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Cartilage collagen damage in hip osteoarthritis
similar to that seen in knee osteoarthritis; a
case–control study of relationship between
collagen, glycosaminoglycan and cartilage
swelling
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Abstract

Background: It remains to be shown whether OA shares molecular similarities between different joints in humans.
This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints.

Methods: Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls
regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20
reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively.
Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining
and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to
measure collagen and glycosaminoglycan (GAG) content, respectively.

Results: Mankin and immunohistology scores were significantly higher in hip OA samples than in reference
samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was
extracted from OA than from reference samples. There was a positive association between water content and
percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights
did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen
per dry weight in either group. However when collagen was expressed by wet weight there was a negative
correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in
both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples,
which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related
to age in either group.

Conclusions: Increased collagen extractability and water content in human hip cartilage is associated with OA
pathology and can be observed at early stages of the degenerative hip OA process. Our results suggest a common
degradative pathway of collagen in articular cartilage of different joints. Furthermore, the study suggests that
biochemical changes precede more overt OA changes and that chondrocytes may have a capability to compensate
molecular loss in the early phase of OA.
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Background
Osteoarthritis (OA) of the knee and hip is a common
cause of pain and reduced physical function in the
elderly. Risk factors for OA differ across different joints.
Whereas knee OA is associated with meniscectomy,
obesity, muscle weakness and major injury, hip OA is
commonly associated with congenital and developmental
defects such as acetabular dysplasia, obesity and abnor-
mal loading [1-5]. Felson et al. have suggested that OA
in different joints may be discrete conditions but the
final outcome is similar [2]. Although knee and hip OA
risk factors suggest biomechanical etiopathogenesis [6],
it still remains to be shown whether OA shares molecu-
lar similarities between different joints in humans. Des-
pite an increasing prevalence of OA with age and that
age is generally considered as a risk factor for OA [2],
evidence for increasing incidence of OA with age is still
conflicting [7].
The extracellular matrix of articular cartilage consists

mainly of two macromolecules, type II collagen and the
large aggregating proteoglycan, aggrecan. The collagen
fibril is a heteropolymer primarily composed of collagen
type II (more than 90%) with small amounts of type IX
and type XI collagen [8]. Aggrecan, with its highly nega-
tively charged glycosaminoglycans (GAGs), can bind up
to 50 times its weight with water which creates water
influx and a swelling pressure that is normally con-
strained by the tensile strength of the collagen fibrillar
network [9].
In knee OA, disease progression is linked to matrix

degradation and loss of molecules. Recent contrast-
enhanced magnetic resonance imaging (MRI) studies
support this assumption [10-12]. The impaired cartilage
properties that follow degradation of matrix molecules
may trigger subsequent damage to the collagen network
and attempts at matrix repair [13]. Collagen degradation
and loss may be particularly relevant, since network
damage is generally considered as a point of no return
regarding repair potential [14].
To evaluate the significance of molecular loss with

respect to cartilage functional properties, it is necessary
to estimate quantities of matrix molecules expressed in
wet weight, as suggested by Maroudas et al. [9]. How-
ever, interpreting whether loss in molecular content is
due to insufficient biosynthesis or dilution by oedema
also necessitates dry weight analysis.
Hydroxyproline has been widely used to determine the

presence and the metabolic activity of collagen in con-
nective tissue [15-17]. α-Chymotrypsin enables digestion
and thereby extraction of denatured collagen while spa-
ring triple helical collagen [18,19]. Therefore, one can
estimate the amount of extractable collagen, in part con-
sisting of denatured type II collagen, in cartilage by com-
bining these methods.
Previously, it has been shown that knee OA cartilage
has an increased extractable collagen pool when treated
by α-chymotrypsin, suggesting pathologic changes to the
collagen network [16,18,20]. To further examine the
generality of these observations, articular cartilage from
osteoarthritic hip joints were analysed and compared
to cartilage of well-defined hip fracture as non-OA
controls.

