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1 Introduction and method

In recent years there has been intensive research concerning the integrability of string

theoretical models in curved space. The strings are described by two-dimensional sigma-

models and their classical motion is constrained by the equations of motion which typically

form a non-linear system of differential equations. Among the plethora of models some are

of special interest due to their integrable structure.

In principle, in order to show that a system is integrable one has to demonstrate that

there are as many integrals of motion as degrees of freedom. For the cases of sigma-models

that we are mostly interested in, the standard way to show integrability is to find the

Lax pair representation, from which an infinite number of conserved charges follow. In

an AdS/CFT context one equivalently derives a system of integral string Bethe equations

which have been proven equivalent to the thermodynamic limit of the spin chain Bethe

equations. In this way the matching of the multi-spin string energies to the conformal

dimension of the field theory operators is possible [1–3].

The full set of necessary conditions for the existence of a Lax pair is not known.

Considering this, it is natural to think of other ways to prove or, for that matter, disprove

integrability of a system. In an integrable two-dimensional sigma-model all subsystems

that one can derive by consistent truncations should also be integrable. Hence, a necessary

condition for a two-dimensional sigma-model to be integrable is that when the system of

second order partial differential equations is consistently reduced to a system of ordinary
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differential equations, then this has to constitute an integrable system. Similarly, one

can prove non-integrability by demonstrating that at least one consistent one-dimensional

truncation of the full system of equations of motion is a non-integrable system of second-

order differential equations. This can be done either through numerical methods in chaos,

or through semi-analytic algorithmic approaches [4, 5] and [6–8].

These methods of proving non-integrability have been applied so far to cosmological

models as well as in the context of the gauge/gravity correspondence. Signs of chaotic

behavior have been found in Schwarzschild black holes [9, 10]. In the confining AdS soliton

background [11] the effective Lagrangian of string solutions was found to be reduced to a set

of coupled harmonic and unharmonic oscillators where at high energies result in a chaotic

and non-integrable behavior [12]. Moreover, the class of the Sasaki-Einstein manifolds

was tested starting with the particular example of the conifold AdS5 × T 1,1 and later

for Y p,q manifolds [13, 14]. The string solutions again show chaotic behavior implying

nonintegrability of the corresponding sigma models. However, in Y p,q manifolds special

care should be taken with the string solution to show that indeed they satisfy the Sasaki-

Einstein constraints as in [15–17]. More recently it has been shown that integrability is not

present in marginal complex β-deformations [18]. In addition, working with non-integrable

geodesics it has been shown that integrability is ruled out for N = 4 SYM beyond the

planar limit [19], although at special large N limits some integrability does appear [20, 21].

Furthermore, the classical spinning solutions have been found to have chaotic behavior

in various confining backgrounds: Klebanov-Strassler, Maldacena-Nunez, Witten AdS and

the AdS soliton [22]. It is natural to think therefore that confining backgrounds have a

chaotic quantum spectrum in the sense of the Gaussian orthogonal ensemble (GOE) [23].

The quantum spectrum has also been studied in the AdS soliton background where a

smooth transition from the Wigner GOE to the integrable regime was noticed as the energy

increased, in agreement with the fact that the system becomes asymptotically AdS at higher

energies [24]. In [25] the string solutions were studied in curved Dp-brane backgrounds and

non-integrability was found except for special cases. In [26] the response of a nonlinearly

coupled scalar field in the probe limit of an asymptotically AdS black brane geometry was

studied and it was argued that the response of the dual operator is chaotic. Similarly

in [27], the response of the scalar field to the gravitational collapse in an asymptotically

Anti de Sitter space-time was found to be chaotic.

In this paper we extend these studies to the non-relativistic gauge/gravity dualities.

