrans which will be the main focus in this work:

the DW(0-2) model in the classification [29]. Its space group S is generated by the elements

gθ =
(
θ, 0

)
, gω =

(
ω, 12e5

)
and gi =

(
11, ei

)
. In detail, the action of gθ, gω, gωgθ and gθgω

– 7 –
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on C3 is given by

gθ :
(
z1, z2, z3

)
=

(
z1,−z2,−z3

)
, gωgθ :

(
z1, z2, z3

)
=

(
− z1,−z2, z3 +

1

2

)
,

gω :
(
z1, z2, z3

)
=

(
− z1, z2,−z3 +

1

2

)
, gθgω :

(
z1, z2, z3

)
=

(
− z1,−z2, z3 −

1

2

)
.

(2.12)

This shows explicitly that gθ acts as an ordinary Z2 rotation, while gω defines a Z2 roto-

translation, which we denote by Z2,rototrans. The remaining two elements act as an Z2 in the

first two two-tori, but as a translation over half a lattice vector e5 in the third two-torus.

This has various important consequences for the distribution of fixed tori within the

DW(0-2) orbifold: Rather than 16+16+16 there are only 8+8 fixed tori. These are left

fixed by the group elements gθ and gω. Since gθgω and gωgθ act as a pure translations in

the third T 2, they do not produce any fixed tori by themselves, but rather identify the fixed

tori of gθ and gω in pairs. The fixed tori of gθ and gω are in one-to-one correspondence to

the space group elements,

gr =
(
θ, niei

)
for n1 = n2 = 0 and n3, n4, n6 = 0, 1 , (2.13a)

g′r′ =
(
ω,

1

2
e5 + niei

)
for n3 = n4 = 0 and n1, n2, n

′
6 = 0, 1 . (2.13b)

We will often refer to the positions
(
z1,

1
2n3+

i
2n4,

i
2n6

)
and

(
1
2n1+

i
2n2, z2,

1
4 +

i
2n

′
6) of the

fixed tori of gθ and gω using multi-indices r = (n3, n4, n6) and r′ = (n1, n2, n
′
6), respectively.

As illustrated in figure 2 the fixed tori r and r′ lie parallel to each other in the third T 2.

To emphasize this important fact we use the primes on r′ and n′
6 to signal that the 8 fixed

points r′ are shifted by 1
4e5 = (0, 0, 14) in the third torus w.r.t. the fixed points r.

When compactifying the heterotic string on this orbifold, massless strings are attached

to these fixed tori as for the DW(0-1) orbifold above. However, since in this case the fixed

tori do not intersect, there are no projections acting locally on the six-dimensional N = 1

theory. (Or more technically, even though θ and ω commute,the space group elements

gθ and gω do not, since they are defined to act on R
6 not on T 6, see (2.12). Hence, the

projection condition (2.10) is not implemented for these elements.) Nevertheless, from a

four-dimensional point-of-view supersymmetry is broken to N = 1: There are two six-

dimensional theories living on the fixed tori of the gθ and gω sectors which realize different

six-dimensional N = 1 supersymmetries. Hence, in the effective four-dimensional theory

only N = 1 remains. As this provides an example of non-local supersymmetry breaking,

the six-dimensional hypermultiplets just branch into two chiral multiplets and consequently

the resulting four-dimensional theory is necessarily non-chiral. Concretely, for the orbifold

standard embedding we find for this orbifold 3+2 ·8 = 19 chiral 27-plets and 3+2 ·8 = 19

chiral 27-plets of E6, i.e. the Hodge numbers are (19, 19). In fact, because supersymmetry

is broken non-locally, any DW(0-2) orbifold is non-chiral, independently of the choice of

shifts and Wilson lines.

Because of this, it would seem that this type of orbifold can never be relevant for four-

dimensional model building. One of the main messages of this paper is that one should
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not discard such orbifolds for phenomenology just yet. In fact, as shown in section 5 it

is possible to construct an explicit six generation SU(5) GUT model on the resolution of

this orbifold. To break the GUT to the MSSM and to reduce the number of generations

by a factor two one can use a (true field-theoretical) Wilson line Wfree associated to a

free involution Z2,free of the geometry. In terms of the complex coordinates we take this

involution to act as

(
z1, z2, z3

)
→

(
z1 +

i

2
, z2 +

i

2
, z3 +

i

2

)
. (2.14)

When this involution has been modded out the resulting geometry corresponds to the

DW(1-3) orbifold with Hodge numbers (11, 11) in the classification [29]. In order that

this is a symmetry of the full model, the discrete Wilson lines get severely restricted, i.e.

W2
∼= W4

∼= W6 and Wfree
∼= 1

2W2.

3 Schoen manifold

The Schoen manifold X was first introduced in [15]; here we follow the description of this

manifold given e.g. in [16–18, 37]. The Schoen manifold is defined as the fiber product

X = B ×P1 B′ , (3.1)

of two (four-dimensional) rational elliptic surfaces B and B′. Hence, the manifold X is

naturally equipped with two projections π′ : X → B and π : X → B′ that project on

either factor of the fiber product. Such a rational elliptic surface B is defined as a two-

torus fibration β : B → P1 over the base P1. In terms of the fibrations β and β′ the fiber

product (3.1) is written as

X :=
{
(p, p′) ∈ B ×B′ | β(p) = β′(p′)

}
. (3.2)

A two-torus can be described as an elliptic curve, i.e. via the Weierstrass mapping as

the solution to an homogeneous cubic polynomial constraint f(x) = 0 in the homogeneous

coordinates x = (x0, x1, x2) ∈ P2. The complex structure of the torus is encoded in the

constraint f(x) = 0: A homogeneous cubic polynomial is characterized by 3 + 6 + 1 = 10

complex parameters, of which eight can be removed by complexified SU(3) rotations of x

and the overall complex scale is irrelevant. Because of the fibration the complex structure

in general varies over the base P1. Therefore, the rational elliptic surface B can be given by

B =
P2

P1

[
3

1

]
: B =

{
p = (x, t) ∈ (P2,P1) | t0 f0(x)− t1 f1(x) = 0

}
. (3.3)

The surface B can thus be considered as the blow-up of P2 at (generically) 3 · 3 = 9 points

x where both cubic polynomials vanish simultaneously f0(x) = f1(x) = 0. Since at each

of these points an exceptional cycle P1 is inserted, the cohomology group H2(B,Z) = Z
10

is spanned by the hyper plane class ℓ of P2 and the exceptional classes eρ (ρ = 1, . . . , 9)

with intersection numbers ℓ2 = −e2ρ = 1. This surface has c1(B) = 3 ℓ −
∑

ρ eρ and Euler

number χ(B) = c2(B) = χ(P2) + 9 · χ(P1) = 12.
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As the description of B′ is similar, the manifold X can be written as a complete

intersection Calabi-Yau

X =

P2

P2

P1



3 0

0 3

1 1


 :





t0 f0(x)− t1 f1(x) = 0

t0 f
′
0(x

′)− t1 f
′
1(x

′) = 0
. (3.4)

Clearly, the Calabi-Yau condition is satisfied as the horizontal sums of the degrees of the

homogeneous polynomials are one higher than the dimension of the respective projective

spaces. In this representation the number of complex structure deformations is readily

counted: There are 4 cubic polynomials, f0(x), f1(x), f
′
0(x

′), f ′
1(x

′), each containing 10

complex parameters. By redefinitions of x, x′ and t one can remove 2 · 8 + 3 of them and

two overall complex scales are irrelevant, hence h12 = 4 · 10− 2 · 8− 3− 2 = 19. On both B

and B′ there are 10 (1, 1)-forms corresponding to the classes ℓ, eρ and ℓ′, e′ρ, respectively.

However, since β(p) = β′(p′) there is one linear relation among them. Consequently, the

number of Kähler deformation equals h11 = 2·10−1 = 19. In summary the Hodge numbers

of X are (19, 19).

3.1 Singular Schoen manifold: the DW(0-2) orbifold

Putting the discussion above and the information obtained in subsection 2.3 together sug-

gests that the T 6/Z2 ×Z2,rototrans orbifold can be considered as a specific singular limit of

the Schoen manifold, since their Hodge numbers agree. Indeed, by the following consider-

ations this can be confirmed [29]: On the covering six-torus coordinates z the projects π′

and π act as π′(z) = (z1, z3) and π(z) = (z2, z3), hence the rational elliptic surfaces B and

B′ are given in this singular limit as

B =

{
(z1, z3) ∈ T 2

1 × T 2
3 | (z1, z3) ∼ (z1,−z3) ∼

(
− z1,

1

2
− z3

)
∼

(
− z1, z3 +

1

2

)}
,

(3.5a)

B′ =

{
(z′2, z

′
3) ∈ T 2

2 × T 2
3 | (z′2, z

′
3) ∼

(
z′2,

1

2
− z′3

)
∼ (−z′2,−z′3) ∼

(
− z′2, z

′
3 +

1

2

)}
.