Methods
Patients and cartilage
Femoral heads from 16 OA (10 women, 6 men, 45–81
years) and 20 reference patients (14 women, 6 men,
55–99 years) were obtained from hip replacement sur-
gery due to OA or femoral neck fracture, respectively.
Specimens were stored at −80°C until use. Ethics ap-
proval was obtained from the Research Ethics Commi-
ttee, Lund University, Sweden and was in compliance
with the Helsinki Declaration. Written informative con-
sent for this study was obtained from participants.
OA cartilage was sampled from full depth regions with

grossly intact surface, avoiding areas with macroscopic
cartilage degeneration. Areas with evidence of osteophytes
were also avoided. Reference cartilage was sampled from
the superior weight-bearing part of the femoral head
where cartilage was full depth and macroscopically intact.
Before dicing cartilage, it was soaked in 0.15 M NaCl at

4°C overnight to allow rehydration. Samples destined for
collagen and GAG analyses were weighed wet, then freeze-
dried and weighed dry to determine water content.

Histology and immunohistochemistry
A cartilage block adjacent to the site sampled for biochem-
ical analyses was examined for histology and immunohis-
tochemistry. Sections 6 μm thick were cut at −20°C using
a cryostat (Microm HM 560, Walldorf, Germany). One
section was stained with Safranin O and Fast green and
graded for histological changes as described by Mankin
et al. (maximum grade was 13 due to exclusion of calcified
cartilage from specimens) [21]. A second section was used
for immunohistochemistry detecting denatured collagen II
and graded as described by Hollander et al. [19].

Chemical analyses of cartilage
Collagen: To remove the extractable collagen pool, 1 ml
of 1 mg/ml α-chymotrypsin (TLCK Treated, type VII:
from bovine pancreas, Sigma) in 50 mM Tris, pH 7.6,
containing proteinase inhibitors (1 mM EDTA, 1 mM
iodoacetamide and 10 μg/ml pepstatin-A) was added to
50 mg of diced cartilage sample. After incubation at 37°C
overnight the supernatant was removed. The supernatant
and the saline, used for equilibration, were diluted
quantitatively 1:1 with 12 N HCl and the residue was
immersed in 6 N HCl to be hydrolyzed at 110°C



Table 1 Age, histological and biochemical findings in
patient groups

Reference (n = 20) OA (n = 16) P value

Age (years) 83 (77–85.5) 66.5 (61–75.5) ≤0.001

Mankin grade 2 (1–2) 4 (3.5-5) ≤0.001

Immunostaining score 0.5 (0.5-0.5) 2 (2–3) ≤0.001

ECP 0.45 (0.38-0.63) 1.04 ( 0.84-1.56) ≤0.001

% Hydration 68.1 (64–70.4) 73.6 (70.8-77.9) ≤0.001

GAG

Wet 39.8 (34–45.6) 38.6 (34–45.2) 0.644

Dry 128.8 (119.6-135) 152.8 (129.4-165) 0.012

Total hydroxyproline

Wet 25.3 (23.1-27.5) 22.4 (18–27.3) 0.083

Dry 79.6(72.2-87) 84.6 (76.4-95.7) 0.233

Reported values are medians (25–75 percentiles). Values of GAG and total
hydroxyproline (i.e. total collagen) are expressed as micrograms per milligram
wet and dry weight of cartilage tissue. ECP stands for % extractable collagen
pool and is expressed as a percentage of the total amount of collagen.
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overnight. The hydrolysates were then dried at 90°C,
reconstituted with 0.5 ml distilled water and dried again
to remove traces of HCl. Finally, samples were dissolved
in 0.5 ml distilled water and clarified by adding charcoal
resin decolorizer (prepared from equal amounts of acti-
vated charcoal and AG-1 X8 anion exchange resin). The
amount of hydroxyproline (μg/mg tissue) was measured
by colorimetric methodology at 550 nm using L-4- hydro-
xyproline (Fluka) as a standard [22].
Results are reported as μg hydroxyproline, while in the

discussion we refer to collagen content. The extractable
collagen pool is expressed as percentage of the total col-
lagen amount, as previously reported [23].
GAG: To another 10 mg of diced cartilage sample 1 μl

of 19 mg/ml papain (papaya latex, EC 3.4.22.2, Sigma) in
0.1 M Tris–HCl, pH 7.2, containing 10 mM disodium
EDTA and 5 mM cysteine-HCl, was added. After incuba-
tion at 60°C for 18 hours the digest was removed [24]. The
amount of GAG was determined by a commercially avai-
lable colorimetric kit using dye-precipitation of sulphated
GAGs with Alcian blue [25].
Statistical analysis
Differences between patient groups were analyzed by
Mann–Whitney tests. Correlations were assessed using
Spearman rank correlation coefficient. P-values less than
or equal to 0.05 were considered significant.