There are many interesting systems which have general dynamical scalings instead of

scale invariance, as for example the Lifshitz, the spatial anisotropic Lifshitz-like and the

Schrödinger spaces, as well as backgrounds with hyperscaling violations of the above. Gen-

eral Lifshitz geometries may be constructed, in a phenomenological way, by switching on

fluxes with non-trivial topological couplings [28]. Explicit Lifshitz solutions in string theory

are more difficult to construct. Progress in that direction has been made in [29, 30] and

in [31] where it has been proved that Lifshitz solutions with dynamical exponent z = 2

can be embedded in supergravity. Later in [32] explicit type-II supergravity solutions of

the form Lifp × Ωd−p with generic dynamical exponents, where Ωd−p is a constant cur-

vature spherical flat or hyperbolic space, have been found. In the meantime anisotropic
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Lifshitz-like solutions where found in [33] and in addition they have been extended to finite

temperature cases [34] and also used to study anisotropic plasmas, eg. [35, 36]. The non-

relativistic conformal field theories can also be constructed as cosets of the Schrödinger

group and its variants as in [37]. Moreover, it has been found that the IR geometry of

a dilaton theory with an asymptotic electric flux is Lifshitz [38]. Other non-relativistic

constructions have been found in [39].

Motivated by all these developments we consider the integrability of string solutions in

non-relativistic theories. We find generic conditions in terms of the scaling parameters of

the metric elements of the backgrounds, which when not satisfied imply non-integrability.

For the particular example of the Lifshitz backgrounds with trivial dilaton dependence

we find that the only integrable solution is the case with z = 1, corresponding to the

AdS space. When the hyperscaling violation scaling is considered, only for a subset of

all possible backgrounds integrability is not excluded. This subset includes the Fermi

surfaces. We derive explicitly the bounds of the non-integrable physical theories. We

additionally analyze spaces with non-diagonal metric terms, where the Schrodinger metrics

are particular examples and we find cases that integrability is excluded.

It is interesting that for the cases we find non-integrability, there is no sign of chaos

inside the accepted range of the parameters and coordinates and when satisfying the Vi-

rasoro constraints. We checked this for solutions obtained from a wide choice of the initial

values in the system of differential equations. Notice that it does not necessarily mean that

for other energies, not fixed by the Virasoro constrain, or other string configurations the

system is not chaotic. The integrability of dynamical systems is related on how the system

reacts to small variations around its phase space curves. According to the Kolmogorov-

Arnold-Moser (KAM) theorem, when the system is non-integrable it is resonant in the

corresponding phase space describing the motion in the angle variables. Practically, when

weak non-linear perturbations are applied to an integrable Hamiltonian system whose mo-

tion is confined to invariant tori, then some deformed invariant tori may still be present

and some others may be destroyed. One would like to know, whether or not the perturbed

solutions are stable and if the perturbed orbits will remain close to unperturbed ones for

long period of time. The conditions for the regular and normal behavior of the perturbed

solution are provided by the KAM theorem. Chaos can occur only when the KAM theo-

rem does not hold. Chaotic motion arises due to some appropriate noise applied to usually

well behaved solutions, resulting to a motion that is highly sensitive to initial conditions.

Moreover, the appearance of chaos can also be viewed as a breakdown of integrability, but

non-integrability does not always imply chaotic behavior.

The chaotic motion can be realized easier from the Poincare maps. By fixing the energy

of the solutions of the Hamiltonian system and choosing one invariant plane, one can obtain

curves on a two dimensional plane generated by fixing the initial conditions. When the

curves are in a sense continuous, the solutions are regular. These regular trajectories

are obtained by integrating the equations of system for the particular conditions, and

the solutions are unique and reproducible. When individual points appear, the chaotic

regions become apparent. These points are located randomly and integrability breaks

down over the phase space. There is a possibility to have regions of phase space which
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show integrability and regions of chaos for different initial conditions. For our solutions

we have not found regions of chaotic motion for the particular fixed energy of the system

imposed by the zero Hamiltonian. This does not mean that the system is not chaotic, since

in other energies chaos may occur.

Alternatively, to the aforementioned techniques, by using differential Galois theory, it

can be examined if the identity component of the differential Galois group of variational

equations normal to an integrable plane of solutions is Abelian. However, in practice, in

order to determine the Galois group is a difficult task. Therefore, one takes advantage of

the fact that the Abelian identity element in the Galois group is equivalent to finding Li-

ouvillian solutions, i.e. combinations of algebraic functions, exponentiation of quadratures

and quadratures, to the normal variational equation. This is in principle an easier task,

and for the Hamiltonian systems we are interested in, we can end up with second order

homogeneous differential equations with rational coefficients, where the existence of the

Liouvillian solutions, can be checked with the running of the Kovacic algorithm [40], which

only fails when the system has no Liouvillian solutions.

