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Abstract
Background: Horizontal gene transfer (HGT) is considered a strong evolutionary force shaping the
content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid
adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or
mutations. For a precise characterization, algorithms are needed that identify transfer events with high
reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes
and are called genomic islands (GIs) or more specifically pathogenicity or symbiotic islands.

Results: We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each
individual alien gene. It is based on the analysis of codon usage (CU) of each individual gene of a genome
under study. CU of each gene is compared against a carefully selected set of CU tables representing
microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to
predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and
emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the
transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity
controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as
input any file created according to the EMBL-format.

It generates output in the common GFF format readable for genome browsers. Benchmark tests showed
that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent
with annotated GIs and with predictions generated by different methods.

Conclusion: SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to
interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired
genes.
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Background
Horizontal gene transfer (HGT) is a process that results in
the acquisition of novel genes originating from perhaps
taxonomically unrelated species. This phenomenon is fre-
quent among microbes and is considered a means of rapid
adaptation to changing environmental demands [1].
Pieces of DNA acquired via HGT frequently have a consid-
erable length. These patches have been called genomic
islands (GI) or due to their role and more specifically
pathogenicity islands [2] or symbiotic islands [3].

Several methods have been developed for the prediction
of GIs based on different approaches to identify putatively
alien (pA) genes [4-12]. Each of these concepts has spe-
cific preferences and drawbacks; for recent reviews see
[13,14]. In the following, we describe an approach which
relies on the genome theory postulating a rather homoge-
neous codon usage within a genome [15]. The algorithm
exploits taxon specific differences in codon usage for the
identification of pA genes and the prediction of their puta-
tive origin. Hidden Markov models (HMMs) are a state of
the art concept in computational learning theory. A
sequence of observations is considered as being emitted
from the states of an invisible Markov chain. The Viterbi
algorithm efficiently computes a sequence of states that
have the maximal posteriori probability given a certain
sequence of observations and fixed transition and emis-
sion probabilities. The challenge in designing a HMM is
representing the real situation adequately in order to gen-
erate relevant predictions. HMM have proved useful in
many applications. In the case of predicting eukaryotic
genes, for example, the programs GENSCAN [16,17],
HMMGene [18,19], GenomeScan [20], AUGUSTUS [21],
and AUGUSTUS+ [22] are HMM-based.

It has been shown that HMMs allow to predict GIs [9]. GIs
have typically a considerable length, therefore we have
decided to implement a HMM assessing GI prediction on
the gene level. GIs can originate from a variety of a priori
unknown donors. Therefore, it is difficult to assure suffi-
cient test statistics. We will describe an approach named
SIGI-HMM. To some extent, it is based on principles intro-
duced with SIGI [23]. This program was used to analyze
individual genomes [24,25] and to study the content of
genomic islands in general [26] as well as to characterize
gene-flux between bacteria and archaea [27]. For SIGI-
HMM we substituted a heuristic approach with a HMM.
SIGI-HMM has only few parameters to adjust. The most
relevant one is a sensitivity controller which affects transi-
tions of the HMM in a consistent manner. We will dem-
onstrate and assess the performance of SIGI-HMM by
analyzing genomes in detail.

Implementation
We have implemented SIGI-HMM in Java as a first mod-
ule of our software suite COLOMBO intended as a work-
bench for the statistical analysis of genomic data. The
program can be downloaded from [28]. The download
package contains also the program Artemis [29], which is
used to visualize the output of SIGI-HMM. After the instal-
lation, a genomic dataset formatted in EMBL-format can
be loaded and analyzed. SIGI-HMM creates several lists
containing the predictions in GFF-format or tabulated.
Predictions are classified according to the categories
NATIVE and PUTAL. In addition, a modified EMBL-for-
matted file is generated containing both the original
annotation and the predictions. This file can be fed into
Artemis in order to color-code and visualize genome con-
tent. Thus, the user can interactively study the composi-
tion of genomes. Intentionally, only few parameters can
be manipulated by the user: The sensitivity controller and
the gap length which decides on merging single GIs to
larger ones. In addition, the user can supplement the list
of putative donors we have deduced from the CUTG data-
base (see below). The default value of the the sensitivity
controller was chosen to give predictions consistent with
published results; see Table 1. If it is known that the
genome under study contains GIs, we propose the follow-
ing approach in order to optimize sensitivity of SIGI-
HMM: Starting from a low value, sensitivity should be
increased until all known GIs appear. If new islands
emerge, they show the same degree of codon usage bias
and should be considered GIs.