(3.5b)

These spaces are isomorphic: By applying a change of coordinates (z′2, z
′
3) = (z1, z3 +

1
4)

the identifications in B become identical to those in B′. The P1 in the fiber product, which

has the topology of a two-sphere, becomes a rectangular pillow

P
1 =

{
(z3) ∈ T 2

3 | (z3) ∼ (−z3) ∼

(
1

2
− z3

)}
. (3.6)

3.2 Schoen manifold as the resolution of the DW(0-2) orbifold

As has been explained e.g. in [13, 38, 39] one can construct the smooth resolutions of

compact orbifolds in a systematic fashion. In particular, it is possible to determine a

convenient basis of divisors and the intersection numbers of the resolution of the orbifold
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T 6/Z2 × Z2,rototrans. Hence, when applying these methods to the DW(0-2) orbifold one

obtains a smooth Calabi-Yau space which constitutes a different realization of the Schoen

manifold. As we will use this description of the Schoen manifold in the remainder of this

paper, we describe this procedure in some detail below.

Intersection ring of a basis of divisors. The inherited divisors Ra (a = 1, 2, 3) cor-

respond to the torus divisors {za = ca} with ca some generic complex numbers that are

made compatible with the orbifold action:

R1 := {z1 = c1} ∪ {z1 = −c1} , R2 := {z2 = c2} ∪ {z2 = −c2} ,

R3 := {z3 = c3} ∪ {z3 = −c3} ∪

{
z3 =

1
2 + c3

}
∪

{
z1 =

1
2 − c1

}
,

(3.7)

Next we define the ordinary divisors associated to the local coordinates defined near the

fixed points of the orbifold

D1,n1n2 :=

{
z1 =

1

2
n1 +

i

2
n2

}
,

D2,n3n4 :=

{
z2 =

1

2
n3 +

i

2
n4

}
,

D3,n6 :=

{
z3 =

i

2
n6

}
∪

{
z3 =

1

2
+

i

2
n6

}
,

D′
3,n′

6
:=

{
z3 =

1

4
+

i

2
n′
6

}
∪

{
z3 =

3

4
+

i

2
n′
6

}
.

(3.8)

Finally, the exceptional divisors, denoted by E′
r′ and Er, arise when we resolve the Z2

singularities using e.g. toric geometry techniques. Since the fixed tori are identified in pairs

in the DW(0-2) orbifold, we can represent them in terms of the exceptional divisors in the

fundamental domain of the original T 6 (before modding out this identification):

Er = En3n4n6 = En3n40n6 ∪ En3n41n6 , E′
r′ = E′

n1n2n
′

6
= En1n20n′

6
∪ En1n21n′

6
. (3.9)

These 8+8 exceptional divisors stem from the 8+8 fixed tori displayed in the figure 2.

Between these divisors the following linear equivalence relations hold:

2D1,n1n2 = R1 −
∑

n′

6

E′
n1n2n

′

6
, 2D′

3,n′

6
= R3 −

∑

n1,n2

E′
n1n2n

′

6
,

2D2,n3n4 = R2 −
∑

n6

En3n4n6 , 2D3,n6 = R3 −
∑

n3,n4

En3n3n6 .
(3.10)

These linear equivalence relations show that a basis for the H2(X,R) are formed by the

divisors R and E. (In total we have 3 + 2 · 8 = 19 of them.) In this basis the Schoen

manifold has the following non-vanishing self-intersections between these divisors:

R1R2R3 = 4 , R2(E
′
n1n2n

′

6
)2 = R1(En3n4n6)

2 = −4 . (3.11)

Using the linear equivalence relations (3.10) (self-)intersections between any combination

of R’s, D’s and E’s are readily computed.
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Chern classes. The total Chern class c(TX) of the tangent bundle of the resolution

space X can be computed from the splitting principle as

c(TX) =
∏

(1 +D)
∏

(1 + E)
∏

(1−R)2 , (3.12)

where the products are taken over all divisors of the appropriate types. By expanding this

out, we can determine the first and second Chern classes of X. Using the linear equivalence

relations (3.10) we find that c1(TX) = 0, confirming that X defines a Calabi-Yau space.

For the second Chern class we obtain

c2(TX) = −
3

4

(∑

r′

(E′
r′)

2 +
∑

r

(Er)
2

)
+ . . . (3.13)

The dots . . . refer to further terms that appear in this expansion in principle, but which

never contribute when integrated over any four-cycle using the intersection numbers

given above.

By employing the adjunction formula, c2(D) = D c2(X|D) one can determine the Euler

number of the hyper surface associated to the divisor D. In particular, from

χ(R1) = c2(R1) = 24 , χ(R2) = c2(R2) = 24 , and χ(R3) = c2(R3) = 0 , (3.14)

we infer that the divisors R1 and R2 are K3 surfaces and R3 is a four-torus. Finally,

one may consider D1,00 and D2,00 as the divisor classes associated to the rational elliptic

surfaces B′ and B, respectively. Indeed, the Euler number of D1,00 equals χ(D1,00) = 12,

and, since D1,00E
2
r = −2, D1,00 contains the same fixed points of gθ as B

′, see (3.5). Hence,

we may identify B′ = D1,00 and similarly B = D2,00.

4 Line bundle models on the Schoen resolution

In this section we consider Abelian gauge backgrounds on the Schoen geometry as described

in the previous section. After that we determine the charged chiral spectrum in the presence

of this background, showing in particular that even with line bundles it is possible to obtain

chirality in four dimensions. Subsection 4.3 explains how the spectra of such line bundle

backgrounds can be interpreted as heterotic orbifolds with appropriate blow-up modes

switched on. The final subsection illustrates various aspects by giving an explicit line

bundle model on the Schoen manifold.

4.1 Abelian gauge flux backgrounds

On the space X we consider an Abelian gauge background F which is embedded in the

Cartan subalgebra, spanned by the generators HI , of the E8 × E8
′ gauge group of the

heterotic theory. In general this gauge flux is supported on both the exceptional and

inherited divisors

F

2π
=

∑

a

RaHBa
+
∑

r

Er HVr
+
∑

r′

E′
r′ HV ′

r′
. (4.1)
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The line bundle vectors Vr, V
′
r′ and the magnetic fluxes Ba on the tori are sixteen-

dimensional component vectors that characterize the corresponding line bundle embedding

in E8 × E8
′. To shorten the notation we have written HA = AI HI , where A are referred

to as bundle or flux vectors with 16 components, AI .

In order that this gauge background is compatible with the freely acting Z2,free invo-

lution (2.14) of the orbifold, we need to require that

Vn3 n4 n6 = Vn3 n4+1n6+1 , V ′
n1 n2 n

′

6
= V ′

n1 n2+1n′

6+1 , (4.2)

Given that the indices take values ni = 0, 1, the addition of indices is performed modulo 2.

Flux quantization. For a gauge flux configuration (4.1) to be physically admissible it

has to be integrally quantized, i.e.
∫

C

F

2π
∈ Z , (4.3)

for all curves C that the manifold X admits. This gives a stringent set of conditions on

the bundle vectors

2V ′
n1n2n

′

6

∼= 2Vn3n4n6
∼= 0 , 2B1

∼= 2B2
∼= 2B3

∼= 0 , (4.4a)

∑

n1,n2

V ′
n1n2n

′

6
+B1

∼=
∑

n3,n4

Vn3n4n6 +B2
∼= 0 ,

∑

n′

6

V ′
n1n2n

′

6
+
∑

n6

Vn3n4n6 +B3
∼= 0 . (4.4b)

The first two conditions of (4.4a) are obtained by integrating over the curvesD2,n3n4E
′
n1n2n

′

6

and D1,n1n2En3n4n6 , respectively. The first two sum conditions in (4.4b) result from inte-

grating over D2,n3n4D
′
3,n′

6
and D1,n1n2D3,n6 , respectively. The last sum relation in (4.4b) is

found by integrating over D1,n1n2D2,n3n4 . When we combine these sum equations with the

first two conditions of (4.4a), the latter three of (4.4a) are inferred. These equations are

quite tricky to be solved in general. However, there are two (related) ansätze that simplify

the problem considerably:

First of all, one may assume that the various bundle vectors are either equal or oppo-

site, e.g.

Vn3n4n6 =
∑

s=0,1

(−)s(n4+n6) Vsn3 , V ′
n1n2n

′

6
=

∑

s′=0,1

(−)s
′(n2+n′

6) V ′
s′n1

. (4.5)

This particular choice is compatible with the requirement (4.2) that the gauge fluxes ad-

mit the Z2,free action of equation (2.14). In this case, the sums of Vr and V ′
r′ in the

conditions (4.4b) form lattice vectors. Consequently, the magnetic fluxes of the tori Ba

have to be lattice vectors themselves.