The plan of the paper is as follows: in the section 2 we introduce the theories of special

interest we plan to examine as particular cases of the generic analysis. In section 3, we

start by working with a generic sigma model. Then we study the integrability of string

configurations in general non-relativistic spaces and apply our results to backgrounds of

special interest. In section 4, we derive the conditions of non-integrability for metrics with

non-diagonal terms and apply them to known backgrounds. In section 5, we conclude and

discuss our results and further directions.

2 Classes of theories we focus on

In this section we give a brief overview of the properties of a class of backgrounds of special

interest which are particular examples of the generic study in the subsequent sections.

Let us a consider (d+ 2)-dimensional Lifshitz metrics of the form

ds2 = r−2θ/d

(

−r2zdt2 + r2
d
∑

i=1

dx2i +
dr2

r2

)

, (2.1)

where the constants z and θ are the dynamical critical and hyperscaling violation exponents,

respectively. This metric transforms covariantly under the scaling transformation

t → λzt , xi → λxi , r → r/λ , ds → λθ/dds . (2.2)

In the SO(d)-invariant plane spanned by the coordinates xi, i = 1, 2, . . . , d, we single out

the 1−2 plane in which we use polar coordinates (ρ, φ).

We plan to study the non-integrability of such holographic theories, although our

results may apply widely in theories of general gravitational interest. In addition, we will

consider the restrictions imposed in the present context by the null energy condition

TµνN
µNν

> 0 , (2.3)
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in order for the dual field theory to be physically sensible [41]. This implies that

(d− θ)(dz − θ − d) > 0 , (z − 1)(d+ z − θ) > 0 . (2.4)

For θ = 0 we recover the Lifshitz space Lifz physical constraint with the condition z > 1.

The saturation of the bound happens for z = 1 where the spacetime becomes AdSd+2. The

exponent θ is holographically related to the thermal entropy density in the dual theory

which scales as S ≃ T (d−θ)/z.

An additional physical requirement for any local quantum field theory is that the en-

tanglement entropy of a given region scales with the area of its boundary up to logarithmic

corrections. This gives the condition [42]

θ 6 d− 1 , (2.5)

which also excludes non-stable theories. It has been shown that when this bound is satu-

rated for θ = d− 1, the dual theory exhibits a Fermi surface [42, 43]. Then the condition

(2.4) simplifies to z > 2−1/d. When this is also saturated, the corresponding values of the

scaling parameters are of particular interest, since they can be related to the non-Fermi

liquid states, for example the d = 2, giving θ = 1 and z = 3/2 [43].

Our discussion can be generalized to anisotropic Lifshitz-like theories. For vanishing

hyperscaling parameter θ the corresponding metric takes the form

ds2 = r2z

(

−dt2 +
k
∑

i=1

dy2i

)

+ r2
d
∑

i=k+1

dx2i +
dr2

r2
, (2.6)

for which the SO(d) symmetry of the spatial part is broken down to SO(k) × SO(d − k).

In this case the parameter z measures not only the degree of Lorentz symmetry violation,

but also the anisotropy of the full space spanned by all the yi’s and xi’s. This metric is

invariant under the scaling

t → λzt , yi → λzyi , xi → λxi , r → r/λ . (2.7)

The non-relativistic metrics we are interested in may also have a non-trivial r-dependent

dilaton field Φ when embedded in the string theory, i.e. in practice in type-II supergravity.

In those cases the factor eΦ may have a monomial form, as it happens in many of the

known supergravity solutions.

Another class of non-relativistic theories we will study correspond to the Schrödinger

spacetime Schz, for which the metric can be written as

ds2 = −r2zdt2 + r2

(

2dtdξ + dρ2 + ρ2dφ2 +
d
∑

i=3

dx2i

)

+
dr2

r2
. (2.8)

The isometry algebra of the Schz spaces contains the Galilean boosts as well as null transla-

tions of ξ. The latter play the rôle of the central extension or mass operator of the Galilean

algebra. The presence of the off-diagonal term of the Schz space modifies the details of

the approach for showing non-integrability compared to that for the Lifz case. Hence we

will analyze first the non-integrability of Lifz spacetime and then that of the Schz one.

