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Herpes simplex virus infects most cell types in
vitro: clues to its success
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Abstract

Herpes simplex virus (HSV) type-1 and type-2 have evolved numerous strategies to infect a wide range of hosts
and cell types. The result is a very successful prevalence of the virus in the human population infecting 40-80% of
people worldwide. HSV entry into host cell is a multistep process that involves the interaction of the viral
glycoproteins with various cell surface receptors. Based on the cell type, HSV enter into host cell using different
modes of entry. The combination of various receptors and entry modes has resulted in a virus that is capable of
infecting virtually all cell types. Identifying the common rate limiting steps of the infection may help the
development of antiviral agents that are capable of preventing the virus entry into host cell. In this review we
describe the major features of HSV entry that have contributed to the wide susceptibility of cells to HSV infection.
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Introduction
Herpes simplex viruses (HSV) are part of the alphaher-
pesvirus subfamily of herpesviruses. There are two types
of HSV: type-1 (HSV-1) and type-2 (HSV-2). These
viruses are neurotropic capable of infecting the nervous
system and causing neurological diseases. Moreover,
HSV results in a lifelong infection by establishing
latency in the host sensory neurons and replicating in
epithelial cells during primary infection and reactivation
[1]. The virus is spread and transmitted among humans
through physical contact and commonly causes localized
mucocutaneous lesions [2]. Oral and ocular lesions are
primarily caused by HSV-1 and genital lesions by HSV-
2. However, HSV-2 is capable of causing ocular lesions
in newborns of HSV-2 infected mothers. In that case,
HSV-2 is transmitted to newborns primarily during peri-
partum period as a result of disrupted membranes, or by
direct contact with the mother’s vaginal secretions and
infected cervix [3,4]. These viruses are also capable of
causing more serious diseases, such as blindness, menin-
gitis, and encephalitis [5]. HSV-1 is a leading cause of
viral corneal blindness and viral encephalitis in devel-
oped countries [6,7].

Unlike many herpesviruses, HSV has low species spe-
cificity and a wide host range. It has the unparalleled
ability to infect human and nonhuman cells alike [8].
The reason behind this successful story of infection is
an accumulation of multiple supporting factors. These
include:
• Involvement of several multifunctional HSV glyco-

proteins in entry.
• Existence of multiple alternative receptors. An array

of HSV entry receptors for HSV glycoproteins already
exists, and evidence suggests even more unidentified
HSV receptors.
• Multiple entry modes. HSV has the ability to enter

into host cells by direct fusion with the plasma mem-
brane, or via endocytic pathways. The latter can be pH
dependent or independent.
• Multiple spread strategies of HSVs, including: trans-

mission of free virions, movement of HSV along filopo-
dia-like cellular membrane protrusions (surfing) towards
the cell body, and lateral cell-to-cell spread.
This review discusses recent advances in the field of

HSV entry and highlights the strategies exploited by the
virus to infect a wide range of hosts.

HSV structure
The mature infectious HSV consists of four components
from the core outward: an opaque dense core that
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contains linear double stranded DNA (approximately
152 kB), encoding at least 74 genes [9]. HSV genome is
encapsulated within an icosahedral capsid that consists
of 162 capsomeres with six different viral proteins (VPs)
present on the surface [10]. The capsid is surrounded by
a protein layer called the tegument that contains 22
VPs. Finally, an outer envelope that contains 16 mem-
brane proteins, including 12 different proteins that con-
tain oligosaccharide chains (glycoproteins). These
glycoproteins are of particular importance for the pur-
pose of this review since their interactions with the host
cell surface proteins mediate HSV entry into the cell.
These glycoproteins are: gB, gC, gD, gE, gG, gH, gI, gJ,
gK, gL, gM, and gN [10-12].
Some of these glycoproteins have been found to exist

as heterodimers including the heterodimers gH-gL and
gE-gI. Many associate with each other, and have the
potential to function as oligomeric complexes [13]. In
addition, these glycoproteins are suggested to have dis-
tinct size, morphology and distribution in the viral
envelope, based on studies that have used the electron
microscope, and monoclonal antibodies against the viral
glycoproteins gB, gC, and gD. Accordingly, gB forms the
most prominent spikes that are about 14 nm long with
a flattened T-shaped top, invariably clustered in protru-
sions of the viral envelope. While gC were up to 24 nm
long distributed randomly, and widely spaced. gD
seemed to be 8-10 nm long, clustering in a distinct irre-
gular pattern [14].