Results
The following text is organized as follows: First we intro-
duce data models, the scoring system and the architecture
of the HMM. Then we evaluate the predictive power of the
algorithm and present analyses of several genomes.

Stochastic data models

Let  be a series of genes as deduced from a genome cod-

ing for proteins  . For each codon c we count its occur-

rence #c in . We define the synonymous frequency qac ∈
[0,1] as the ratio of #c divided by the occurrence of the

amino acid a encoded by c in  . The frequency qc ∈ [0,1]

of c in  is defined as #c divided by the occurrence of all

codons in  .

Now let 0 be a prokaryotic genome whose genomic

islands have to be predicted and let 1, 2, ..., r be

genomes assumed to be the donors for pA genes occurring
in 0. We consider 1 to r as representatives of taxa

1 to r which are assumed to be the putative sources

of 0's alien genes. For each protein (i.e. sequence of
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amino acids) π = a1, a2,..., an that is encoded by a gene g of

genome 0 (given by the sequence of codons c1,c2,...,cn),

and for each ρ = 0, 1, ..., r, we define the probability

where  ∈ [0,1] is the synonymous frequency in

genome ρ as defined above.

Scoring scheme
We utilize the odds ratio

in the following way as a scoring scheme. The codon usage
of g originating from 0 resembles more the prevalences

of ρ if

If this is the case for some ρ and if

then gene g is considered to be pA originating from taxon

 represented by genome . This principle of

deducing the putative donor has previously been intro-
duced and validated [23].

How to choose the thresholds τρ,α needed in Equation 2?

Let  be the set of all theoretically possible genes cod-

ing for protein π. For each ρ ∈ {1, 2,..., r}, we consider the
statistic

where G ∈  is a random element distributed according

to Pρ (· | π). Having computed the mean µρ and the stand-

ard deviation σρ of tρ(G), we apply the central limit theo-

rem: The random variable 1/σρ(tρ(G) - µρ) is

approximately distributed according to the standard nor-
mal distribution with the cumulative distribution func-

tion Φ. We determine the value τρ, α such that

The parameter α serves as SIGI-HMM's sensitivity control-
ler. It can be adjusted by the user. Please note that the
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Table 1: A comparison of pA predictions for prokaryotic species. SIGI-HMM was used to identify GIs. The accumulated length of genes 
constituting GIs is given in percent in column pA DNA. This transformation allows to compare results with entries of column Foreign 
DNA, which was reproduced from [41]. The column Length lists the genome size im Mbp.

Species Length [Mbp] Foreign DNA [%] pA DNA [%]

Escherichia coli K-12 4.64 12.8 9.3
Bacillus subtilis 4.21 7.5 7.6
Synechocystis PCC6803 3.57 16.6 5.0
Deinococcus radiodurans 2.65 5.2 4.8
Archaeoglobus fulgidus 2.18 5.2 4.2
Aeropyrum pernix 1.67 3.2 1.5
Thermotoga maritima 1.86 6.4 1.0
Pyrococcus horikoshii 1.74 2.7 2.9
Methanobacterium thermoautotrophicum 1.75 9.4 1.6
Haemophilus influenzas Rd KW20 1.83 4.5 1.6
Helicobacter pylori 26695 1.67 6.2 0.0
Aquifex aeolicus 1.55 9.6 1.8
Methanocaldococcus jannaschii 1.66 1.3 0.2
Treponema pallidum 1.14 3.6 0.3
Borrelia burgdorferi 0.91 0.1 8.5
Rickettsia prowazekii 1.11 0.0 0.0
Mycoplasma pneumoniae 0.82 11.6 3.8
Mycoplasma genitalium 0.58 0.0 0.2
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impact of parameter α onto the decision is independent of

0 and ρ.