– 5 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
8

3 Non-integrability in generic non-relativistic spaces

In this section we first develop a general formalism and then we focus on a more applied

analysis to the cases we have mentioned.

3.1 Consistency of sigma-model solutions

We first discuss general properties of the string solutions we construct after we transform

to the string frame metric. These are localized in all directions except for a single cyclic

coordinate which we allow to wind. We will show that our ansatz is consistent and that

the Virasoro constraints do not contribute additional differential conditions to the system.

They just constrain the allowed initial conditions.

Consider a general two-dimensional sigma-models of the form

S(X) = −
√
λ

π

∫

Qµν∂+X
µ∂−X

ν , Qµν = Gµν +Bµν . (3.1)

We use the coordinate conventions x± = τ ± σ. The equation of motion for Xµ is

Ẍµ −X
′′µ + Γµ

νρ(Ẋ
νẊρ −X

′νX
′ρ) +Hµ

νρẊ
νX

′ρ = 0 , (3.2)

where Hρµν = ∂ρBµν + ∂νBρµ + ∂µBνρ. The Virasoro constraints are given by

Gµν(Ẋ
µẊν +X

′µX
′ν) = 0 ,

GµνẊ
µX ′ν = 0 . (3.3)

We will assume that there is a Killing isometry corresponding to constant shifts of the

coordinate X9. We will let accordingly, the rest of the coordinates be denoted by Xi, so

that the index µ = (i, 9). Consider next solutions of the form

Xi = Xi(τ) , X9 = mσ , m ∈ Z . (3.4)

Then the equations of motion become

µ = i : Ẍi + Γi
jkẊ

jẊk −m2Γi
99 +mH i

j9Ẋ
j = 0 ,

µ = 9 : Γ9
ijẊ

iẊj −m2Γ9
99 +mH9

i9Ẋ
i = 0 . (3.5)

Similarly, the Virasoro constraints become

GijẊ
iẊj +m2G99 = 0 ,

mG9iẊ
i = 0 . (3.6)

By taking the τ derivative of the first Virasoro constrain and using the equations of motion

we show that the constrain is preserved and therefore one just needs to satisfy them by

imposing appropriate initial conditions. In addition, we assume that

G9i = 0 . (3.7)
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Then, the second equation of (3.5) is satisfied identically.

Therefore, for a theory satisfying (3.7) and for the particular string configuration (3.4),

we are left only with the first equation of motion (3.5). An effective one-dimensional action

from which this non-trivial equation can be derived from, is given by

S1−dim = −
√
λ

2

∫

dτ(GijẊ
iẊj −m2G99 + 2mB9iẊ

i) . (3.8)

The Hamiltonian and conjugate momentum are given by

H1−dim = −
√
λ

2
(GijẊ

iẊj +m2G99) = 0 , Pi = −GijẊ
j −mB9i , (3.9)

where setting H1−dim = 0 implements the Virasoro constraint as in (3.6). In the next

sections we consider supergravity solutions with zero B-fields. In several cases, our analysis

can be applied even when B-fields are present. This is when the string configuration can

be localized consistently such that no new contributions appear from the extra field. We

elaborate further on that in the case of Schrödinger spaces.

3.2 Non-integrability of the string solutions

The set of backgrounds we will consider in this section include as special cases, the hy-

perscaling violation metrics, as well as Lifshitz and Lifshitz-like backgrounds with possible

non-trivial dilaton dependence. The metric

ds2 = −rαdt2 + rβ

(

dρ2 + ρ2dφ2 +
d
∑

i=3

dx2i

)

+ rγdr2 , (3.10)

captures all of these cases by appropriately choosing the parameters α, β and γ .

We consider an extended string along a U(1) isometry corresponding to φ, i.e. φ = mσ

and also take the xi’s in the space (3.10) to be constant which obviously in consistent with

the equations of motion. For the variables t, r and ρ we will allow only τ dependence.