HSV entry
HSV entry into host cell is a multistep process that is a
result of fusion between the viral envelope and a host
cell membrane. It is mediated and modulated by the
action of seven HSV glycoproteins along with their
interactions with their cognate receptors. These glyco-
proteins are gB, gC, gD, gH, gK, gL, and gM [1]. How-
ever, only four of these glycoproteins (gB, gD, gH, and
gL) are necessary and sufficient to allow virus fusion
with the plasma membrane of the host cell (Figure 1)
[15-18].
The first step in HSV entry is the attachment of HSV

through the envelope glycoproteins gB and/or gC to
heparan sulfate proteoglycans (HSPG) on the surface of
the host cell [19]. The purpose of this interaction is
thought to tether the virus to cells in order to concen-
trate the virus at the cell surface [5]. Although gC
enhances HSV binding through its interaction with
heparan sulfate (HS), it is not essential for entry [8].
The next step in entry is specific interaction between
HSV gD and a gD receptor [20]. Several gD receptors
have been identified, and they are discussed in more
detail below. This interaction allows for tight anchoring
of the virion particle to the plasma membrane of the

host cell, and brings both the viral envelope and the cell
plasma membrane into close juxtaposition [12]. It is
thought that the interaction of gD with one of its recep-
tors triggers a cascade of events that lead to membrane
fusion. Structural studies of gD prior to receptor binding
and in complex with a receptor suggest that gD under-
goes conformational change upon receptor binding,
which may transmit an activation signal to gB, and gH/
gL leading to membrane fusion. Thus, fusion requires
the formation of a multiprotein complex (a fusogenic
complex) comprised of gD, gB, and gH/gL [21-25]. A
proline-rich region (PRR) of gD has been shown to be
important for this process [26]. Whether this region
becomes exposed to contact gB and gH/gL upon recep-
tor binding, or this region functions as a flexible joint to
expose an unidentified region is still unknown.
gD crystal structure reveals that its ectodomain con-

sists of a V-like immunoglobulin (IgV) core that is
wrapped by two topologically and structurally distinct
extensions: N-terminus which has the receptors binding
sites, and the C-terminus that has a domain required for
triggering viral membrane fusion [21,27,28]. Various gD
receptors bind distinct binding sites on the N-terminus
[29-31]. Soluble gD has been shown to be sufficient to
allow the entry of gD-null virus into the host cell [32].
In addition, soluble forms of gD receptors have been
also shown to be sufficient to allow wt virus entry into
cells lacking gD receptors [33]. These observations sug-
gest that gD binding to its receptor is important to
modify gD so that it can trigger fusion. A number of
studies support the idea that the C-terminus of gD
binds to the N-terminus resulting in an autoinhibitory
closed conformation. gD receptor binding results in

Figure 1 HSV-1 glycoproteins required for viral entry and their
identified receptors. HSV-1 entry requires the glycoproteins gB,
gD, and the heterodimer gH-gL. Some of the receptors are
exclusive to HSV-1 including PILRa and 3-OS HS.
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conformational change where the C-terminus is dis-
placed adopting an open conformation, and thus activat-
ing the fusion machinery [26,34].
Although gB does not promote membrane fusion by

itself, its crystal structure reveals that gB share some
properties with other class I and class II fusion proteins.
gB belongs to a newly defined class of fusogens: class
III. It is a multidomain trimer that is suggested to
undergo a complex and ordered refolding process to
drive fusion [35]. Currently solved gB structure is pre-
dicted to represent the post-fusion conformation of the
protein [36]. It possesses five domains and two linker
regions in each protomer of the trimeric ectodomain:
(Domain I) has the fusion loop, (domain II) is located in
the middle, (domain III) is an a-helical coild coil that
represents the core of the protein, (domain IV) is the
crown domain that has the epitopes for HSV specific
neutralizing antibodies, and (domain V) is the arm
domain that consists of a long extension spanning the
full length of the protomer and contact to the other two
protomers [5,36-38]. The long linker regions are sug-
gested to allow gB conformational change during fusion.
Some investigators suggest gH/gL to have a fusogenic