Results
Disease-related histological changes in OA cartilage were
confirmed by Mankin and immunohistochemistry grad-
ing scores. The grades of OA and reference cartilage
both in Mankin and immunostaining differed signifi-
cantly, with Mankin grades of OA cartilage ranging from
2 to 6, and those from reference samples ranging from 0
to 3. There was no correlation between percentage of
extractable collagen and Mankin or immunostaining
grades in any of the groups (data not shown).
Hydroxyproline and GAGs were not detected in signifi-

cant amounts in the saline solution used to soak cartilage
over night (0.1-0.2% of total hydroxyproline and 1-2% of
total GAG content).
Water content was almost 6% higher in OA cartilage

than in reference cartilage (P ≤ 0.001) (Table 1). With
respect to total collagen content, there was no difference
between dry weights in OA and reference cartilage
whereas wet weight comparison between the two groups
showed a tendency to less collagen in OA samples due
to increased water content (P = 0.083) (Table 1). In con-
trast, GAG content per dry weight was higher in OA
than in reference cartilage (P = 0.012), whereas when
measured by wet weight values were similar in OA and
reference cartilage (P = 0.644) (Table 1).
Overnight digestion with α-chymotrypsin extracted al-
most 2.5 times more collagen from OA than from refe-
rence samples (P ≤ 0.001) (Table 1). Water content was
related to extractable collagen in OA (rs =0.83, P < 0.001)
and in reference cartilage (rs =0.44, P = 0.049) (Figure 1).
Water content was not related to the amount of GAG per
dry weight in any of the two groups (rs = 0.38, P = 0.146 in
OA and rs = −0.17, P = 0.468 in reference).
Extractable collagen and total collagen per dry weight

were unrelated in OA (rs = −0.41, P = 0.112) and refe-
rence cartilage (rs = 0.16, P = 0.484), but negatively
related in OA cartilage when collagen was expressed by
wet weight (rs = −0.76, P < 0.001, Figure 2).
Neither extractable collagen, total collagen, GAG con-

tent (wet and dry weights) nor water content was related
to age in OA or reference cartilage (data not shown).

Discussion
Only full-thickness OA cartilage without any obvious
macroscopic degenerative changes was included in this
study to avoid comparison between full depth reference
and partly damaged or thinner OA cartilage. As expected
from macroscopic appearance, OA samples had a rela-
tively low Mankin score. A Mankin grade assigned within
the range 0–6 is accounted as “early phase of degenerative
changes” [26]. However, in these samples cartilage oedema
was present indicating that higher water content is evident
at a very early stage of the disease. A strong relationship
between cartilage oedema and collagen degradation has
also been shown by Basser et al. [27]. That study suggests
that the increased water content in OA cartilage is caused
by loss of collagen network integrity, which in turn leads
to decreased tensile stiffness and increased water imbibi-
tion, as proposed also by Maroudas et al. [9]. Experimental
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Figure 1 The relationship between % hydration and extractable collagen pool. Extractable collagen pool was expressed as a percentage of
total amount of collagen. Open and closed circles represent OA and reference groups, respectively.
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OA studies in rabbits (meniscectomy) and dogs (anterior
cruciate ligament section model) have also shown
increased cartilage swelling at early stages of OA [28,29].
The lack of relationship between water content and GAG
content/dry weight in the present study confirms previous
Total hydroxyproline 
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Figure 2 The relationship between total collagen and extractable coll
weight and extractable collagen pool was expressed as a percentage of to
reference groups, respectively.
findings that swelling is not influenced by the amount of
GAG [30].
Extractable collagen seems to be related to cartilage

disease as evidenced by the positive relationship between
extractable collagen and water content and that more
µg/mg wet weight cartilage