Secondly, taking inspiration from the expansion (2.4) of the local shift vectors Vg in

the orbifold construction, one may write the local bundle vectors as

Vn3n4n6 = Vθ + n3W3 + n4W4 + n6W6 + Ln3n4n6 ,

V ′
n1n2n

′

6
= Vω + n1W1 + n2W2 + n′

6W6 + L′
n1n2n

′

6
,

(4.6)

where 2Vθ
∼= 2Vω

∼= 2Wi
∼= 0 and Ln3n4n6

∼= L′
n1n2n

′

6

∼= 0. Then, again, the sum condi-

tions (4.4b) imply that the magnetic fluxes Ba are lattice vectors.
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Bianchi identities. The central consistency requirements for smooth compactifications

are the integrated Bianchi identities. In this work we ignore the possibility of five-branes,

therefore the integrated Bianchi identities have to vanish for all divisors D, i.e.
∫

D

(
trF2 − trR2

)
= 0 . (4.7)

Using the expression for the second Chern class (3.13) of X, we find in the present case

that these conditions amount to

B1 · Vr = 0 , B2 · V
′
r′ = 0 , B1 ·B2 = 0 , (4.8a)

∑

r

(Vr)
2 = 12 + 2B2 ·B3 ,

∑

r′

(V ′
r′)

2 = 12 + 2B1 ·B3 , (4.8b)

by integrating over Er, Er′ , R3, and R1, R2, respectively.

The equations in (4.8a) show that the gauge fluxes B1 and B2 have to be perpendicular,

and, that the gauge flux B1 on R1 is perpendicular to all the line bundle vectors Vr.

Similarly, the gauge flux B2 is perpendicular to all vectors V ′
r′ . However, there are no

conditions on the inner products B1 · V ′
r′ and B2 · Vr. The Bianchi identities on the second

line, (4.8b), are reminiscent of the Bianchi identity on a single C
2/Z2 resolution, i.e. V 2 =

3/2 (see e.g. refs. [40, 41]). For example, when B2 or B3 vanish and all eight Vr are equal,

this condition is reproduced identically. The magnetized tori thus lead to modifications of

the standard local Bianchi identity of the local C2/Z2 resolution.

DUY equations and the blow-down limit. Using that the volume of a divisor D is

defined as Vol(D) =
∫
D
J2/2, the tree-level DUY equation

∫
J2F = 0 can be represented as

∑

a

Vol(Ra)Ba +
∑

r

Vol(Er)Vr +
∑

r′

Vol(E′
r′)V

′
r′ = 0 . (4.9)

These conditions can be very restrictive. They give an equal number of relations between

the volumes as the number of linear independent vectors the Ba, Vr and V ′
r′ can be de-

composed in. However, one such relation may force many volumes to zero simultaneously,

because these volumes are of course assumed to be non-negative.

As we describe the Schoen manifold as a resolution of the T 6/Z2 × Z2,rototrans, we

would like to determine the requirements under which a gauge flux configuration allows for

a regular blow-down limit in which the underlying six torus T 6 has a finite volume. Hence,

we search for solutions which allow for a full blow-down to the singular orbifold, i.e. with

Vol(Er) = Vol(E′
r′) = 0 and Vol(Ra) > 0. In this case, the DUY equations simplify to

Vol(R1)B1 +Vol(R2)B2 +Vol(R3)B3 = 0 . (4.10)

It follows that unless the Ba are linearly dependent or all zero, at least some of the volumes

Vol(Ra) are forced to vanish. In particular, if only one Ba is non-zero, then the correspond-

ing volume has to be zero in the blow-down limit, and hence a regular blow-down limit

does not exist. Even when B3 is a linear combination of B1 and B2 but one of the coeffi-

cients is positive, two volumes are forced to zero. Hence, only if B3 is a linear combination
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with negative coefficients of B1 and B2, a regular blow-down limit exists. Hence, possibly

the simplest way to realize this has B3 = −B1 − B2. We can cast this in the form of

two equations

B2
1 Vol(R1) +B1 ·B3Vol(R3) = 0 , B2

2 Vol(R2) +B2 ·B3Vol(R3) = 0 , (4.11)

since B1 and B2 are perpendicular, see (4.8a). Since we know from (4.4a) that 2Ba
∼= 0,

we see that the ratios of the volumes of the inherited divisors, Vol(Ra)/Vol(R3), a = 1, 2,

are fractional.

To allow for a full blow-up we need in addition that the fluxes located at the exceptional

divisors to be chosen such that the volumes of all of them can be taken to be positive at the

same time. To ensure this it is again convenient to choose that the corresponding bundle

vectors are alternating, e.g. like in (4.5).

It turns out that the combination of the flux quantization, DUY equations and the

Bianchi identities is extremely restrictive, hence, to obtain semi-realistic models, one is

often forced to give up the requirement of a regular blow-down limit. (In addition, the one-

loop correction to the DUY equation [26] can force some volumes to be non-vanishing.)

When this limit does not exist, an orbifold interpretation of the model is not ruled out:

Often it is possible to shrink quite a number of exceptional cycles to zero, while keeping the

volumes Vol(Ra) > 0. Hence, locally near those shrunken cycles a non-compact orbifold

analysis is still possible.

4.2 Spectra computation

To determine the physical consequence of models build on such orbifold resolutions we need

to be able to determine the spectrum of massless states. A convenient way of computing

the spectrum on an orbifold resolution is provided by the multiplicity operator introduced

e.g. in [40–42]. Using these methods we can determine both the spectra in four dimensions

as well as on six-dimensional hyper surfaces.

Four-dimensional spectrum. The spectrum in four dimensions is of key interest in

phenomenological studies. It can be determined by letting the operator

N4D(X) =

∫

X

{
1

6

(
F

2π

)3

+
1

12
c2(TX)

F

2π

}
, (4.12)

act on the states contained in the ten-dimensional gaugino. This operator is normalized

such that it counts the number of chiral superfields. Using the intersection numbers deter-

mined above this is computed straightforwardly:

N4D(X) = 2

(
1−

∑

r

H2
Vr

)
HB1 + 2

(
1−

∑

r′

H2
V ′

r′

)
HB2 + 4HB1HB2HB3 . (4.13)

The multiplicities of the chiral multiplets in four dimensions are then determined by eval-

uating this operator on the roots of E8 × E8
′.

There is some tension between solving the Bianchi identities and chirality, because

of the orthogonality relations, (4.8a), among the fluxes Ba, Vr and V ′
r′ . However, say
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B1 · Vr = 0, does not imply that on all E8 × E′
8 roots HB1H

2
Vr

vanishes. As we show by

some examples discussed in the section 5, it is indeed possible to obtain a chiral spectrum

in four dimensions.

Six-dimensional spectra on divisors. In addition, we can define the multiplicity op-

erator N6D(D) in six dimensions for any divisor D ⊂ X. Positive values of N6D count

the number of half-hyper multiplets, while negative values count (two times) the number

of vector multiplets. (In six dimensions the fermions of hyper and vector multiplets have

opposite chirality.) As integrals over the whole space X they read

N6D(D) =

∫

X

D

{
1

2

(
F

2π

)2

+
1

12
c2(D)

}
, (4.14)

where c2(D) are given in (3.14). Given that the divisors R1, R2 may be interpreted as

K3 surfaces and R3 as a four-torus, the spectra on these divisors are probably the most

interesting. Using the intersection numbers we readily compute this explicitly for D = Ra:

N6D(R1) = 2

(
1−

∑

r

H2
Vr

)
+ 4HB2HB3 , (4.15a)

N6D(R2) = 2

(
1−

∑

r′

H2
V ′

r′

)
+ 4HB1HB3 , (4.15b)

N6D(R3) = 4HB1HB2 . (4.15c)

Relation between the six- and four-dimensional spectra. As explained in sub-

section 2.3 the orbifold T 6/Z2 × Z2,rototrans never leads to four-dimensional chirality. The

reason is basically that such models only contain hypermultiplets in six dimension, which

simply branch to vector-like combinations of chiral multiplets in four dimensions. In the

smooth case we have found a way to bypass this no-go. The key here are the magnetic

fluxes Ba on the divisors Ra that correspond to the tori of the orbifold in the blow-down

limit. Indeed, if we set all Ba = 0, then (4.13) simply says that N4D = 0: no chiral-

ity. Hence, precisely by allowing for magnetized divisors Ra we can avoid this no-go and

obtain chirality.

To see that this effect is expected from field theory, let us consider the case in which

the flux B2 has been switched off. The four-dimensional multiplicity operator (4.13) then

leads to a relation between the six-dimensional spectrum on R1 given by (4.15a) and the

spectrum in four dimensions:

N4D(X) = HB1 N6D(R1) . (4.16)

This equation can be interpreted as follows: When we compactify on a K3× T 2, then we

can consider first the six-dimensional theory that results from the compactification on K3.