activity by initiating hemifusion [22]. However, a
recently resolved crystal structure of HSV-2 gH/gL
revealed that gH/gL structure does not resemble any
known viral fusogen [39]. Moreover, a recent study,
using cell fusion assay demonstrated that gD, a gD
recptor and gH/gL heterodimer are unable to induce
hemifusion formation [40]. Consistent with these results,
a model was proposed where conformational changes in
gD, upon its receptor binding, enable it to activate the
heterodimer gH/gL into a form that binds to and acti-
vates gB fusogenic activity [41]. Thus gH/gL is suggested
to act as a regulator of the fusion process by gB rather
than a fusogenic glycoprotein [41]. The interaction of
the heterodimer gH/gL with gB does not seem to
require the presence of these glycoproteins on the same
membrane; since cell-cell fusion has been reported
when gB and gH-gL were expressed in trans on different
cells [41].

HSPG as an attachment coreceptor
HSV attachment to HS is the first step of HSV infection.
HS is abundantly expressed on the surface of almost all
cell types as HSPG. Additionally, the highly sulfated HS
possesses negative charges making it suitable to interact
with the positively charged viral glycoproteins [42]. Evi-
dence for this interaction stems from the observations
that HSV attachment to cell lines that are defective in
HS biosynthesis, but not chondroitin sulfate (CS) bio-
synthesis is reduced by 85% causing a significant reduc-
tion in infectivity in these cell lines [43]. Moreover,
soluble heparin, which is closely related to HS, binds

HSV, causing an inhibitory effect on HSV binding to
host cells [44]. Enzymatic digestion of HS reduces HSV
infection [45].
The viral glycoproteins gB and gC are involved in the

attachment to HS. The affinity of gB and gC to HSPG is
different for HSV-1 and HSV-2. While HSV-1 gC has
critical role in HSPG attachment during HSV-1 entry,
HSV-2 gB is the key glycoprotein for HSV-2 attachment
to HSPG [46,47]. The difference in HSV-1 and HSV-2
gB and gC affinity to HS is suggested to influence sev-
eral biological activities including sensitivity to polyanio-
nic and polycationic substances [48]. Although viral
attachment to HS enhances the infection, the lack of gC
on the viral envelope, or the lack of HS on cells lowers
the efficiency of the infection, but does not prevent it
[49,50]. The lack of gB prevents the infection, primarily
because of its critical role during membrane fusion of
the virus. In addition to differences between HSV-1 and
HSV-2 in the key glycoprotein that interacts with HS
during virus attachment, it has been shown that HSV-1
and HSV-2 interact differently with the various struc-
tural features of cell surface HS [51]. HS binding can
also play a role in the virus’s ability to form larger pla-
ques since a mutant virus deleted for a putative HS
binding lysine-rich sequence in gB (residues 68-76)
showed reduced plaque sizes [52].
Although the role of HS as an attachment receptor

has been intensively studied, little is known about the
contribution of the core protein that carries the HS
chains. It is known that several families of HSPG have
been identified, and one major family is the syndecan
family of HSPG [53]. Recently, work from our lab has
shown that two members of the syndecan family of
HSPG (syndecan-1 and syndecan-2) play a role during
HSV entry [54]. The downregulation of these syndecans
using specific small interfering RNA (siRNA) resulted in
a significant reduction in HSV entry and plaque forma-
tion. These results were confirmed using antibodies
blocking assay, where antibodies against syndecans were
capable of inhibiting viral entry [54]. Interestingly, HSV
infection resulted in the upregulation of syndecan-1 and
syndecan-2 expression on the cell surface and at the
protein level [54]. This observation strongly suggests
that these HSPG are involved in the infection, and most
probably beyond the attachment step of the infection.
Future studies will determine the exact contribution of
the various members of the syndecan family in HSV
infection. Table 1 lists HSV know entry receptors for
some of the tested human cell lines.

