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Long contiguous stretches of homozygosity
spanning shortly the imprinted loci are
associated with intellectual disability,
autism and/or epilepsy
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Abstract

Background: Long contiguous stretches of homozygosity (LCSH) (regions/runs of homozygosity) are repeatedly
detected by single-nucleotide polymorphism (SNP) chromosomal microarrays. Providing important clues regarding
parental relatedness (consanguinity), uniparental disomy, chromosomal recombination or rearrangements, LCSH are
rarely considered as a possible epigenetic cause of neurodevelopmental disorders. Additionally, despite being
relevant to imprinting, LCSH at imprinted loci have not been truly addressed in terms of pathogenicity. In
this study, we examined LCSH in children with unexplained intellectual disability, autism, congenital
malformations and/or epilepsy focusing on chromosomal regions which harbor imprinted disease genes.

Results: Out of 267 cases, 14 (5.2 %) were found to have LCSH at imprinted loci associated with a clinical
outcome. There were 5 cases of LCSH at 15p11.2, 4 cases of LCSH at 7q31.2, 3 cases of LCSH at 11p15.5, and
2 cases of LCSH at 7q21.3. Apart from a case of LCSH at 7q31.33q32.3 (~4 Mb in size), all causative LCSH
were 1–1.5 Mb in size. Clinically, these cases were characterized by a weak resemblance to corresponding
imprinting diseases (i.e., Silver-Russell, Beckwith-Wiedemann, and Prader-Willi/Angelman syndromes), exhibiting
distinctive intellectual disability, autistic behavior, developmental delay, seizures and/or facial dysmorphisms.
Parental consanguinity was detected in 8 cases (3 %), and these cases did not exhibit LCSH at imprinted loci.

Conclusions: This study demonstrates that shorter LCSH at chromosomes 7q21.3, 7q31.2, 11p15.5, and
15p11.2 occur with a frequency of about 5 % in the children with intellectual disability, autism, congenital
malformations and/or epilepsy. Consequently, this type of epigenetic mutations appears to be the most
common one among children with neurodevelopmental diseases. Finally, since LCSH less than 2.5–10 Mb in
size are generally ignored in diagnostic SNP microarray studies, one can conclude that an important
epigenetic cause of intellectual disability, autism or epilepsy is actually overlooked.
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Background
The genetic causes of neurodevelopmental disorders
include almost all types of genomic variations (mainly,
chromosomal rearrangements (microscopic and sub-
microscopic), copy number variations (CNV) and single
gene mutations) [1–7]. Additionally, epigenetic alterations
due to genomic variations affecting genes involved in epi-
genomic regulation and uniparental disomy resulting from
chromosomal or segmental homozygosity (HMZ) are
shown to contribute to the etiology of neurodevelopmen-
tal diseases [8–11]. However, epigenomic variations and
instability have been significantly less investigated in terms
of the causative role for these diseases than deserved
[10, 11]. Moreover, genome- and epigenome-based ana-
lysis of brain cells suggests that epigenetic changes are
likely an underappreciated source of neuronal diversity
and neurodevelopmental diseases [12]. Accordingly, one
can hypothesize that overlooked epigenomic variations
might be involved in the pathogenesis of neurological
and psychiatric diseases.
Probably the commonest type of epigenomic variations