25 30 35

rs=-0.36, P=0.114 in reference
rs=-0.76, P<0.001 in OA

agen pool. Total collagen was measured as hydroxyproline per wet
tal amount of collagen. Open and closed circles represent OA and
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collagen is extracted from OA than from reference cartilage
(Figures 1, and 2). Reduced collagen content per wet weight
in OA cartilage compared to non-OA cartilage, suggests
inferior cartilage properties in OA (Figure 2) and points at
the importance of protecting the collagen fibrillar network.
An increased extractable collagen pool, which is inversely
correlated to collagen content, has previously also been
identified in knee OA cartilage [18,23]. Taken together, this
suggests a common degradative pathway of collagen in
articular cartilage of different joints. Studies showing similar
findings in tendon and disc diseases support that this path-
way is general in connective tissue [17,31].
A comparison of collagen content per dry and wet

weights did not show differences between OA and refe-
rence groups (Table 1). This suggests either a loss of small
amounts of collagen or a potential for chondrocytes to
synthesis and deposit collagen in OA cartilage [32]. How-
ever, there is limited evidence that chondrocytes can
recapitulate the overall collagen architecture if mature car-
tilage is damaged by injury or degeneration. In contrast,
GAG content per dry weight was higher in OA samples
than in reference samples (P = 0.012) whereas when mea-
sured by wet weight values were similar (P = 0.644). These
differences draw attention to the importance of relating
total molecular contents both to dry weight and to wet
weight to provide maximum information on molecular
content. This also suggests that cartilage may have a ca-
pacity to replace GAG; at least until advanced degradation
occurs (our samples had an average Mankin score of 4).
This repair capacity is known in the literature as hyper-
trophic repair [33-35] and has been visualized by radio-
graphy and by MRI [36,37]. Increments in GAG (mainly
aggrecan) content have also been seen in studies of early
cartilage damage [38]. Hypothetically, the lower amount
of GAG in the relatively older reference group may to
some extent be explained by decreased physical activity, as
is suggested in a contrast-MRI study [39].
Several studies suggest age as a main risk factor for

OA. Indeed, age is related to stiffer collagen, lower water
content and malfunctioning chondrocytes in cartilage,
all of which may predispose tissue damage [40-42].
However, overt cartilage loss is not a major feature of
aging [43]. It is also apparent from experimental studies
that matrix changes in OA cartilage are different from
those in aged cartilage [44,45]. Albeit based on a limited
number of cartilage samples, the present study suggests
that OA matrix changes were disease-related rather
than age-related. An alternative explanation to a cause-
relationship between age and OA could be accumulation
of micro damage due to exposure of joint load over a
lifetime period.
There are some limitations to this study. Inherent in

the use of hip fracture patients as controls, these were
older than the patients who had OA (P ≤ 0.001) (Table 1).
However, the lack of correlation between age and mo-
lecular OA changes in the present study supports the
use of femoral neck fracture patients, regardless of age,
as a control group in these types of studies. Regarding
the validity of the reference group, it has previously been
shown that cartilage from patients with femoral neck
fracture is very similar to that of normal controls [46].
Cartilage was not sampled from the same position

within the hip joint for all the samples. However, cartilage
sampled from visibly intact full thickness regions from
both groups make comparisons more valid. In support,
Maroudas et al. have not found differences in GAG con-
tent in different locations of hip cartilage [47].
The hydroxyproline assay used to quantify collagen

does not distinguish between different types of collagen,
which may explain the lack of correlation between
immunostaining of type II collagen and percentage ex-
tractable collagen in this study. We are in the process of
conducting further studies to explore the origin of the
collagen in the chymotrypsin extracted cartilage.

Conclusions
Increased collagen extractability and water content in
human hip cartilage is associated with OA pathology
and can be observed at early stages of the degenerative
OA process. Our results suggest a common degradative
pathway of collagen in articular cartilage of different
joints. Furthermore, the study suggests that biochemical
changes precede more overt OA changes and that chon-
drocytes may have a capability to compensate molecular
loss in the early phase of OA.
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