Eliminating putatively highly expressed genes

In several genomes, highly expressed genes show a specific
codon usage which deviates from the average one and
resembles codon prevalences observed in genes coding for
ribosomal proteins; see e.g. [8]. We name these genes
putatively highly expressed (PHX). On the one hand, it is
unlikely that these genes were acquired via HGT. On the
other hand, methods based on codon usage tend to clas-
sify them as pA. This needs to be prevented explicitly. We
use an approach similar to the GCB score introduced in
[30]. It was shown that this methods is one of the best to

predict gene expressivity [31]. Let  be the synony-

mous codon frequencies for the ribosomal genes of
genome 0 and let

If

we consider the gene g as not alien (see [2,8]).

The threshold θ is determined as follows: Let µ0 and µ0,rib
be the mean values and σ0 and σ0,rib be the standard devi-
ations of the test statistic trib(G), where G is distributed
according to P0(· | π) and P0,rib(· | π), respectively. The
distribution functions of 1/σ0(trib(G) - µ0) and 1/
σ0,rib(trib(G) - µ0,rib) are approximately standard normal.
We choose θ in such a way that

Thus, the error of the first and second kind are of equal
size.

Architecture of the HMM

Figure 1 depicts the architecture of the implemented
HMM. The state NATIVE corresponds to genes having an
unsuspicious codon usage. The states PUTAL1, PUTAL2,...,

PUTALr represent putatively alien genes originating from

taxa 1 to r. GIs frequently have a mosaic structure

which is due to their generation in a multistep process
(see [2]). Therefore, we allow transitions from any PUTAL
(i.e. donor) state to any other one.

In order to implement our sensitivity controller, we let the
transition probabilities depend on the protein under con-
sideration. Thus, the Markov chain presented in Figure 1
is in fact an inhomogeneous one driven by the series  0

of proteins encoded by 0. To simplify notation, we have

omitted the index π, which refers to the protein. Instead,
we identify a protein by its index originating from  0.

Solving some linear equations, the transition probabili-
ties given in Figure 1 can be determined in such a way that

a and b are positive constants which were chosen appro-
priately to generate GIs which are at mean shorter than the
surrounding regions of native genes. The probabilities px2y
correspond to transitions from state x to y (see Figure 1).

We extend the Markov chain X1, X2, ..., X� driven by the

state diagram given in Figure 1 to a HMM X1, Y1, X2, Y2 ...,

X�, Y� in the following way: For π = 1, 2..., �, the random

emission Yπ takes values in the sample space  defined

above. For ρ = 1, 2,..., r, the emission probabilities are
defined by means of Equation 1 as follows:
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States and transition probabilities of SIGI-HMM's Markov chainFigure 1
States and transition probabilities of SIGI-HMM's Markov 
chain. The state NATIVE represents genes which are unsus-
picious with respect to synonymous codon frequencies. For 
ρ = 1, 2,..., r, the state PUTALρ models genes, whose codon 
usage resembles more the prevalences of genomes ρ 

which represents taxon ρ. Each transition from state x to 
state y is characterized by its transition probability px2y. In 
order to model the mosaic structure of GI composition, 
transitions from any state PUTALρ to any other one PUTALσ 

are allowed.
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P(Yπ = g | Xπ = NATIVE) = P0(g | π)  and  P(Yπ = g | Xπ =
PUTALρ) = Pρ(g | π).  (5)

As already explained, PHX genes have to be eliminated.
Our test for putatively highly expressed genes classifies
genes as phx or ¬phx. In order to integrate these predic-
tions into the HMM, we interpret the outputs as a random
sequence H1, H2,..., H� of hints. Please note that an emis-
sion is now a combination of a gene and a hint. Hints are
interpreted the following way: For the native state we
define

For ρ = 1, 2,..., r, the emission probability given a pA state is
defined by

P(Hπ = ¬phx | Xπ ∈ {PUTAL1, PUTAL2, ..., PUTALr}) = 1.

It is biological evidence, which led to the above defini-
tions. The products of highly expressed genes are involved
in complex interactions. Therefore, it is highly unlikely
that these genes can be replaced by HGT. Please note that
the algorithm has – due to our design – to consider each
hint.