in humans is long contiguous stretches of homozygosity
(LCSH) (also known as regions/runs of homozygosity and
losses of heterozygosity) defined as CNV neutral chromo-
somal segments featured by allelic HMZ [13–15]. LCSH
over 1 Mb are always observed during genome-wide ana-
lyses by single-nucleotide polymorphism (SNP) chromo-
somal microarrays [16–19]. The presence of LCSH can be
indicative for parental consanguinity, uniparental disomy,
or HMZ for single gene recessive mutations [19–21]. Fur-
thermore, LCHS are helpful for uncovering the genetic
basis for complex traits [22] and locus-specific deleterious
genomic variation [23]. Taking into account the epigenetic
contribution to brain development and plasticity as well
as genetic-environmental interactions in neuropsychiatric
diseases, epigenomic variability was suggested to be a
mechanism for neurodevelopmental disorders [24, 25].
Recently, several studies have addressed LCSH in brain
diseases. However, these yielded conflicting results
[26–28]. Actually, the only more-or-less confirmed asso-
ciation between LCSH occurrence and neurodevelopmen-
tal diseases (intellectual disability (ID) and autism) is
related to excess of LCSH encompassing recessive disease
genes [19, 29]. Surprisingly, imprinted gene loci were not
considered as a target for studying LCSH in neurodeve-
lopmental disorders. Since classical imprinting syndromes,
i. e. Angelman syndrome (AS), Beckwith-Wiedemann syn-
drome (BWS), Prader-Willi syndrome (PWS) and Silver-
Russell syndrome (SRS), are associated with ID, autistic
behavior, developmental delay, and seizures [30, 31], we
hypothesize that LCSH at these disease loci may result in
a similar neurological or behavioral phenotype.
In this study, LCSH were evaluated in a cohort of

children with idiopathic intellectual disability, autism,

congenital malformations and/or epilepsy by SNP
chromosomal microarray with a resolution of HMZ
stretch detection reaching a minimum of 1 Mb in size.
An original bioinformatics approach to the prioritization
of genes and genome/epigenome variations was used to
assess pathogenic value of CNV and LCSH.

Results
The presence of LCSH was observed in all cases studied.
Causative chromosome abnormalities, CNV and intra-
genic (exonic) CNV detected by SNP microarray tech-
nique were excluded from further analysis. Apart from
individuals, who were the descendants of close consan-
guinity marriages, the amount of LCSH per patient var-
ied between 63 and 132. Eight individuals (3 %) were
descendants of close consanguinity marriages. Parental
consanguinity was determined according to a method-
ology of a previous study by Fan et al. [32] and genealo-
gic analysis. In these patients, LCSH have not spanned
the loci of imprinted genes strongly associated with
recognizable syndromes. A patient, who is a descendant
of consanguinity mating, exhibited LCSH at 7p12, con-
taining an imprinted gene GRB10. Since the involvement
of GRB10 in SRS is questionable [33], we have excluded
this case from further analysis.
LCSH at imprinted loci previously described as those

of imprinting syndromes [34–36] were found in 14 cases
(5.2 %). These were 2 cases of LCSH at 7q21.3 (SRS), 4
cases of LCSH at 7q31.2, 3 (SRS) (Fig. 1), LCSH at
11p15.5 (SRS/BWS) (Fig. 2), and LCSH at 15p11.2 (AS/
PWS) (Fig. 3). Molecularly, LHCS spanned the loci con-
taining imprinted genes checked by the GENEIMPRINT
database (http://www.geneimprint.com/site/genes-by-
species.Homo+sapiens). Apart from a case of LCSH at
7q31.33q32.3 (~4.3 Mb in size), the remaining LHCS
spanned DNA sequences varied from 1 to 1.6 Mb. No
correlation with the size of LCSH and disease’s pheno-
type was observed. The size of LCSH was indicative for
excluding whole-chromosome uniparental disomy as the
mechanism for phenotypic manifestations in these cases.
Table 1 summarizes data on molecular, chromosomal
and clinical features of LCSH at the imprinted chromo-
somal regions.

Discussion
Epigenomic variations and instability are known to be
associated with human diseases [8–12, 21, 24, 30].
Here, a primary imprinting defect (according to previ-
ous classification of imprinting defects [37]) is de-
scribed. Along with chromosomal abnormalities and
CNV (germline and somatic) [1–7, 38–40], these epi-
genetic mutations can be considered as a common
cause of neurodevelopmental diseases. There are no
known epigenetic/epigenomic alterations detectable as
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Fig. 1 Schematic depiction of chromosomal and genomic regions affected by LCHS at 7q21.3 (2 patients) and 7q31.2 (4 patients) using
Affymetrix Chromosome Analysis Suite software screenshots
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common as LCSH at imprinted loci that can be con-
sidered as a causative for ID, autism or epilepsy. It is
noteworthy, that LCSH are detectable by SNP chromo-
somal microarrays only [18, 20, 21, 32, 41, 42]. Although
imprinting defects similar to LCSH can be also de-
tected by molecular genetic approaches (methyl-sensi-
tive polymerase chain reaction, bisulfite sequencing
etc.) [36, 41, 43], these techniques are poorly effective
for the detection because of their targeted nature.
SNP chromosomal microarrays may lead to a 5 % im-
provement in etiological yield by uncovering LCSH at
imprinted loci.
Clinically, 14 cases of LCSH spanning shortly the