Using the results of the previous section, where the metric element G99 := Gφφ, we find

that the effective one-dimensional action (3.8) of the system is given by

S1−dim = −
√
λ

2

∫

dτ
(

−rαṫ2 + rγ ṙ2 + rβ(ρ̇2 −m2ρ2)
)

. (3.11)

The corresponding equations of motions are

t : ∂τ
(

ṫrα
)

= 0 ,

ρ : ∂τ

(

ρ̇rβ
)

+m2rβρ = 0 , (3.12)

r : ∂τ (2r
γ ṙ) + αrα−1ṫ2 − γrγ−1ṙ2 − βrβ−1(ρ̇2 −m2ρ2) = 0

and the vanishing Hamiltonian implementing the Virasoro constraints is

H1−dim = −
√
λ

2

[

−rαṫ2 + rγ ṙ2 + rβ
(

ρ̇2 +m2ρ2
)

]

= 0 . (3.13)
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The equation of motion for t in (3.12) is solved for

ṫ =
c

rα
, (3.14)

where c is the integration constant which can be taken non-negative with no loss of gener-

ality. Then, the remaining equations in (3.12) become

ρ̈+ β
ṙ

r
ρ̇+m2ρ = 0 ,

c2αr−α−1 +
1

ṙ
∂τ
(

rγ ṙ2
)

+ βrβ−1
(

−ρ̇2 + ρ2m2
)

= 0 . (3.15)

These equations can be derived from the effective one-dimensional action for the fields ρ

and r, given by

Seff = −
√
λ

2

∫

dτ
(

rγ ṙ2 + rβ
(

ρ̇2 −m2ρ2
)

+ c2r−α
)

. (3.16)

The corresponding Hamiltonian is1

Heff = −
√
λ

2

(

rγ ṙ2 + rβ
(

ρ̇2 + ρ2m2
)

− c2r−α
)

. (3.17)

Hence, we have consistently reduced the original string system to a classical one-

dimensional Hamiltonian system for two fields ρ and r. A solution to the first equation

in (3.15) is obtained for

ρ = 0 . (3.18)

Then, the equation for r and its solution are given by

ṙ2 = c2r−α−γ =⇒ r(τ) =
( c

2
(α+ γ + 2)τ

)
2

α+γ+2
, (3.19)

where, with no loss of generality, we have set a constant of integration to zero. The solution

is valid if α+ γ + 2 6= 0. In the opposite case we comment appropriately below.

To obtain the NVE we perturb in the transverse plane so that ρ = 0+ η(t), obtaining

easily from the first of (3.15) that2

η̈ + β
ṙ

r
η̇ +m2η = 0 . (3.20)

Using (3.19) to substitute for ṙ/r, we obtain that

η̈ +
1− 2ν

τ
η̇ +m2η = 0 , ν =

1

2
− β

α+ γ + 2
, (3.21)

1Note that Heff below coincides with H1−dim in (3.13) after we substitute the solution (3.14). This is not

the case at the level of the corresponding Lagrangians in (3.11) and in (3.16).
2One could also perturb the classical solution for r(τ) in (3.19). It should be obvious from the form of

the system in (3.15) that the two fluctuations do not couple to linear order and therefore we may ignore

the perturbation of r.
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which has rational coefficients. Its general solution is given by

η(τ) = τν (c1Jν(mτ) + c2Yν(mτ)) , (3.22)

where Jν and Yν are the Bessel functions of the first and of the second kind, respectively.

It is known that only when the order ν of the Bessel functions Jν(x) and Yν(x) is half

integer, then they are expressible in terms of elementary functions sinx and cosx divided

by positive integer powers of
√
x. In that case, the NVE (3.22) admits Liouvillian solutions,

the string solutions are integrable and the corresponding theory could be integrable. In

all the other cases the Hamiltonian system, and the corresponding background is non-

integrable. More explicitly the Liouvillian solutions appear for

ν =
2j + 1

2
=⇒ 2 + α+ γ

β
= −1

j
, j ∈ Z . (3.23)

Therefore, when (3.23) is not satisfied for the metric form of (3.10) in string frame then

the theory is not integrable. Notice that for j = 0, implying β = 0, (3.21) becomes the

harmonic oscillator equation and the string configuration is integrable, independently of

the value of α and γ.