Determination of the codon-specific core and atypical 
genes

It might be that some pA genes originate from sources not
characterized by our set of putative donors (see below). In
order to identify these atypical genes, we determine the
codon-specific core (CSC) of a genome, which consists of
those genes having an unsuspicious codon usage. Having

chosen a protein π ∈ 0 and the related gene g ∈ 0, we

consider a random element G of the set  distributed

according to P0(· | π) (see Equation 1). For the following

test, we identifed those amino acids a encoded by more

than one codon and occurring at least 5 times (na ≥ 5) in

the protein. For each codon c which encodes amino acid
a we introduce a random variable countc(G) = #c, which

follows a binomial distribution characterized by the

expected value  and variance (1 - ).

The statistic

is approximately distributed according to the standard
normal distribution. For each δ ∈ (0, 1) there is exactly
one θδ > 0 such that

where γ is the occurrence of those amino acids considered
in this section. In analogy to [32], we name the gene g δ-
typical (δ ∈ (0, 1)), if for all codons c

|φc(g)| <θδ.

This is why the probability of being not δ-typical is for a

random gene G less than or equal to δ. Setting δ to 10/�,
where � is the number of 0's genes, turned out to be ade-

quate. Only few genes (< 1%) were labelled as atypical

(see Results). Therefore, the exact value of δ is uncritical.
This observation confirms that our selection of codon
usage tables covers the prevalences of putative donors to a
great extent.

The algorithm for computing the CSC of genome 0 first

removes all genes from 0 that are not δ-typical. Then the

synonymous codon frequencies of the remaining genes

typ are recomputed and the genes not δ-typical with

respect to the new frequencies are removed from typ.

This is done as long as there are such genes in typ. Our

experiments showed that this algorithm converged for all
completely sequenced genomes to a CSC typ containing

at least 75% of all genes. The atypical genes are those not
contained in the CSC typ.

Predicting genomic islands
Using the Viterbi algorithm (see e.g. [33,34]), SIGI-HMM
computes at first the Viterbi path (i.e. the most probable
sequence of states). All genes labeled as atypical and all
genes assigned to one of the states PUTALρ (ρ = 1, 2, ..., r)
are considered as belonging to GIs. Since it is reasonable
to expect inside GIs genes with a codon usage similar to
native ones, GIs separated by less than four native genes
can optionally be merged. This merging distance can be
set by the user.

Selecting putative donors

For each genome 0, an individual set of putative donors

1, 2, ..., r has to be selected. As these donors are

reduced to their specific codon usage tables, we utilized
the Codon Usage Database (CUTG) (Release 149.0, Sep-
tember 26, 2005) [35]. Those entries were extracted that
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consisted of more than 6,400 codons. If a species was rep-
resented by more than one table, we took the entry sam-
pling the largest number of codons. This pre-computing
phase resulted in the selection of z = 690 codon usage
tables. Then, a z × z dissimilarity matrix D was set up. For
each pair i, j of species, we calculated the value Dij = 1/2 -

ηij. In order to compute the discriminative error ηij, we

first considered the set of all "synthetic" genes each com-
prising 50 codons. Each of the 50 codons was independ-

ently selected according to the codon frequencies . We

then determined a probability distribution Pk for each spe-

cies k on this set. These distributions were utilized to

determine ηij in analogy to Equation 4.

Hierarchical divisive clustering [36] was now applied to
analyze the dissimilarity matrix D. As it was our aim to
generate clusters representing taxonomically related spe-
cies, we used the data basis of the taxonomy browser of
the NCBI [37,38] for the following procedure. First, we
eliminated all entries, which could not be related to a tax-
onomical class. Then, we generated for the initiation of
the diversification process "class"-clusters consisting of
species (i.e. synonymous codon frequency tables) belong-
ing to the same taxonomical class. To test homogeneity of
the clusters G, we computed for each entry i the average

dissimilarity  (i) (see [39]) according to

In order to initiate the split of a cluster G, the element i ∈

G having the maximal  (i) value was chosen. This

i was the first element of a new cluster H. As long as the
condition

was true, the element k generating the maximal

 value was transferred from G to H.

Starting with the initial set of class-clusters described
above, the split procedure was applied to that cluster G
having maximal diameter

as long as that maximal diameter was greater than or
equal to a threshold d1 (see [40]).