imprinted loci weakly resembled SRS, BWS, AS or
PWS [10, 34–36, 43, 44]. Additional phenotypic

features have been observed, as well (Table 1). In
total, phenotypic manifestations in these cases have
not allowed attributing them to a specific imprinting
syndrome providing speculations about causative rela-
tionship between unexplained ID, autism and epilepsy
and LCSH at imprinted loci.
Since LCSH were observed in all the individuals of

the cohort, we have compared our results with previ-
ous studies of clinical and unaffected populations
[13–23]. Identical LCSH in unrelated individuals were
found to be confined to specific regions (i.e., 3p21
and 16p11.2p11.1). These were detected in the major-
ity of patients. Consequently, we concluded that these
LCSH are the result of a technological drawback.
However, specific organization of these genomic loci

Fig. 2 Schematic depiction of chromosomal and genomic regions affected by LCHS at 11p15.5 (11p15.5 and 11p15.4) (3 patients) using
Affymetrix Chromosome Analysis Suite software screenshots
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can manifest as LCSH during SNP chromosomal
microarray analysis. In the available literature, 7q21.3,
7q31.2, 11p15.5, and 15p11.2 genomic loci were not
described as consistently affected by LCSH [13–20].

Although Wang et al. 2015 [21] have reported large
LCSH to affect 11p and 15q, these occasional cases
are likely to represent rare cases of uniparental di-
somy associated with corresponding imprinting disorders.

Fig. 3 Schematic depiction of chromosomal and genomic regions affected by LCHS at 15q11.2 (5 patients) using Affymetrix Chromosome
Analysis Suite software screenshots
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Accordingly, these epigenomic mutations are unlikely to
represent the same short LCSH reported in the present
study.
Mechanisms and consequences of LCSH are poorly

understood [13–15, 45]. Accordingly, the interpretation of
these epigenetic mutations can represent a challenge. To
solve the problem in silico, one can apply a variety of bio-
informatic approaches to gene prioritization, which are
known to be effective for uncovering functional signifi-
cance of genomic and epigenomic variations [40, 46, 47].
Molecular testing for AS and PWS performed previously
(fluorescence in situ hybridization-based and methylation
analyses) [48] was not able to uncover these epigenetic
mutations. Therefore, it is important to note that al-
ternative empirical methods giving a solution to this
problem do not currently exist.

Conclusions
This molecular cytogenetic and bioinformatic study
shows for the first time that LCSH of 1–1.6 Mb in size
at imprinted chromosomal regions (7q21.3, 7q31.2;

11p15.5; and 15p11.2) are relatively frequent (~5 %)
among the children with intellectual disability, autism,
congenital malformations and/or epilepsy. Thus, these
epigenetic mutations appear to be common in neurode-
velopmental diseases. Hence, to increase the diagnostic
yield of SNP chromosomal microarrays, an additional
consideration of shorter LCSH is warranted in children
with intellectual disability, autism, congenital malforma-
tions and/or epilepsy.

Methods
Patients
Cases (n = 267) included in this study are a part of the
Russian cohort of children with intellectual disability,
autism, epilepsy and congenital anomalies partially de-
scribed previously [49–51]. Written informed consent
was obtained from at least one of the patients’ parents.