gD receptors
Several lines of evidence suggested that gD is capable of
interacting with a cellular receptor. Firstly, the recogni-
tion of a phenomenon called gD-mediated restriction to
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infection or interference. Cells that constitutively
express gD become resistant to infection [55,56]. Sec-
ondly, truncated soluble form of gD binds to cells until
reaching a saturation level [57]. Through generating
viral mutants that were able to infect gD expressing
cells, the presence of multiple gD receptors was pre-
dicted [58]. Currently, there are three classes of gD
receptors that belong to structurally unrelated molecular
families.
Herpesvirus entry mediator (HVEM)
Also called herpesvirus entry mediator A (HveA), is the
first gD receptor identified through screening HSV resis-
tant cells transfected with human cDNA libraries [59].
HVEM is a member of the tumor necrosis factor (TNF)
receptor family and a regulator of immune responses as
part of its normal physiological functions [60]. It binds
to HSV gD and mediates HSV entry into entry resistant
Chinese hamster ovary (CHO) cells [59,61]. HVEM is
expressed in a variety of cell types including T and B
lymphocytes, other leucocytes, epithelial cells, fibroblasts
and trabecular meshwork and human tissues including
the lung, liver, kidney and to less extent in the brain
[19,59,62].
Nectin-1 and nectin-2
They were first described in literature as poliovirus
receptor-related protein 1 and 2 (Prr1 and Prr2) and
later renamed as HveC and HveB and eventually nectin-
1 and nectin-2 after the discovery of their roles in cell
adhesion [63-67]. These cell surface proteins belong to
the four membered nectin family of the immunoglobulin
superfamily and only nectin-1 and nectin-2 from this
family have been shown to mediate HSV entry through
their interaction with gD [61,65,66,68].
Nectin-1 has been shown to serve as a receptor for all

tested HSV-1 and HSV-2 strains. It is broadly expressed
in a wide range of human tissues (e.g. central nervous
system (CNS), ganglia, skin, trachea, prostate, thyroid,

and liver) and cell lines (e.g. epithelial, endothelial, fibro-
blastic, keratinocytes, haematopoietic and neuroblas-
toma) [12]. However, nectin-2, that shares 30%
homology with nectin-1 at the protein level, serves as a
receptor only for HSV-2 and some unrestricted HSV-1
mutants that do not exhibit gD-mediated restriction of
infection. Nectin-2 is considered a low efficiency recep-
tor; therefore, cells expressing nectin-2 requires high
multiplicity of infection in order to be infected. The rea-
son of that is thought to be a result of weak physical
interaction between nectin-2 and gD (HSV-2 gD, or
HSV-1 gD mutants) [66,68]. Nectin-2 is expressed in
numerous human tissues (e.g. placenta, kidney, lung,
prostate, pancreas, and thyroid) and human cell lines (e.
g. epithelial, endothelial, and neuronal) [12].
3-O-Sulfated heparan sulfate proteoglycan (3-OS HS)
3-OS HS is a highly sulfated form of HS that has been
shown to serve as a HSV-1 gD receptor, but fails to
bind to HSV-2 gD [69]. The 3-O-sulfotransferases family
of enzymes is responsible for the generation of the 3-O-
sulfation, where each isoform of these enzyme is capable
of generating its unique 3-OS HS. 3-OS HS generated
by all the isoforms of the 3-O-sulfotransferases, except
for one, are capable of binding gD and mediating virus
entry. These enzymes have a distinct expression pattern
in cells and tissue making them regulators of HS func-
tions [70].
Using soluble 3-OS HS, it has been shown that 3-OS

HS is capable of triggering not only virus entry, but also
HSV-1 induced cell-cell fusion [71]. Furthermore, the
downregulation of a prerequisite for the formation of 3-
OS HS; 2-O-sulfation, was found to significantly inhibit
HSV-1 binding, entry and virus induced cell-cell fusion
[72]. 3-OS HS is expressed in less variety of tissues and
cell lines compared to nectin-1. It is found to be
expressed in these tissues: liver, placenta, heart, kidney,
and pancreas. It is also expressed by the human

Table 1 HSV known entry receptors for some of the tested human cell lines

Cell line Major entry
receptor

Other expressed
receptors

References

Primary human trabecular meshwork (HSV-1) HVEM 3-OST-3 (probably
3-OS HS)

[62]

Primary human corneal fibroblasts (HSV-1) 3-OS HS HVEM [73]

Primary human corneal fibroblasts (HSV-2) HVEM [123]

Human conjunctival epithelium (HSV-1) Nectin-1,
HVEM

3-OS HS [124]

Retinal pigment epithelium (HSV-1) Nectin-1 HVEM, 3-OS HS [96]