This effective six-dimensional model is subsequently reduced on a two-torus. It is well-

known that if there is no magnetic flux, this second step results in a vector-like spectrum

in four dimensions. However, if there is a magnetic flux B present, a chiral spectrum arises:

only the chiral fermionic states of charge q for which Bq > 0 survive, and their multiplicity
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is given by Bq provided that the smallest charge in the spectrum is unity [34, 36]. It is

intriguing to notice that (4.16) says exactly this: N6D(R1) determines the spectrum in a

six-dimensional world. The operator HB1 gives the charge B1 · w of the six-dimensional

state associated with the E8 × E8
′ root w under the magnetic flux B1.

When all three fluxes are switched on, the relation between the four- and six-

dimensional spectra apparently reads

N4D(X) = HB1 N6D(R1) +HB2 N6D(R2)−HB3 N6D(R3) . (4.17)

This follows directly by identifying the six-dimensional multiplicity operators (4.15) in the

four-dimensional expression (4.13). The final term corrects for over counting of states

charged under B1, B2 and B3 simultaneously.

4.3 Interpretation as blow-up of DW(0-2) orbifold models

So far, we have analyzed the Schoen geometry as a smooth Calabi-Yau and described line

bundle backgrounds on it. The fact that the Schoen manifold is the resolution of the DW(0-

2) orbifold, as discussed in section 3, has essentially been irrelevant in our investigation.

Now, we would like to describe how a given line bundle model can be understood as

a heterotic DW(0-2) orbifold model with a certain number of blow-up modes attaining

vacuum expectation values (VEVs). We first recall how this analysis can be done in general

using aN = 1 language in four dimensions following [10, 13, 42]. After that we conclude this

subsection by describing this procedure in a six-dimensional supersymmetric formulation

which is more appropriate since the DW(0-2) orbifold model has N = 1 supersymmetric

sectors in six dimensions.

Four dimensional N = 1 language. In heterotic orbifolds a fixed point gets blown up

if a twisted chiral superfield Φ
(r)
bm, localized at that fixed point, acquires a non-vanishing

VEV: 〈Φ
(r)
bm〉 6= 0. The value of this VEV determines the volume of the exceptional cycle

Er that appears in this resolution process. As we recalled in section 2.1 any twisted

state is characterized by a shifted left-moving momentum Psh. In refs. [10, 13, 43] it was

realized that, as long as this twisted state does not involve any oscillator excitations, its

shifted momentum Psh precisely determines the local line bundle vector Vr associated to

the exceptional divisor Er. Some special cases might occur: Sometimes it happens that a

bundle vector corresponds to a blow-up mode that has been projected out by the orbifold

action in the four-dimensional theory. It is also possible that the bundle vector is associated

to a massive state in the orbifold spectrum.

The spectrum of the orbifold model and the one of the blow-up theory are generically

not identical, but closely related: First of all the VEVs of the twisted states 〈Φ
(r)
bm〉 lead to

some gauge symmetry breaking. Furthermore, the blow-up modes are not present in the

blow-up spectrum as charged states, but rather as (complexified) axions br. The relation

between the blow-up mode and the axion reads

Φ
(r)
bm = ebr 〈Φ

(r)
bm〉 . (4.18)
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In the smooth description this axion generically gives a mass to the gauge field of the

broken U(1) via the Stueckelberg mechanism. In the blow-up picture the U(1) is broken

just by a standard Higgs mechanism.

As a consequence of this gauge symmetry breaking the representations of matter fields

get branched. But still, this is not enough to match the orbifold and resolution spec-

tra [10, 13]: One needs to preform field redefinitions of the other twisted matter states

Φorb involving the corresponding blow-up modes to obtain an exact agreement of the spec-

tra, i.e.

Φorb = e±br Φres . (4.19)

The signs ± have to be chosen appropriately to ensure that the weights of Φres are E8×E8
′

roots, while those of Φorb belong to the shifted weight lattice defined in (2.9).

Blow-ups in six dimensions. Before we describe the blow-up procedure in a six-

dimensional language, we first briefly recall some properties of N = 1 theories in six

dimensions. There are three basic irreducible representation of N = 1 supersymmetry

relevant for our discussion: i) A vector multiplet V = (V,Φ) contains a vector superfield

V and a chiral superfield Φ from the 4D N = 1 perspective. ii) A hypermultiplet contains

two independent chiral superfields H = (Φ,Φc) that live in charge-conjugate representa-

tions. This means that the gauge properties of the hypermultiplet is uniquely specified by

the representation and U(1) charges of either chiral component. iii) Finally, a half-hyper

multiplet is a hypermultiplet with a certain reality condition imposed. Therefore, it has

only half of the number of independent components as a normal hypermultiplet. In other

words, using the four-dimensional N = 1 terminology, a half-hyper is a chiral superfield in

a real or pseudo-real representation.

Now, if a twisted hypermultiplet plays the role of a blow-up mode in order to resolve a

fixed torus, then only one of its chiral superfield components actually takes a VEV, while

the other component only gets redefined:

H
(r)
bm = ebr (〈Φ

(r)
bm〉,Φ

c(r)
bm,res) . (4.20)

Because the chiral superfield components of a hypermultiplet carry opposite U(1) charges,

they have to be redefined with opposite powers of the blow-up mode:

Horb = (Φorb,Φ
c
orb) =

(
e±br Φres, e

∓br Φc
res

)
, (4.21)

for appropriate choice of sign ±. After these field redefinitions the chiral superfields in

the blow-up mode hypermultiplet do not seem to fall into proper N = 1 representations

anymore. However, this does not signify that the blow-up breaks six-dimensional super-

symmetry: The remaining chiral superfield components will be completely neutral, and

therefore form half-hypermultiplets by themselves.

4.4 Sample model: an eight generation GUT

We conclude this section with a concrete example of a line bundle model which is con-

structed on the Schoen geometry to illustrate many aspects of the general description
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developed in this and the preceding sections. Consider the following particular line bundle

model on the resolution of our T 6/Z2 × Z2,rototrans:

B3 = −B1 , B2 = 0 , Vn3n4n6 = (−)n4+n6 V0 , V ′
n1n2n

′

6
(−)n2+n′

6 V ′
n1

, (4.22)

with

B1 =
(
1, 1, 1, -1, 0, 03

)(
08
)
,

V0 =

(
0, 0,

1

2
,
1

2
, 0, 03

)(
1, 07

)
,

V ′
0 =

(
0, 0, 0,

1

2
,
1

2
, 03

)(
08
)
,

V ′
1 =

(
1

2
, -

1

2
, 0, 0, 0, 03

)(
08
)
.

(4.23)

This model exhibits the following properties:

The bundle vectors satisfy all the requirements specified in section 4.1: The quanti-

zation conditions (4.4) are fulfilled, because the alternating signs in the Vr and V ′
r′ are in

accordance with (4.5) and the vectors Ba are lattice vectors.

They also satisfy all Bianchi identities (4.8): B1 is perpendicular to all vectors Vr.

Since all vectors Vr square to 3/2 and B2 = 0 the first condition in (4.8b) is satisfied. The

second condition in (4.8b) is satisfied as well, since both sides are equal:

∑

r′

V ′
r′
2 = 8 ·

1

2
= 4 , 12 + 2B1B3 = 12− 2 · 4 = 4 . (4.24)

Because B3 = −B1 and B2 = 0 a blow-down of this model is allowed by the DUY equa-

tions (4.9) while keeping the torus radii, set by the volumes of the divisors Ra, finite. In

the blow-down limit, Vol(Er) = Vol(E′
r′) = 0, the volumes of R1 and R3 have to be equal,

Vol(R3) = Vol(R1). The alternating signs of Vr and V ′
r′ ensure that the DUY equations

also allow for a finite blow-up of all exceptional cycles.

The gauge group that is left unbroken by this Abelian gauge configuration is

SU(5)× SO(14)′ ×U(1)5 , (4.25)

from the first and second E8 group factor. Since for this choice of bundle vectors B2 = 0

and all Vr are equal up to a sign, the 4D multiplicity operator (4.13) reduces to

N4D = 2HB1

(
1− 8H2

V0

)
. (4.26)

The resulting spectrum,

8 (10,1) + 12 (5,1) + 4 (5,1) + 24 (1,1) , (4.27)

is chiral w.r.t. to the five U(1) charges (which we omitted for notational simplicity). (W.r.t.

the hidden gauge group at most a purely vector-like spectrum arises, which is invisible for

the multiplicity operator.) Hence, the model might be considered as an eight generations

SU(5) GUT toy-model with four Higgs pairs.
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5 A line bundle MSSM on the Schoen manifold

We present an MSSM-like model with three generations as a line bundle model on the reso-

lution of T 6/Z2×Z2,rototrans. In the first subsection we construct an SU(5) GUT model with

six generations on the Schoen manifold using line bundles. In subsection 5.2 we identify a

Wilson line that can be associated with a freely acting involution, which both reduces the

number of generations to three and breaks the gauge group to the standard model group.