The procedure resulted in  = 99 clusters. In order to
select a typical example for each cluster, the frequency
table having the lowest dissimilarity value to the baryc-

enter of the cluster was chosen. The resulting  codon
usage tables were regarded as representatives for putative
sources of aliens genes.

To prevent false predictions, clusters with a composition
too similar to the input genome 0 have to be elimi-

nated. Therefore, the set of  codon usage tables was pre-

processed during the initialization phase for 0. Those

elements were deleted, whose dissimilarity to the fre-
quency table of 0 was less than a threshold d2. This pro-

cedure resulted in a 0-specific set of r putative sources.

Testing performance and analyzing genomes
To assess accuracy, SIGI-HMM's predictions were com-
pared with results published in [41]. In nearly all cases,
the fraction of pA genes determined by SIGI-HMM was
lower; compare results listed in Table 1. This might be due
to the focusing of SIGI-HMM on the prediction of GIs.
However, for the genome of Borrelia burgdorferi SIGI-
HMM predicts a significantly higher fraction of pA genes.
The organization of this genome is unusual, it consists of
20 mainly linear replicons and is subject to frequent
genomic rearrangements [42]. During these reorganiza-
tion events integration of alien DNA might take place
making a larger fractions of pA genes for the B. burgdorferi
genome plausible. In the following, we report in more
detail findings deduced for genomic data sets of the fol-
lowing microbial genomes: Vibrio cholerae, Bacillus subtilis,
Escherichia coli K-12, Methanosarcina mazei, Thermus ther-
mophilus and Propionibacterium acnes. The genome of V.
cholerae consists of two chromosomes with a pronounced
asymmetry in the distribution of coding elements with
respect to the replicons [43]. Most genes required for
growth and virulence are located on chromosome I,
whereas chromosome II contains a larger fraction of
hypothetical genes.

Interestingly, SIGI-HMM predicted 4.6% pA genes for
chromosome I and 21.1% pA genes for chromosome II.
Two predicted genomic islands on chromosome I com-
prise a gene cluster for a toxin-coregulated pilus (VC0813
– VC0845) and fragments of a temperate filamentous
phage (VC1455 – VC1457, VC1464, VC1477 – VC1481).
Both clusters are closely associated with the pathogenicity
of V. cholerae [44]. Many of the hypothetical genes
encoded on chromosome II are located within a large
integron island comprising gene products that might be
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involved in drug resistance, DNA metabolism and viru-
lence [43]. One of the predicted GIs on chromosome II,
which consists of genes VCA0283 – VCA0507, overlaps to
a great extent the integron described above. SIGI-HMM
identified two additional GIs comprising genes VCA0198
– VCA0202 and VCA0790 – VCA0797, which contain
homologs for putative transposases. As transposases are
often encoded in genetically mobile IS-elements, these
genes are likely candidates for alien genes. For both chro-
mosomes, SIGI-HMM predicts similar distributions of
putative donors. The largest fractions belong to the class
of bacilli (51% or 61%), whereas the taxonomical class of
V. cholerae, the γ-proteobacteria, accounts for 34% or 37%
of all pA genes.

For B. subtilis, 10 integrated prophages have been reported
(see [4,45,46], and [47]), whose identification is based
either on experimental evidence or theoretical considera-
tions. A profound analysis of chromosomal heterogenei-
ties has been accomplished by Nicolas et al. [9], using a
HMM on the nucleotide level. All genomic islands identi-
fied by Nicolas et al. were largely confirmed by SIGI-
HMM. Both approaches detected nine of the putative
prophages and several other islands assigned to functions
in cell wall biosynthesis, competence and resistance. In
contrast to Nicolas et al., SIGI-HMM identified pA genes,
which belong to the experimentally reported integrated
prophage PBSX [47]. In summary, SIGI-HMM predicted
for B. subtilis 9.5% of the genes as being pA, most of them
originating from the class of bacilli (316 pA genes, 81%).