Turning to the case with α + γ + 2 = 0, the solution of (3.19) is simply r = ecτ .

Then (3.21) becomes the harmonic oscillator with friction equation with solutions given by

elementary functions. Hence the corresponding string is also integrable.

As a side remark notice that for the case of no string winding, i.e. m = 0, the resulting

geodesics have always integrable structure.3 This is in agreement with the vast major-

ity of the works in the literature, since non-integrability is more likely to be probed by

extended strings.

3.3 Application to theories of special interest

3.3.1 Lifshitz non-integrability

Consider the Lifshitz metric

ds2 = −r2zdt2 + r2

(

dρ2 + ρ2dφ2 +

d
∑

i=3

dx2i

)

+
dr2

r2
, (3.24)

with a trivial dilaton. This is a particular case of the metric (3.10) with

α = 2z , β = 2 , γ = −2 . (3.25)

Then the condition (3.23) gives

z = −1

j
, j ∈ Z . (3.26)

These are the only values for which we may have integrability. Specifically, the exact values,

of z for which the Hamiltonian system is integrable are when

z ∈
{

−1,−1

2
,−1

3
,−1

4
, · · · , 1

4
,
1

3
,
1

2
, 1

}

. (3.27)

3When m = 0, the solution of (3.21) is a linear combination of a 1 and τ
2ν .
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The null energy condition is satisfied for z > 1. Therefore the only physical Lifshitz theory

that is integrable is for z = 1, i.e. the AdS background. Backgrounds with z < 1, where

the dual field theories are not well defined, might be integrable for the values of z defined

in (3.26).

Moreover, there are several interesting Lifshitz backgrounds in the literature with dila-

tons depending on the holographic coordinate r. For example, it has been found that

the AdS5 × S5 geometries backreacted by an O
(

N2
)

density of heavy quarks, exhibit a

Lifshitz geometry in the infrared with a dynamical critical exponent z = 7 and a dila-

ton having a ln r6 dependence on the holographic coordinate [44]. Applying the equation

(3.23) we obtain j = −1/4 and therefore the theory is not integrable at least in the IR.

The non-integrability of the theory may have even further implications to the observ-

ables of the theory, for example chaos may appear in some of them, and this worth a

further investigation.

3.3.2 Anisotropic Lifshitz-Like non-integrability

It is not difficult to see that it is consistent to localize the string along the xi directions

of the anisotropic Lifshitz-like metric (2.6) by setting all the xi’s to constant values. Then

we may follow an identical analysis to the one corresponding to the metric (3.24) leading

eventually to the conclusion that if (3.27) is satisfied then the corresponding string model

may be integrable. For all other values integrability is excluded. Moreover, from the

null energy condition the only physically allowed value allowing integrability is z = 1,

corresponding to the AdS background.

A particular such anisotropic background is the holographic dual of Lifshitz-like fixed

point found in type-IIB supergravity in [33], where a non-trivial dilaton exist. In the

Einstein frame the metric is equivalent to (2.6) with z = 3/2, k = 2 and d = 3, while it has

a non-trivial dilaton with ln r2/3 dependence. In the string frame it becomes equivalent to

the metric (3.10) with α = β = 7/3 and γ = 5/3 and the remaining anisotropic directions

scale with a factor rγ . However, they play no rôle in the analysis since the string is localized

in there. Using the condition (3.26) we get the non-integer value ν = 8/7 /∈ Z and therefore

the theory is not integrable.

3.3.3 Hyperscaling violation metrics non-integrability

Comparing the metrics (2.1) and (3.10) we identify the parameters

a = 2z − 2
θ

d
, β = 2− 2

θ

d
, γ = −2− 2

θ

d
. (3.28)

Using (3.23) we find that the corresponding NVE has Liouvillian solutions for the values

θ

d
=

1 + jz

1 + 2j
, j ∈ Z . (3.29)

For any other values of θ and z, not satisfying the above conditions the corresponding

theory is not integrable. By applying the null energy condition (2.4) and the one obtained
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from entanglement entropy scaling (2.5) to ensure for physical dual gauge theories, we find

that the necessary conditions for integrable physical theories to exist are

j = −1 , θ = d(z − 1) , 1 6 z 6 2− 1

d
. (3.30)