In the next subsection we show that a K3 subspace of the Schoen manifold can be blown

down to a four-dimensional orbifold T 4/Z2 on which the model can be quantized using

standard CFT techniques. In subsection 5.4 we use this to give an alternative description

of the line bundle MSSM on the Schoen manifold in terms of a blow-up of this orbifold

with a magnetized torus.

5.1 Six GUT generations on the Schoen resolution

We define a line bundle model on the Schoen manifold with the flux vectors

B1 =
(
3,−3, 06

)(
3, 3, 06

)
and B2 = B3 = 0 , (5.1)

on the ordinary divisors Ra,

V(0,0,0) = V(0,1,0) = −V(0,0,1) = −V(0,1,1) =

(
1

4

8
)(

0, 0, 0,
1

2
, 0,−

1

2
,−

1

2
,−

1

2

)
, (5.2a)

V(1,0,0) = V(1,1,0) = −V(1,0,1) = −V(1,1,1) =

(
0,

1

2
,
1

2
, 05

)(
0,

1

2
, 0, 0, 0,−

1

2
,−

1

2
,−

1

2

)
,

(5.2b)

on the exceptional divisors Er, and finally,

V ′
(0,0,0) = −V ′

(0,1,1) =

(
0,−

1

2
,−

1

2
, 05

)(
1

2
,
1

2
,
1

2
, 0,−

1

2
, 0, 0, 0

)
, (5.3a)

V ′
(0,1,0) = −V ′

(0,0,1) =

(
0,−

1

2
,−

1

2
, 05

)(
1

2
,
1

2
,−

1

2
, 0,

1

2
, 0, 0, 0

)
, (5.3b)

V ′
(1,0,0) = V ′

(1,1,0) =
(
0, 1, 0, 05

)(
−

1

2
,−

1

2
, 0, 0, 0, 0, 0, 0

)
, (5.3c)

V ′
(1,1,1) = V ′

(1,0,1) =
(
− 1, 07

)(
−

1

2
,−

1

2
, 06

)
, (5.3d)

on the exceptional divisors E′
r′ .

This choice of bundle vectors fulfills the quantization conditions (4.4) and the DUY

equations (4.9) for appropriately chosen volumes. All bundle vectors Vr and V ′
r′ have

V 2
r = V ′

r′
2 = 3/2. This is consistent with the Bianchi identities (4.8b), which reduce to

∑

r

(Vr)
2 =

∑

r′

(V ′
r′)

2 = 12 ; (5.4)
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Superfield Representation U(1) charges

multiplicity SU(5)× SU(5)′ q0 q1 q2 q3 q4 q5 q6 q7

6
(
10,1

)
0 0 0 0 1 0 -3 0

6 (5,1) 0 0 0 0 0 0 -6 0

6
(
5,1

)
1 0 1 0 -1 0 1 0

6 (5,1) 1 0 1 0 0 0 4 0

24 (1,1) 2 0 0 0 0 0 0 0

6 (1,1) -1 0 -1 0 -1 0 5 0

6 (1,1) 1 0 -3 0 0 0 0 0

6 (1,1) 0 0 0 0 2 0 0 0

6
(
1,10

)
0 0 0 2 0 0 0 -6

24 (1,5) 0 1 0 3 0 0 0 -2

6
(
1,5

)
0 0 0 -2 0 0 0 -8

6
(
1,5

)
0 0 0 0 0 1 0 7

6
(
1,5

)
0 0 0 0 0 -1 0 7

42 (1,1) 0 0 0 4 0 1 0 -5

42 (1,1) 0 0 0 4 0 -1 0 -5

24 (1,1) 0 1 0 -3 0 1 0 -5

24 (1,1) 0 1 0 -3 0 -1 0 -5

6 (1,1) 0 2 0 0 0 0 0 0

Table 1. This line bundle model on the Schoen manifold has six generations of SU(5) in both, the

observable and the hidden, sectors. States in the first block are charged under the observable E8;

states in the second block are charged under the hidden group.

since there are no corrections resulting from magnetic fluxes Ba as only B1 6= 0. The

unbroken gauge group in this gauge configuration reads

SU(5)× SU(5)′ ×U(1)8 . (5.5)

The four-dimensional multiplicity operator (4.13) is computed straightforwardly and the

resulting chiral spectrum is given in table 1. In this table we have distinguished the various

states, in particular the singlets, by their eight U(1) charges (q0, . . . , q7). Notice that,

curiously, this model has six generations in both, the observable and the hidden, SU(5).

5.2 Freely acting Z2 and MSSM with three generations

One can define a freely acting involution Z2,free as in equation (2.14) that reduces the

number of generations by a factor 1/2. In addition, the freely acting involution can be

embedded as a Wilson line that breaks SU(5) to SU(3) × SU(2) × U(1)Y . We take this
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Wilson line,

Wfree =

(
03, 1, 1, 1,−

3

2
,−

3

2

)(
08
)
, (5.6)

to point in the standard hypercharge direction of SU(5). This choice of Wfree fixes

the first SU(5) to define the observable sector and leads to an MSSM-like model with

three generations.

Contrary to the situation in field theory, there are further requirements on this Wilson

line in string theory [12, 13]: It has to satisfy 2Wfree
∼= W2

∼= W4
∼= W6

∼= 0 and it has to

respect the modular invariance conditions

2W 2
free ≡ Wfree ·Wi ≡ 0 . (5.7)

These additional conditions were derived in context of orbifold constructions where Z2,free

is part of the space group.

5.3 Singular limits of the Schoen GUT with line bundles

Full blow down limit. Taking the magnetic flux B1 to vanish for a moment, we can

consider the full blow-down limit of the GUT model with six generations. It has an exact

heterotic orbifold CFT as formulated in section 2.3 as the T 6/Z2×Z2,rototrans orbifold with

a definite choice of gauge shifts, Vθ, Vω, and discrete Wilson lines, Wi. As dictated by the

flux vectors (5.2) and (5.3) they are given by

Vθ =

(
1

4

8
)(

1

2
,−

1

2
,
1

2
, 0,

1

2
, 03

)
,

Vω =

(
0,−

1

2
,−

1

2
, 05

)(
−

1

2
,−

1

2
,−

1

2
, 0,

1

2
, 03

)
,

W1 =

(
0,

1

2
,−

1

2
, 1, 1, 03

)(
0, 1,

1

2
, 1,−

1

2
, 03

)
,

W3 =

(
−

1

4
,
1

4
,
1

4
,−

1

4

5
)(

0,
1

2
, 0,

1

2
,−1, 03

)
,

(5.8)

and the other Wilson lines vanish. This choice fulfills the conditions of modular invari-

ance (2.7). As discussed in section 2.3, the spectrum of this orbifold can be computed

using orbifold CFT techniques but is necessarily non-chiral as long as no magnetic fluxes

Ba have been reintroduced.

The T 4/Z2 orbifold inside the Schoen manifold. Since the Schoen model defined

in this section has only a single magnetic flux, B1, switched on, see (5.1), the DUY equa-

tions (4.9) imply that in a full blow-down the volume of R1 has to vanish as well. However,

we can exploit that there also exists a partial blow-down in which all Vol(Er) → 0 while

the volumes of all inherited divisors Ra and of at least some other exceptional divisors

E′
r′ stay finite. Therefore, this partial blow-down leads to an intermediate T 4/Z2 orbifold

with torus coordinates (z2, z3) on which the Z2 action acts via the twist vθ given in (2.3)

(c.f. [11]).
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For this intermediate T 4/Z2 orbifold an exact heterotic CFT description exists. Taking

its gauge embedding as given by Vθ and W3 from equation (5.8), its low energy limit results

in a model with N = 1 supersymmetry in six dimensions with gauge group

E6 × SU(8)′ ×U(1)3 . (5.9)

The spectrum of hypermultiplets including U(1) charges of this intermediate six-

dimensional orbifold theory is computed using [7] and listed in the first column of table 2.

A simple, yet non-trivial crosscheck of this spectrum is that it is free of irreducible grav-

itational anomalies, e.g. that the sum condition #(hyper)−#(vector) = 244 holds. Indeed,

using table 2 it is straightforward to count the number of vector- and hypermultiplets:

#(vector) = 78 + 63 + 3 · 1 = 144 ,

#(hyper) = 2 ·

(
27 +

1

2
· 70 + 2

)
+ 16 · 2 · 8 + 4 = 388 , (5.10)

where the factor 1
2 accounts for the fact that the (1,70)(0,0,0) is a half-hyper. The last 4

additional hypers correspond to untwisted moduli which are not displayed in table 2.

5.4 Schoen line bundle MSSM as a blown up orbifold

The MSSM-like model of subsection 5.1 can now be reproduced as a blow-up of the T 4/Z2

orbifold discussed in the subsection above equipped with a magnetic flux on the torus to

generate four-dimensional chirality. In short, this procedure reads:

1. Blow-up the T 4/Z2 orbifold to a smooth K3 manifold by giving VEVs to 16 blow-up

modes and use field redefinitions to obtain the spectrum on K3.