Human corneal epithelium (HSV-1) Nectin-1 HVEM, PILRa [125]

Retinal pigment epithelium (HSV-2) Nectin-1 HVEM, PILRa [126]

Radial glial cells and Cajal-Retzius cells Nectin-1 [127]

Soma and processes of central and peripheral neurons, ependymal cells, choroid plexus
epithelium, vascular endothelium, meningothelial cells (HSV-1, HSV-2)

Nectin-1 [128]

Human Mesenchymal Stem Cells (HSV-1) 3-OS HS Nectin-1, HVEM [129]
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endothelial cells [12]. In addition, 3-OS HS appears to
play a major role in HSV-1 entry into primary cultures
of corneal fibroblast [73].

gB receptors
gB is known for its role in attaching to HSPG for tether-
ing the virus to the cell surface, as well as its crucial role
during membrane fusion of the virus. Although virus
attachment to HS via gB and gC enhances the infection,
the virus can still infect cells deficient in HS synthesis
[74]. Using soluble gB, it has been shown that gB is cap-
able of binding to HSPG deficient cells, and block virus
entry, suggesting the presence of a gB receptor [75].
Recently three gB receptors have been identified where
gB is capable of interacting with these receptors mediat-
ing HSV-1 infection.
Paired immunoglobulin-like type 2 receptor-a (PILRa)
PILR is one of the paired receptor families. It is
expressed mainly in immune cells where one receptor in
the family has activating function, while another recep-
tor in the family mediates inhibitory functions. While
inhibitory receptors generally recognize self-antigens
such as MHC molecules, activating receptors do not
recognize self-antigens. Pathogens may utilize the inhibi-
tory receptors to evade the immune system. PILRa has
an immunoreceptor tyrosine-based inhibition motif
(ITIM) that delivers inhibitory effects. Expression of
PILRa in HSV resistant CHO cells renders these cells
susceptible to the virus. Moreover, treating susceptible
cells with anti-PILRa or anti-HVEM blocked HSV-1
infection, indicating that both gB receptor and gD
receptor are required for HSV infection [76]. Interest-
ingly, PILRa has been shown to confer susceptibility to
HSV-1 entry, as well as other alphaherpesviruses,
including pseudorabies virus, but not HSV-2 into HSV
resistant CHO cells [77]. The association of PILRa with
HSV-1 gB depends on the presence of sialylated O-gly-
cans on gB with two threonine residues on gB found to
be essential for principal O-glycans addition to gB [78].
Myelin-associated glycoprotein (MAG)
MAG (also called Sialic-acid-binding Ig-like lectin
(Siglec)) is another paired receptor that has 5-12%
homology with PILRa [79]. It is localized in the periaxo-
nal space in glial cells suggesting its importance in regu-
lating myelin-axon interactions, including myelination,
initiation, and myelin integrity maintenance. Using
MAG-/- mice, MAG has been shown to function as an
inhibitor of axonal regeneration [80]. MAG associates
with HSV-1 gB as well as varicella-zoster virus (VZV)
gB and confers susceptibility to HSV-1 and VZV in
MAG-transfected promyelocytes and oligodendroglial
cells respectively [79]. Since MAG is not naturally
expressed in epithelial cells and neuronal cells which are
considered prime targets for HSV-1 and VZV, MAG is

not thought to serve as a major receptor for these
viruses. However, both HSV-1 and VZV infect glial cells
in the acute phase of infection, suggesting that MAG
might be involved in the neurological disorders caused
by HSV-1 and VZV.
Non-muscle myosin heavy chain IIA (NMHC-IIA)
NM II binds to actin and has actin cross-linking and
contractile characteristics. It is a key protein in the con-
trol of many events that are involved in cell reshaping
and movement; including cell migration, cell adhesion
and cell division. NM-II is composed of two heavy
chains, two regulatory light chains, and two essential
light chains. NM IIA is one isoform of the NM II pro-
tein [81]. NMHC-IIA was identified as an HSV-1 gB
receptor using a tandem affinity-purification approach
with a membrane-impermeable crosslinker coupled with
mass-spectrometry-based proteomics technology [82].
NMHC-IIA has been shown to physically interact with