For all other values of d, z and θ the theory is not integrable. The lower value z = 1

corresponds to the AdSd+2 case and the upper one z = 2 − 1/d to gravity dual theories

for Fermi surfaces. The saturation of these conditions happens among other values for

d = 2, θ = 1, z = 3/2 which occur for non-Fermi liquid states [43] and correspond to

regular IR limit. We conclude that the majority of physical and non-physical theories

is non-integrable.4

4 Geometries with non-diagonal terms

In this section we consider metrics of the form

ds2 = −rαdt2 + 2rδdtdξ + rβ

(

dρ2 + ρ2dφ2 +
d
∑

i=3

dx2i

)

+ rγdr2 , (4.1)

which is similar to (3.10), but with the extra off-diagonal term. In this class of backgrounds

the Schrödinger geometries with trivial or non-trivial polynomial r-dependent dilaton are

included as particular cases.

Proceeding similarly to section 3 we set the xi’s to constants, φ = mσ and then we

obtain the effective one-dimensional action

S1−dim = −
√
λ

2

∫

dτ
(

−rαṫ2 + rγ ṙ2 + rβ(ρ̇2 −m2ρ2) + 2rδ ṫξ̇
)

, (4.2)

for the remaining variables. The corresponding equations of motions are

t : ∂τ

(

ṫrα − rδ ξ̇
)

= 0 ,

ξ : ∂τ

(

rδ ṫ
)

= 0 ,

ρ : ∂τ

(

ρ̇rβ
)

+m2rβρ = 0 , (4.3)

r : ∂τ (2r
γ ṙ) + αrα−1ṫ2 − γrγ−1ṙ2 − βrβ−1(ρ̇2 −m2ρ2)− 2δrδ−1ṫξ̇ = 0

and the vanishing Hamiltonian implementing the Virasoro constraint is

H1−dim = −
√
λ

2

[

−rαṫ2 + rγ ṙ2 + rβ
(

ρ̇2 +m2ρ2
)

+ 2rδ ṫξ̇
]

= 0 . (4.4)

The first of the equations in (4.3) are easily integrated once to give

ṫ =
c

rδ
, ξ̇ =

c

r2δ−α
− c1

rδ
, (4.5)

4We do not consider negative values of the parameter θ or values for d − 1 < θ < d. In case that the

constraints of the physical theories will be relaxed to include some of these values and we end up with a

slightly modified condition (3.30).
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where c and c1 are the integration constants. Then the remaining equations become

ρ̈+ β
ṙ

r
ρ̇+m2ρ = 0 ,

1

ṙ
∂τ
(

rγ ṙ2
)

+ βrβ−1
(

−ρ̇2 +m2ρ2
)

+ c2(α− 2δ)rα−2δ−1 + 2δcc1r
−δ−1 = 0 . (4.6)

These equations can be derived from the effective one-dimensional action given by

Seff = −
√
λ

2

∫

dτ
(

rγ ṙ2 + rβ
(

ρ̇2 −m2ρ2
)

− c2rα−2δ + 2cc1r
−δ
)

. (4.7)

The corresponding Hamiltonian is

Heff = −
√
λ

2

(

rγ ṙ2 + rβ
(

ρ̇2 + ρ2m2
)

+ c2rα−2δ − 2cc1r
−δ
)

. (4.8)

Hence, we have consistently reduced the original string system to a classical one-dimensional

Hamiltonian system for two fields ρ and r.

Choosing the same solution as in (3.18) we find that

ṙ2 = cr−δ−γ
(

2c1 − crα−δ
)

, (4.9)

which for generic values of α, β and δ has solution in terms of inverse hypergeometric

functions. By varying the equation of motion for r with ρ = 0 + η(t) we obtain the same

form of the equation as in (3.20). Then using (4.9) we obtain

η′′ +

(

2β − δ − γ

2r
+

c(δ − α)

2(2c1rδ−α+1 − cr)

)

η′ +m2η = 0 , (4.10)

where the derivative now is with respect to r. The NVE has rational coefficients when

δ − α + 1 ∈ Z, then the Kovacic algorithm can be applied. In contrary to the diagonal

metrics, we do not find for generic values of α, β, γ and δ analytic solutions, so that we

cannot tell when they become Liouvillian. Therefore to show non-integrability, we need to

apply particular values to the parameters of our system, directly to the above NVE, as we

do in the case of the Schrödinger geometries below. Notice that by localizing the string,

i.e. choosing m = 0, we see that any geodesic of the type we have chosen is integrable,

since the solutions to the above NVE are integrals of polynomials and square roots.