2. Turn on the additional fluxes on the divisors E′
r′ , decompose gauge group and branch

the representations accordingly.

3. Generate four-dimensional chirality by switching on the magnetic flux B1 as well.

In this process the magnetic flux B1 does not lead to breaking of four-dimensional super-

symmetry since the contribution from the fluxes on E′
r′ cancels the one from B1 in the

DUY equations (4.9). In the following we describe this procedure in detail:

Blowing up the intermediate T 4/Z2 orbifold. The intermediate T 4/Z2 orbifold gets

blown up to a K3 surface by assigning VEVs to the blow-up modes, i.e. to 16 twisted states

localized at the 16 singularities of the T 4/Z2 orbifold. At each singularity (labeled by the

multi-index r = (n3, n4, n5, n6)) a blow-up mode, Φ
(r)
bm contained in a twisted hypermulti-

plet, is chosen such that its shifted left-moving momentum P
(r)
sh agrees with the flux vector

Vr localized on the divisor Er:

P
(r)
sh = Vr for all r = (n3, n4, n5, n6) . (5.11)
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All these blow-up modes are chosen to be in eight-dimensional representations of the hidden

SU(8)′ gauge group of the T 6/Z2 orbifold, so that, consequently, the gauge group gets

broken to

E6 × SU(7)′ ×U(1)4 . (5.12)

As explained in subsection 4.3, when the blow-up mode Φ
(r)
bm in a given twisted sector

attains a VEV, field redefinitions, (4.20) and (4.21), have to be performed on the other

states in the same twisted sector in order to ensure that all fields in the blow-up are

characterized by E8×E8
′ roots. The appropriate field redefinitions required by this blow-up

procedure are listed in the second column of table 2. As the phases of the orbifold blow-

up modes have been reinterpreted as axions, the remaining hypermultiplet components

do not seem to form proper six-dimensional N = 1 hypermultiplets. However, as can be

verified from this table, these chiral superfield are neutral and can thus be interpreted as

half-hypermultiplets.

Additional fluxes on the exceptional divisors E′

r
′. Up to now, we have turned on

fluxes only on the exceptional divisors Er, which correspond to the blown-up fixed points

of the T 4/Z2 orbifold. After the field redefinition to the blow-up field basis, the charges

w.r.t. to the four U(1) factors are taken such that they correspond to the first four charges

(q0, q1, q2, q3) in table 1. The U(1)’s associated to the charges (q0, q1, q2) already exist at the

intermediate T 4/Z2 orbifold, the fourth U(1) arises by symmetry breaking of the hidden

SU(8)′ in the blow-up procedure.

Turning on additional fluxes (5.3) on E′
r′ induces a further gauge symmetry breaking to

SU(5)× SU(5)′ ×U(1)8 . (5.13)

Since, these fluxes are located at resolved fixed points of the other orbifold twist vω, they

respect a different six-dimensional supersymmetry. This means that by switching on these

fluxes the model becomes N = 1 in four dimensions. However, because the divisors E′
r′ do

not intersect with Er (i.e. the fixed tori of the gθ- and gω-twisted sectors do not intersect) see

figure 2, this does not enforce any chiral projection on the matter spectrum (in contrast

to, say, the gravitino): The matter states on K3 (i.e. the blow-up of the intermediate

T 4/Z2) are simply decomposed into four-dimensional superfields and their representations

are branched according to the symmetry breaking (5.13).

Generating four dimensional chirality. States from Er feel the flux on their “fixed

torus”, i.e. on R1, so that the B1 flux induces chirality in four dimensions. Whether a state

is part of the charged chiral spectrum is decided by the operator

Ñ4D = 2HB1 . (5.14)

In general [34, 36], if Ñ4D is positive for a chiral superfield Φres, then Ñ4D copies of

Φres appear in the four-dimensional spectrum. While, if Ñ4D is negative Φres is completely

projected out. Thus this relation (similarly to (4.16)) shows that four dimensional chirality

only arises if the flux B1 is switched on.
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6D N = 1 super Blow-up induced redefinitions of Surviving 4D 4D multi-
multiplet on T 4/Z2 its chiral superfield component(s) chiral superfields plicity

(E6 × SU(8)′ ×U(1)3) (E6 × SU(7)′ ×U(1)4) (SU(5)× SU(5)′ ×U(1)8) Ñ4D

untwisted gauge sector

(78,1)(0,0,0) (78,1)(0,0,0)
(

10,1
)

(0,0,0,0,1,0,−3,0)
6

(vector) (5,1)(0,0,0,0,0,0,−6,0) 6

(1,1)(0,0,0,0,2,0,0,0) 6

(1,63)(0,0,0) (1,48)(0,0,0,0)
(

1,5
)

(0,0,0,0,0,1,0,7)
6

(vector)
(

1,5
)

(0,0,0,0,0,−1,0,7)
6

(

1,7
)

(0,0,0,4)
— —

(1,7)(0,0,0,−4) (1,1)(0,0,0,−4,0,1,0,5) 6

(1,1)(0,0,0,−4,0,−1,0,5) 6

(1,1)(0,0,0,0) — —

untwisted matter sectors: Ua, a = 2, 3

(27,1)(−1,0,−1) (27,1)(−1,0,−1,0) (1,1)(−1,0,−1,0,−1,0,5,0) 6

(hyper)
(

27,1
)

(1,0,1,0)
(5,1)(1,0,1,0,0,0,4,0) 6
(

5,1
)

(1,0,1,0,−1,0,1,0)
6

(1,70)(0,0,0)
(

1,35
)

(0,0,0,−2)

(

1,5
)

(0,0,0,−2,0,0,0,−8)
6

(half-hyper) (1,35)(0,0,0,2)
(

1,10
)

(0,0,0,2,0,0,0,−6)
6

(1,1)(1,0,−3) (1,1)(1,0,−3,0) (1,1)(1,0,−3,0,0,0,0,0) 6

(hyper) (1,1)(−1,0,3,0) — —

(1,1)(0,2,0) (1,1)(0,2,0,0) (1,1)(0,2,0,0,0,0,0,0) 6

(hyper) (1,1)(0,−2,0,0) — —

twisted matter sector at the fixed tori: r = (0, n4, n5, 0), n4, n5 = 0, 1

(1,8)(
−

1
2
,−

1
2
,−

3
2

) (1,1)( 1
2
,
1
2
,
3
2
,−

7
2

) = e+br blow-up mode axion

(hyper) (1,1)(
−

1
2
,−

1
2
,−

3
2
,
7
2

) = e+br (1,1)(0,0,0,0) — —

(1,7)(
−

1
2
,−

1
2
,−

3
2
,−

1
2

) = e+br (1,7)(0,0,0,−4) — —

(

1,7
)

(

1
2
,
1
2
,
3
2
,
1
2

) = e−br
(

1,7
)

(0,0,0,4)
(1,1)(0,0,0,4,0,1,0,−5) 6

(1,1)(0,0,0,4,0,−1,0,−5) 6

(1,8)( 1
2
,−

1
2
,
3
2

) (1,1)( 1
2
,−

1
2
,
3
2
,
7
2

) = e+br (1,1)(1,0,3,0) — —

(hyper) (1,1)(
−

1
2
,
1
2
,−

3
2
,−

7
2

) = e−br (1,1)(−1,0,−3,0) — —

(

1,7
)

(

−
1
2
,
1
2
,−

3
2
,
1
2

) = e+br
(

1,7
)

(0,1,0,−3)
(1,1)(0,1,0,−3,0,1,0,−5) 6

(1,1)(0,1,0,−3,0,−1,0,−5) 6

(1,7)( 1
2
,−

1
2
,
3
2
,−

1
2

) = e−br (1,7)(0,−1,0,3) — —

Table 2. (Continues...)
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6D N = 1 super Blow-up induced redefinitions of Surviving 4D 4D multi-

multiplet on T 4/Z2 its chiral superfield component(s) chiral superfields plicity

(E6 × SU(8)′ ×U(1)3) (E6 × SU(7)′ ×U(1)4) (SU(5)× SU(5)′ ×U(1)8) Ñ4D

twisted matter sector at the fixed tori: r = (0, n4, n5, 1), n4, n5 = 0, 1

(1,8)(
−

1
2
,−

1
2
,−

3
2

) (1,1)(
−

1
2
,−

1
2
,−

3
2
,
7
2

) = e+br blow-up mode axion

(hyper) (1,1)( 1
2
,
1
2
,
3
2
,−

7
2

) = e+br (1,1)(0,0,0,0) — —

(

1,7
)

(

1
2
,
1
2
,
3
2
,
1
2

) = e+br
(

1,7
)