HSV-1 gB, and mediate HSV-1 infectivity both in vitro
and in vivo. Human promyelocytic HL60 cells stably
expressing high levels of NMHC-IIA exhibited a signifi-
cantly higher susceptibility to HSV-1 infection compared
to cells expressing low levels of NMHC-IIA. NMHC-IIA
role as an entry receptor was also exhibited in naturally
permissive cells that express NMHC-IIA endogenously.
NMHC-IIA functions primarily in the cytoplasm. How-
ever, interestingly, NMHC-IIA cell surface expression
was shown to be induced after HSV-1 adsorption at 4°C
that was followed by a shift in temperature to 37°C [82].
While PILRa and MAG expression is limited to certain
types of cells, NMHC-IIA is ubiquitously expressed in
numerous human tissues and cell types, suggesting its
important role as the functional HSV-1 gB receptor
[81,82].
HSV entry has been closely associated with actin-

cytoskeleton reorganization [83]. For example, it has
been shown that HSV exposure induces the formation
of filopodia-like cell membrane protrusions, on which
HSV has the ability to bind and move toward the cell
body. This movement of HSV on filopodia is termed
surfing, and believed to be a spread strategy of the virus.
In addition, HSV glycoprotein gB was found to be criti-
cal for virus surfing [84]. Since NMHC-IIA binds to
actin, and is involved in many events controlling cell
movement and reshaping, it is quite possible that virus
surfing on filopodia is mediated by gB binding to
NMHC-IIA. More studies are needed to investigate the
contribution of NMHC-IIA in virus surfing.
Lipid-raft associated gB receptor
An HSV gB lipid-raft-associated receptor has also been
proposed by the observation that gB, but not gC, gD, or
gH associates with glycolipid-enriched membranes
(DIG) that represent raft-containing fractions. Since gC
does not associate with DIG, gB association with DIG is
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suggested to be either heparan sulfate independent, or
heparan sulfate dependent where gB is associating with
specific type of HSPG, or has a differential effect com-
pared to gC association with HSPG [85].

gH-gL receptors
Many lines of evidence support the presence of gH-gL
receptor; nevertheless, the contribution of this gH-gL-
receptor interaction to HSV infection is not yet fully
understood. An observation was made in our lab where
the cellular expression of gH-gL confers resistance to
HSV-1 entry, indicating that gH-gL on the cell surface
may result in sequestering the available cellular gH-gL
receptor, perturbing the entry process of the virus [86].
Soluble gH-gL has been shown to bind to avb3 integrin
through a potential integrin-binding motif, Arg-Gly-Asp
(RGD), in gH [87]. However, mutating RGD to triple
RGE (Arg-Gly-Glu) does not affect HSV-1 entry [88].
gH-gL was also found to bind to cells independently of
avb3, and that binding was found to be important for
HSV entry and membrane fusion [89]. Additional stu-
dies are important to identify the presence, and under-
stand the significance of possible gH receptors during
HSV infection.

B5 protein
Using expression cloning, hfl-B5 gene was isolated that
encodes a cellular protein found to be involved in HSV
infection. B5 is a type-2 membrane protein that has an
extracellular heptad repeat potentially capable of form-
ing an a-helix for coiled-coils. B5 is ubiquitously
expressed on many human cell lines. Transfecting por-
cine renal epithelial cells that are naturally resistant to
HSV rendered these cells susceptible to the virus, which
made B5 protein a candidate HSV receptor [90]. It was
proposed that B5 a-helix might interact with viral pro-
teins containing a-helices such as gH to facilitate mem-
brane fusion. However, a recent study revealed that B5
role in HSV infection is not during HSV entry, but dur-
ing HSV proteins translation. B5 silencing did not affect
entry markers including intracellular viral capsids deliv-
ery and viral tegument protein nuclear transport. On
the other hand, B5 silencing was found to inhibit viral
immediate early proteins translation [91].

The design of new antivirals utilizing HSV receptors
Advances in the field of HSV receptors provide new
strategies for the generation of anti-HSV agents. Experi-
ments done to identify the major HSV entry receptor in
various cell types have exploited assays including anti-
body blocking assays, and the down regulation of HSV
receptors utilizing siRNA [2,62,73]. These assays indi-
cated that HSV infection can be inhibited by blocking
the viral entry receptors. Copeland and colleagues have

generated a 3-OS HS octasaccharide that has the ability
to inhibit HSV-1 entry [92]. Recently, our lab has iso-
lated 12-mer peptides that bind specifically to HS, or 3-
OS HS, and block HSV-1 entry. Interestingly, peptides
isolated against 3-OS HS exhibited the ability to inhibit
the entry of not only HSV-1, but also some divergent
members of herpesvirus family including cytomegalo-
virus (CMV) and human herpesvirus-8 (HHV-8) [93].