4.1 Application to Schrödinger geometries

The Schz geometries are obtained from the metric (4.1) by setting

α = 2z , δ = 2 , β = 2 , γ = −2 . (4.11)

We find that for the values z = 1, 2, 3, then (4.10) has Liouvillian solutions, the correspond-

ing strings are integrable and we can not exclude integrability of the theory. For z = 4, 5, 6

we have non-integrable systems. There are also higher values of z where integrability can

not be excluded. For any value of z the test of integrability can be done directly by check-

ing the type of solutions of (4.10). We find that for the vast majority of the z values our

strings are integrable.
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Notice that the z = 2 Schrödinger spaces can be constructed with an appropriate TsT

transformation [45] and has been shown to be integrable [46–48] which is in agreement with

our results. Indeed, our analysis can be applied directly to these backgrounds by localizing

consistently the string configuration such that there is no contributions to the effective

action by the antisymmetric tensor field which is present in these backgrounds.

5 Conclusions

In this paper we have used methods of classical integrability to study non-relativistic the-

ories. Working in a general framework, our analysis boils down to a simple formula of the

scalings of the metric elements which when is not satisfied integrability is excluded. This

is achieved by analyzing some unique properties of the solutions of the differential NVE

equations which are obtained from string configurations in spaces under study. As a next

step we have applied our results to non-relativistic theories of special interest. In particular

the physical Lifshitz theories with trivial dilatons are integrable only for the value z = 1

corresponding to the AdS geometry. Thus any other candidate theory of different scaling

is excluded in terms of integrability. The same applies to the Lifshitz-like theories since the

non-integrable string solutions we have found can be localized consistently in the additional

anisotropic directions. In theories with hyperscaling violation scaling we have found that

in the small range of physical theories for which integrability is not excluded, the Fermi-

surface theories saturating the null energy condition, are included. We also performed

the analysis for non-relativistic theories with non-diagonal metric elements. For these the

study of integrability needed to be done case by case due to the absence of similar unique

properties of the solutions of the corresponding NVEs.

For theories containing non-trivial dilaton, we brought their metrics to the string frame

and applied our generic formulas. As an example, we explicitly checked the type-IIB

anisotropic Lifshitz-like supergravity solutions of [33] and we found that it is not integrable.

For vanishing winding number, all of our geodesics are integrable. This means that in

order to see the non-integrable structure of the model we need to probe it with extended

strings. This is a common finding when using methods of classical integrability in the string

theory models and is in some sense expected, since the richer structure of the string reveals

the non-integrable structure of the theory. Note also that, in general, a chaotic motion

implies non-integrable solutions but the opposite is not always true. In our solutions with

the constraints set by the zero Hamiltonian, we detect no chaotic behavior, in the physical

range of the parameters and coordinates. This finding does not necessarily exclude chaos

in other range of parameters and energies or for other string solutions.

We also note that by excluding integrability in the non-relativistic spaces we have

worked, we expect non-integrability to follow for a wide range of spaces that have as a

particular limit these non-relativistic spaces. For example, for the geometries backreacted

by a heavy quark density which in the IR limit flow to a Lifshitz geometry, we expect

non-integrability.

It would be very interesting to investigate the implications of our findings to the

observables of the dual NRCFT. We have found non-integrability in backgrounds which
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are used to describe dual anisotropic plasmas, where a wide range of observables has been

already investigated [36], backgrounds with heavy quark density and backgrounds used to

describe condensed matter systems. Certain predictions of these non-integrable theories

may be chaotic, like the hadronic spectrum in confining theories [23]. In our case would

be interesting to investigate this possibility and the physical implications of the chaos to

the observables.
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