(0,0,0,4)
(1,1)(0,0,0,4,0,1,0,−5) 6

(1,1)(0,0,0,4,0,−1,0,−5) 6

(1,7)(
−

1
2
,−

1
2
,−

3
2
,−

1
2

) = e−br (1,7)(0,0,0,−4) — —

(1,8)( 1
2
,−

1
2
,
3
2

) (1,1)(
−

1
2
,
1
2
,−

3
2
,−

7
2

) = e+br (1,1)(−1,0,−3,0) — —

(hyper) (1,1)( 1
2
,−

1
2
,
3
2
,
7
2

) = e−br (1,1)(1,0,3,0) — —

(1,7)( 1
2
,−

1
2
,
3
2
,−

1
2

) = e+br (1,7)(0,−1,0,3) — —

(

1,7
)

(

−
1
2
,
1
2
,−

3
2
,
1
2

) = e−br
(

1,7
)

(0,1,0,−3)
(1,1)(0,1,0,−3,0,1,0,−5) 6

(1,1)(0,1,0,−3,0,−1,0,−5) 6

twisted matter sector at the fixed tori: r = (1, n4, n5, 0), n4, n5 = 0, 1

(1,8)(
−1,

1
2
,0

) (1,1)(
1,−

1
2
,0,−

7
2

) = e+br blow-up mode axion

(hyper) (1,1)(
−1,

1
2
,0,

7
2

) = e+br (1,1)(0,0,0,0) — —

(1,7)(
−1,

1
2
,0,−

1
2

) = e+br (1,7)(0,0,0,−4) — —

(

1,7
)

(

1,−
1
2
,0,

1
2

) = e−br
(

1,7
)

(0,0,0,4)
(1,1)(0,0,0,4,0,1,0,−5) 6

(1,1)(0,0,0,4,0,−1,0,−5) 6

(1,8)(
1,

1
2
,0

) (1,1)(
1,

1
2
,0,

7
2

) = e+br (1,1)(2,0,0,0) (1,1)(2,0,0,0,0,0,0,0) 6

(hyper) (1,1)(
−1,−

1
2
,0,−

7
2

) = e−br (1,1)(−2,0,0,0) — —

(

1,7
)

(

−1,−
1
2
,0,

1
2

) = e+br
(

1,7
)

(0,−1,0,−3)
— —

(1,7)(
1,

1
2
,0,−

1
2

) = e−br (1,7)(0,1,0,3) (1,5)(0,1,0,3,0,0,0,−2) 6

twisted matter sector at the fixed tori: r = (1, n4, n5, 1), n4, n5 = 0, 1

(1,8)(
−1,

1
2
,0

) (1,1)(
−1,

1
2
,0,

7
2

) = e+br blow-up mode axion

(hyper) (1,1)(
1,−

1
2
,0,−

7
2

) = e+br (1,1)(0,0,0,0) — —

(

1,7
)

(

1,−
1
2
,0,

1
2

) = e+br
(

1,7
)

(0,0,0,4)
(1,1)(0,0,0,4,0,1,0,−5) 6

(1,1)(0,0,0,4,0,−1,0,−5) 6

(1,7)(
−1,

1
2
,0,−

1
2

) = e−br (1,7)(0,0,0,−4) — —

Table 2. (Continues...)
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6D N = 1 super Blow-up induced redefinitions of Surviving 4D 4D multi-

multiplet on T 4/Z2 its chiral superfield component(s) chiral superfields plicity

(E6 × SU(8)′ ×U(1)3) (E6 × SU(7)′ ×U(1)4) (SU(5)× SU(5)′ ×U(1)8) Ñ4D

(1,8)(
1,

1
2
,0

) (1,1)(
−1,−

1
2
,0,−

7
2

) = e+br (1,1)(−2,0,0,0) — —

(hyper) (1,1)(
1,

1
2
,0,

7
2

) = e−br (1,1)(2,0,0,0) (1,1)(2,0,0,0,0,0,0,0) 6

(1,7)(
1,

1
2
,0,−

1
2

) = e+br (1,7)(0,1,0,3) (1,5)(0,1,0,3,0,0,0,−2) 6

(

1,7
)

(

−1,−
1
2
,0,

1
2

) = e−br
(

1,7
)

(0,−1,0,−3)
— —

Table 2. The first column gives 6D N = 1 multiplets on the T 4/Z2 orbifold with twist gθ and

gauge embedding Vθ and W3 from equation (5.8). The second column indicates which state is

the blow-up mode and gives the field redefinitions necessary to match the orbifold and blow-up

states. In the third column we only indicate the states which are part of the four-dimensional chiral

spectrum, i.e. those for which Ñ4D, given in the last column, is positive.

Two important observations are in order: Chiral multiplets originating from the six-

dimensional vector multiplets get an extra factor (−1) in order to account for the different

chiralities of vector and hypermultiplets in six dimensions. In addition, note that the effect

of the Wilson line W1 in the presence of a flux B1 in the same torus can be seen in a field

theoretical approach as a shift in the wave-functions. Hence, concerning the spectrum of

massless modes it can be neglected.

As the 16 fixed points of T 4/Z2 are identified pairwise by the Z2 action of gω, one

has to restrict to twisted states with n5 = 0. Furthermore, gω projects out all states from

the untwisted sector U2 as can be seen in the full orbifold model T 6/Z2 × Z2,rototrans. The

result of the additional fluxes is listed in the third and fourth columns of table 2. The

chiral part of the resulting spectrum agrees with the spectrum of the smooth model listed

in table 1.

6 Towards an CFT description of orbifolds with magnetized tori

In this section we propose modifications to the standard CFT construction of heterotic

orbifolds in the presence of magnetized tori. To facilitate this discussion we first recall a

few standard facts of heterotic orbifolds, i.e. orbifolds without any magnetic flux supported

on the two-tori, Ba = 0.

6.1 Standard modular invariance conditions

The conditions of modular invariance are compatible with the local Bianchi identities in the

absence of Ba-fluxes in the following sense: If we choose space group elements g = h = gr
or gr′ , as defined in equation (2.13) we see from (2.6) that the associated local shifts Vgr

and Vgr′
fulfill

V 2
gr ≡

3

2
, V 2

gr′
≡

3

2
, (6.1)

where r, r′ label the 8+8 fixed points of the twisted sectors of θ and ω, respectively. On

the other hand, in the smooth picture if we assume gauge fluxes Vr
∼= Vgr and V ′

r′
∼= Vgr′
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of length-square 3/2 at all 8+8 resolved fixed points r and r′, respectively, then mod-

ular invariance corresponds (modulo integers) to 1/8th of the Bianchi identities (4.8b)

with Ba = 0.

6.2 Heterotic description of the Schoen orbifold with magnetized tori

Inspired by the logic put forward in [44] we propose how the modular invariance condi-

tions (2.6) are modified in the presence of magnetically charged tori, Ba 6= 0. Since the

magnetic fluxes are constant over the tori, it is natural to assume that at a given fixed

point they only contribute as one over the number of fixed points, i.e. 1/8. As can be

inferred from the local Bianchi identities (4.8b) the magnetic fluxes, Ba, contribute to the

energy (12 is replaced by 12+2Ba ·B3, a = 1, 2). Hence, we propose that the local modular

invariance conditions (6.1) are modified to

V 2
gr ≡

3

2
+

1

4
B2 ·B3 , V 2

gr′
≡

3

2
+

1

4
B1 ·B3 , (6.2)

In order to satisfy the quantization conditions (4.4) and the DUY equations in blow-

down (4.10) it is convenient to expand B3 as a linear combination of B1 and B2 with

negative coefficients. According to equation (6.2) this reduces the lengths of the local

shifts Vgr and Vgr′
. For example, using e.g. B3 = −B1 −B2 yields V 2

gr ≡ 3
2 − 1

4 B
2
2 .

However, as we have seen in blow-up not only the consistency conditions, i.e. the

Bianchi conditions, get modified in the presence of Ba-fluxes, but also the spectra. There-

fore, one could imagine that the mass shell condition (2.8) on orbifolds is modified as well

when Ba 6= 0. In analogy to the proposal in [44], we expect that the left-moving mass is

modified to

M2
L =

1

2
(P + Vgr)

2 + Ñ −
3

4
−

1

8
B2 ·B3 , M2

L =
1

2
(P + Vgr′

)2 + Ñ −
3

4
−

1

8
B1 ·B3 .

(6.3)

If we follow the interpretation of the local line bundle vectors as the shifted momenta (2.9)

of twisted states that generate the blow-up at r or r′ these equations will contribute new

twisted states as blow-up modes, which where not part of the Ba = 0 orbifold spectrum.

When one considers the standard heterotic orbifold, (massless) states, that survive the

level matching condition, are subject to the orbifold projection conditions (2.10). Modi-

fications of these projections are, as far as we are aware, not discussed in the literature.