HSV entry modes
Recent studies have shown that HSV can follow differ-
ent entry routes. Two major entry routes include: (I) a
pH independent fusion with the plasma membrane of
the host cell (II) endocytosis that may be phagocytosis-
like where the virus triggers the fusion with the phago-
cytic membrane [83,94]. This entry route may not
always be pH dependent. Although all HSV glycopro-
teins function at neutral and low pH, gB undergoes
minor conformational changes under low pH, the conse-
quences of these changes are not yet known [95]. Anti-
acidification drugs such as bafilomycin A enable the
identification of pH dependence during endocytosis.
The differential entry route that HSV can follow is cell

type-specific. For example, HeLa, human retinal pigment
epithelial cells (RPE), and the CHO cell line expressing
nectin-1 gD receptor allow HSV entry through low pH
endocytic pathway. However, the monkey kidney epithe-
lial cells (vero) allow HSV entry through the direct
fusion with plasma membrane of the host cell [96,97].
Regardless of the entry route followed, HSV enters host
cells by inducing fusion between the viral envelope and
the host cell membrane.
Very little is known about what causes these differen-

tial entry routes. Since it is cell type specific, it is sug-
gested that cellular determinants are responsible for
choosing the viral entry route into the host cell. The
contribution of gD receptors in determining the entry
mode is elusive. One study has shown that co-culturing
cells expressing gD with cells expressing nectin-1
resulted in the downregulation of nectin-1 in cells
where HSV enters by endocytosis but not in cells where
HSV enters at the plasma membrane. This suggested
that gD mediated internalization of nectin-1 directs
HSV to an endocytic mode of entry to cells [98]. Also, a
mutant HSV strain enters CHO-nectin-1 cells via the
endocytic pathway, but fuses at the plasma membrane
of CHO-nectin-2 cells [99]. On the other hand, in
another study, 35S-HSV uptake from the surface of
CHO-nectin-1 cells was similar to that of CHO cells
that lack any known gD receptors, indicating that the
presence of nectin-1 does not promote endocytic uptake
of HSV into CHO cells [100].
Recently, several other cellular determinants have been

suggested to be involved in determining HSV entry
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route. The gB receptor PILRa is one of these cellular
determinant, where it is found to direct HSV to the
fusion at the plasma membrane mode of entry. While
HSV uptake to CHO cells and CHO-nectin-1 cells is
mediated by endocytosis, HSV entry into CHO cells
expressing PILRa was found to be mediated by fusion at
the cell surface [77]. Suggesting that an alternative entry
mode for HSV was produced by the expression of the
gB receptor PILRa. The integrin avb3 was also found to
be involved in directing the viral route of entry. Overex-
pressing avb3 in CHO-nectin-1 cells, that naturally lack
avb3, modifies the route of entry to an acidic compart-
ment dependent on cholesterol-rich rafts and dynamin2.
Moreover, overexpressing avb3 in J-nectin-1 and 293T
cells modifies the route of HSV entry from neutral com-
partments to acidic compartments dependent on choles-
terol-rich rafts and dynamin2 [101].

HSV successful infection of various hosts
Although HSV is considered a human herpesvirus, it has
a wide species host range, and thus has the ability to
infect animals and cell cultures of various species [12].
There are reports of HSV experimentally infecting mice,
rabbits, guinea pigs, zebrafish, and cultured Madin-
Darby canine kidney (MDCK) cells [102-106]. The abil-
ity to experimentally infect non-habitual species by HSV
suggests that HSV entry requirements, including the
various receptors and entry modes, are quite commonly
available and accessible on the cells of various host
species.
Another point that might explain HSV broad species