SNP chromosomal microarray
CNV and LCSH were analyzed by CytoScan HD Arrays
(Affymetrix, Santa Clara, CA) consisting of about 2.7

Table 1 Summary of LCSH, associated clinical findings, and imprinted genes

Case
#

Chromosomal
region

Age Clinical features Size, kb Genes (imprinted)

1 7q21.3 5 years Developmental delay, autistic behavior, hyperactivity 1098 SGCE, PEG10 PPP1R9A

2 7q21.3 11 years Intellectual disability, developmental delay 1062 SGCE, PEG10, PPP1R9A, TFPI2

3 7q31.33q32.3 2 years Intellectual disability, developmental delay,
microcephaly, seizures, facial dysmorphisms,
muscular hypotonia

4257 KLF14, MEST, COPG2, MESTIT1, CPA4

4 7q32.1q32.2 2 years
7 months

Intellectual disability, developmental delay,
microcephaly, seizures, facial dysmorphisms

1089 CPA4

5 7q32.2 3 years Intellectual disability, developmental delay, facial
dysmorphisms

1033 CPA4, MESTIT1, MEST, COPG2

6 7q32.2 15 years Intellectual disability, developmental delay,
congenital heart defect

1020 KLF14, MEST, COPG2, MESTIT1, CPA4

7 11р15.5р15.4 5 years Intellectual disability, autistic behavior, microcephaly,
seizures, facial dysmorphisms, somatic overgrowth

1360 CDKN1C, KCNQ1DN, KCNQ1, SLC22A18AS,
SLC22A18, PHLDA2, NAP1L4, OSBPL5,

8 11р15.5р15.4 10 years Developmental delay, autistic behavior, facial
dysmorphisms, somatic overgrowth

1147 IGF2, H19, CDKN1C, KCNQ1DN, KCNQ1, SLC22A18,
PHLDA2, NAP1L4, OSBPL5, IGF2AS, INS, TH, ASCL2,
TSPAN32, CD81, TSSC4, TRPM5, KCNQ1OT1,
SLC22A18AS

9 11p15.5p15.4 4 years Intellectual disability, developmental delay,
macrocephaly, feeding difficulty, umbilical hernia,
hepatomegaly, undescended testis, facial
dysmorphisms, short neck

1554 CDKN1C, KCNQ1, KCNQ1OT1, ASCL, TSPAN32,
CD81, TSSC4, TRPM5, SLC22A18AS, SLC22A18,
PHLDA2 NAP1L4, OSBPL5

10 15q11.2 2 years
10 months

Intellectual disability, developmental delay, feeding
difficulty, facial dysmorphisms

1068 NPAP1, SNRPN

11 15q11.2 4 years Intellectual disability, developmental delay,
hyperactivity, facial dysmorphisms, seizures

1158 SNRPN, PAR1, IPW, PAR5,

12 15q11.2 5 years Developmental delay, autistic behavior, seizures,
facial dysmorphisms

1002 NPAP1, SNRPN

13 15q11.2 5 years Developmental delay, autistic behavior, fetal cerebral
ventriculomegaly, facial dysmorphisms

1067 NPAP1

14 15q11.2 18 years Intellectual disability, personality disorder 1224 NPAP1, SNRPN, SNURF, SNORD107, SNORD108,
SNORD109B, SNORD109A UBE3A
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million markers for CNV evaluation and about 750,000
SNPs for LCSH analysis. The laboratory procedures have
been previously described in detail [17, 18, 21, 51, 52].
CNV and LCSH were visualized by the Affymetrix
Chromosome Analysis Suite software (ChAS analysis files
for CytoScan® HD Array version NA32.3). Genomic
localization was defined using NCBI Build GRCh37/hg19
reference sequence. Imprinted genes were checked against
the Geneimprint database (http://www.geneimprint.com).

Bioinformatics
Bioinformatic analyses were performed using an original
approach to gene and CNV prioritization as described
in our earlier papers [46, 51, 53]. This procedure was
performed to exclude the phenotypic effect of CNV and
to confirm clinical relevance of LCSH. Briefly, the
prioritization was performed using ontology-based gene
filtering/ranking and fusion of data acquired from clin-
ical, genomic, epigenetic, proteomic, and metabolomic
databases as well as interactomic software.
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