Moreover, since it is unknown how the heterotic string is quantized in the presence of mag-

netized tori, there is also not an obvious computation that would determine the appropriate

corrections. However, as usual we expect that at least self-projections, i.e. taking h = g,

should not project out any state. Hence, at least the self-projection condition should be

modified to

Vg · Psh − vg ·
(
psh +∆Ñg

)
≡

1

2

(
V 2
g − v2g +

1

4
Ba ·B3

)
, (6.4)

where a = 1 for g = gr′ and a = 2 for g = gr.
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6.3 Sample model as blow-up of orbifold with magnetized tori

To illustrate our proposal we return to our example of an eight generation SU(5) GUT

model discussed in subsection 4.4. Notice, that the bundle vectors Vr defined in (4.22) can

be interpreted as the shifted left-moving momenta Psh of twisted states without oscillator

excitations of a conventional Z2 orbifold, since V 2
r = 3/2 is interpreted as the masslessness

condition P 2
sh = 3/2. The bundle vectors V ′

r′ on the other hand have V ′
r′
2 = 1/2. In

a conventional orbifold model these would correspond to twisted states with oscillators.

However, as discussed in section 6, we expect that the left-moving mass formula gets

modified to (6.3) in the presence of magnetized tori. If correct, one still interprets the V ′
r′

as shifted left-moving momenta of twisted states without oscillators. Hence, even though

this model has a blow-down limit, the resulting theory in this limit is not a conventional

orbifold CFT.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] A.E. Faraggi, A new standard-like model in the four-dimensional free fermionic string

formulation, Phys. Lett. B 278 (1992) 131 [INSPIRE].

[2] G. Cleaver, A. Faraggi and D.V. Nanopoulos, String derived MSSM and M-theory

unification, Phys. Lett. B 455 (1999) 135 [hep-ph/9811427] [INSPIRE].

[3] T. Dijkstra, L. Huiszoon and A. Schellekens, Supersymmetric standard model spectra from

RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].

[4] T. Dijkstra, L. Huiszoon and A. Schellekens, Chiral supersymmetric standard model spectra

from orientifolds of Gepner models, Phys. Lett. B 609 (2005) 408 [hep-th/0403196]

[INSPIRE].

[5] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds,

Nucl. Phys. B 261 (1985) 678 [INSPIRE].

[6] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2,

Nucl. Phys. B 274 (1986) 285 [INSPIRE].

[7] H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to

study the low energy effective theory of heterotic orbifolds,

Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].

[8] O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds,

Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

[9] O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic

mini-landscape. (II) Completing the search for MSSM vacua in a Z(6) orbifold,

Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].

[10] S. Nibbelink Groot, J. Held, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic

Z(6− II) MSSM orbifolds in blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].

– 29 –

http://dx.doi.org/10.1016/0370-2693(92)90723-H
http://inspirehep.net/search?p=find+J+Phys.Lett.,B278,131
http://dx.doi.org/10.1016/S0370-2693(99)00413-X
http://arxiv.org/abs/hep-ph/9811427
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9811427
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.032
http://arxiv.org/abs/hep-th/0411129
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411129
http://dx.doi.org/10.1016/j.physletb.2004.04.094
http://arxiv.org/abs/hep-th/0403196
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403196
http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B261,678
http://dx.doi.org/10.1016/0550-3213(86)90287-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B274,285
http://dx.doi.org/10.1016/j.cpc.2012.01.026
http://arxiv.org/abs/1110.5229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5229
http://dx.doi.org/10.1016/j.physletb.2006.12.012
http://arxiv.org/abs/hep-th/0611095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611095
http://dx.doi.org/10.1016/j.physletb.2008.08.054
http://arxiv.org/abs/0807.4384
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4384
http://dx.doi.org/10.1088/1126-6708/2009/03/005
http://arxiv.org/abs/0901.3059
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3059


J
H
E
P
0
3
(
2
0
1
3
)
1
4
2

[11] W. Buchmüller, J. Louis, J. Schmidt and R. Valandro, Voisin-Borcea manifolds and heterotic

orbifold models, JHEP 10 (2012) 114 [arXiv:1208.0704] [INSPIRE].

[12] M. Blaszczyk et al., A Z2 × Z2 standard model, Phys. Lett. B 683 (2010) 340

[arXiv:0911.4905] [INSPIRE].

[13] M. Blaszczyk, S. Nibbelink Groot, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic

MSSM on a resolved orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].

[14] V. Bouchard and R. Donagi, An SU(5) heterotic standard model,

Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].

[15] C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988)

177.

[16] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model bundles on nonsimply

connected Calabi-Yau threefolds, JHEP 08 (2001) 053 [hep-th/0008008] [INSPIRE].

[17] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational elliptic

surfaces, Adv. Theor. Math. Phys. 5 (2002) 499 [math/0008011] [INSPIRE].

[18] R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model

vacua, JHEP 06 (2005) 070 [hep-th/0411156] [INSPIRE].

[19] T.L. Gomez, S. Lukic and I. Sols, Constraining the Kähler moduli in the heterotic standard

model, Commun. Math. Phys. 276 (2007) 1 [hep-th/0512205] [INSPIRE].

[20] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E8 × E8

heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].

[21] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on

smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

[22] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models,

JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

[23] S. Donalson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and

stable vector bundles, Proc. London Math. Soc. 50 (1985) 1.

[24] K. Uhlenbeck and S. Yau, On the existence of Hermitian-Yang-Mills connections in stable

vector bundles, Comm. Pure Appl. Math. 19 (1986) 257.

[25] R. Blumenhagen, G. Honecker and T. Weigand, Supersymmetric (non-)abelian bundles in the

type I and SO(32) heterotic string, JHEP 08 (2005) 009 [hep-th/0507041] [INSPIRE].

[26] R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the

heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].

[27] G. Honecker and M. Trapletti, Merging heterotic orbifolds and K3 compactifications with line

bundles, JHEP 01 (2007) 051 [hep-th/0612030] [INSPIRE].

[28] G. Honecker, Orbifolds versus smooth heterotic compactifications, arXiv:0709.2037

[INSPIRE].

[29] R. Donagi and K. Wendland, On orbifolds and free fermion constructions,

J. Geom. Phys. 59 (2009) 942 [arXiv:0809.0330] [INSPIRE].

[30] A. Hebecker and M. Trapletti, Gauge unification in highly anisotropic string

compactifications, Nucl. Phys. B 713 (2005) 173 [hep-th/0411131] [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP10(2012)114
http://arxiv.org/abs/1208.0704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0704
http://dx.doi.org/10.1016/j.physletb.2009.12.036
http://arxiv.org/abs/0911.4905
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4905
http://dx.doi.org/10.1007/JHEP09(2010)065
http://arxiv.org/abs/1007.0203
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0203
http://dx.doi.org/10.1016/j.physletb.2005.12.042
http://arxiv.org/abs/hep-th/0512149
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512149
http://dx.doi.org/10.1088/1126-6708/2001/08/053
http://arxiv.org/abs/hep-th/0008008
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008008
http://arxiv.org/abs/math/0008011
http://inspirehep.net/search?p=find+EPRINT+math/0008011
http://dx.doi.org/10.1088/1126-6708/2005/06/070
http://arxiv.org/abs/hep-th/0411156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411156
http://dx.doi.org/10.1007/s00220-007-0338-8
http://arxiv.org/abs/hep-th/0512205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512205
http://dx.doi.org/10.1088/1126-6708/2005/06/039
http://arxiv.org/abs/hep-th/0502155
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502155
http://dx.doi.org/10.1103/PhysRevD.84.106005
http://arxiv.org/abs/1106.4804
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4804
http://dx.doi.org/10.1007/JHEP06(2012)113
http://arxiv.org/abs/1202.1757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1757
http://dx.doi.org/10.1088/1126-6708/2005/08/009
http://arxiv.org/abs/hep-th/0507041
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507041
http://dx.doi.org/10.1088/1126-6708/2005/06/020
http://arxiv.org/abs/hep-th/0504232
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504232
http://dx.doi.org/10.1088/1126-6708/2007/01/051
http://arxiv.org/abs/hep-th/0612030
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612030
http://arxiv.org/abs/0709.2037
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2037
http://dx.doi.org/10.1016/j.geomphys.2009.04.004
http://arxiv.org/abs/0809.0330
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0330
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.008
http://arxiv.org/abs/hep-th/0411131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411131


J
H
E
P
0
3
(
2
0
1
3
)
1
4
2

[31] R. Blumenhagen and E. Plauschinn, Intersecting D-branes on shift Z2 × Z2 orientifolds,

JHEP 08 (2006) 031 [hep-th/0604033] [INSPIRE].

[32] M. Fischer, M. Ratz, J. Torrado and P.K. Vaudrevange, Classification of symmetric toroidal

orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].

[33] S.J. Konopka, Non abelian orbifold compactifications of the heterotic string,

arXiv:1210.5040 [INSPIRE].
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