host range is that HSV can exploit, as receptors, animal
homologues of HSV receptors. For example, the murine
homologue of human nectin-1δ isoform has a > 90%
identity with its human counterpart, and act as a species
non-specific entry receptor of HSV, pseudorabies virus
(PrV), and bovine herpesvirus-1 (BHV-1). Interestingly,
soluble murine nectin-1δ does not bind HSV gD at a
detectable level, although it interacts physically with the
virion [107]. On the other hand, the murine homologue
of human nectin-1 was found to be capable of mediating
PrV entry, but not HSV entry [108]. Other examples are
the murine and zebrafish homologs of the 3-O-sulfo-
transferases enzymes responsible for modifying HS gen-
erating the HSV-1 gD receptor 3-OS HS [109,110].
Interestingly, the expression of the zebrafish homolog of
3-O-sulfotransferase-3 isoform into the entry resistant
CHO cells and zebrafish fibroblasts has been shown to
mediate HSV-1 entry and spread [111].
Various species that are susceptible to HSV provide

important animal models for HSV research. The mouse
model has been widely used in HSV entry, pathogenesis
and anti-viral research, while guinea pigs and rabbits are
suitable animal models for HSV latency research [112].

Since zebrafish has a fully developed immune system, it
has been suggested that this animal model be utilized to
study HSV interactions with the immune system [105].
These various specious have been infected experimen-
tally for research purposes, most of them are not natu-
rally infected with HSV. However, there are some rare
cases where some of these animals get the infection
naturally. For example, there are two reported cases of
rabbits naturally infected with HSV-1 leading to ence-
phalitis [113,114].
An important application of HSV animal models is the

development of an effective therapeutic anti-herpetic
vaccine capable of inhibiting viral reactivation. Several
studies have suggested that a crucial element for the
generation of anti-herpetic vaccine, is a cellular response
specific to HSV, where Interferon-g (+) (IFN-g(+)) CD8+

T cells seem to suppress spontaneous reactivation of the
latent virus [115,116]. The mouse model has been
extensively utilized to study the various aspects of HSV
infection, including virus entry and replication
[117,118]. Although HSV establishes latency in mice
neural tissues and reactivates upon stimulation, sponta-
neous sporadic viral reactivation does not occur in mice
[119,120]. This is an important point for the develop-
ment of anit-HSV vaccine, since HSV reactivation may
result in serious diseases including the blinding herpetic
keratitis. Therefore, it has been suggested that the
mouse model is not the suitable model for studying the
effectiveness of anti-HSV vaccines that inhibit viral reac-
tivation [121]. Two other animal models have been sug-
gested to study the effectiveness of anti-HSV vaccine
that inhibits spontaneous viral reactivation: rabbit and
genie pig. HSV is capable of establishing latent infection
in these animal models, and reactivate spontaneously
causing disease, similar to HSV infection in human
[121]. Recently, a Human Leukocyte Antigen (HLA)
transgenic rabbit model has been introduced for precli-
nical evaluation of human CD8(+) T cell epitope-based
vaccines against ocular HSV infection [122].

Conclusions
The ability of HSV to productively infect a wide range
of hosts and cell types suggests that HSV has evolved to
use multiple receptors and pathways to facilitate entry
into multiple cell types. Regardless of HSV entry recep-
tors or pathways utilized, HSV entry into host cell has
common features among various routes of virus entry,
including HSV fusion with the plasma membrane of the
host cell. This indicates that HSV might recognize struc-
tural features of receptors that are conserved among
various human and animal cell types. The presence of
multiple entry receptors and pathways could be the rea-
son of the wide range of hosts and cell types that can be
infected by HSV. However this does not answer
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questions like: what dictates the utilized entry pathway
and cellular receptors by HSV? This is particularly
important in situations where more than one entry
receptor is available for the virus to use on the host cell
surface. Moreover, do the various combinations of gB
and gD receptors utilized by HSV affect the entry and/
or the infection process? Answers to such questions
require conducting more studies to fully understand the
process of HSV entry into host cell.
Recent advances in the field of HSV cellular receptors

and HSV entry glycoproteins’ structures, interactions
and functions have broadened our understanding of
HSV entry into the cell. Such advances will definitely
help in the process of developing potent HSV vaccines
and anti-HSV drugs. The huge prevalence of HSV in
the human population worldwide which increases the
risk of acquiring HSV related diseases, including blind-
ness, genital herpes, encephalitis, meningitis, especially
in immune compromised patients and infants, urges for
such development in the anti-HSV therapies.
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