Based on a combination of parameters measuring compu-
tational complexity, Lawrence and Ochman [4] had esti-
mated that about 18% of the E. coli K-12 genome have
been imported via lateral gene transfer. In contrast, SIGI-
HMM predicted 580 (13.4%) pA genes which were mostly
organized in small clusters of less than ten genes. 521 pA
genes (92%) seem to originate from γ-proteobacteria, the
taxonomical class E. coli belongs to. The largest GIs
included the cryptic prophages CP4-6 (262 – 297 kbp),
DLP12 (557 – 584 kbp), e14 (1,196 – 1,221), Rac (1,410
– 1,433 kbp), Qin (1,631 – 1,651 kbp), CP4-44 (2,064 –
2,069 kbp), CPS-53 (2,465 – 2,475 kbp), Eut (2,556 –
2,563 kbp), CP4-57 (2,752 – 2,775 kbp), and the phage-
like element KpLE2 (4,494 – 4,544 kbp) (for review see
[48]). 44 IS-elements have been annotated within the
genome of E. coli K-12, SIGI-HMM predicted 34 of them
correctly.

T. thermophilus is an extreme thermophilic bacterium liv-
ing as a halotolerant in an extreme ecological niche. Two
T. thermophilus strains, namely HB27 [45] and HB8 [46],
have been sequenced so far. SIGI-HMM predicted for both
strains a small fraction of pA genes (HB27 1.0%; HB8
1.7%). The largest pA cluster consists of 6 genes in case of

HB27 (TTC0277 – TTC0278, TTC0280 – TTC0283) and of
5 genes in case of HB8 (TTHA0644 – TTHA0648). The GIs
share no sequence similarity and contain genes that are
associated with functions in cell wall biosynthesis. Most
pA genes seem to originate from the class of the δ-proteo-
bacteria (HB27 5 genes; HB8 18 genes). In both genomes
no donor was predicted for 12 pA genes, respectively.

It has been suggested that HGT plays an important role in
the evolution of the mesophilic archaeon M. mazei [49].
The analysis of protein sequences via BLAST showed that
31% of the archeal sequences were more similar to bacte-
rial than to archeal ones. SIGI-HMM predicted for M.
mazei only 8.4% pA genes. Please note that the two analy-
ses used different approaches for pA prediction and that
SIGI-HMM focuses on the analysis of GIs only. These sys-
tematic differences may explain the findings. Interestingly
and in agreement with the above analysis, only 21% of the
pA genes seem to originate from the archeal domain. 27%
of the pA genes were predicted to originate from the class
of shingobacteria, 23% from chlamydia and 11% from
clostridia. This finding is also in agreement with the pos-
tulated gene flux from mesophilic bacteria to mesophilic
archaea [27].

P. acnes is a major inhabitant of the adult human skin, liv-
ing in sebaceous follicles [50]. Usually the bacterium is
harmless; however it is involved in acne vulgaris forma-
tion. The genome harbors genes whose products are
involved in degrading host molecules and pore-forming
factors. It also contains surface-associated and other
immunogenic factors, which might be responsible for
acne inanimation and other P. acnes-associated diseases.
SIGI-HMM predicted 4.1% pA genes clustered in five
larger GIs and several smaller islands of less than five
genes. 47% (45 genes) of them are predicted to originate
from the α-proteobacteria, but only 13% (12 pA genes)
from the taxonomic class of P. acnes, the actinobacteria.
Interestingly, four of the larger GIs and two of the smaller
islands are flanked by tRNA-genes in direct or close vicin-
ity. tRNAs are considered to be hot spots for recombina-
tion events that can result in horizontal gene transfer.
SIGI-HMM found these anomalies although it does not
interpret sequences besides protein coding genes. Of the
larger GIs, the first (at position 28 – 34 kbp) contains
genes without functional assignment, the second (874 –
880 kbp) harbors genes for several transport systems
among others for iron(III)dicitrate (PPA0792 – PPA0794)
and the third (921 – 941 kbp) for an ABC-type transport
system (PPA0843 – PPA0845), putative conjugal transfer
proteins (PPA0846 – PPA0848) and two putative trans-
posases (PPA2354, PPA0858). The forth GI (1,390 –
1,407 kbp) contains a gene cluster for a putative non-
ribosomal peptide synthetase (NRPS) (PPA1287 –
PPA1290). NRPSs are involved in the biosynthesis of
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complex secondary metabolites. As many of the genes
clustered in the fifth GI (1,707 – 1,731 kbp) are annotated
as phage-associated proteins (PPA1593 – PPA1596,
PPA1604 – PPA1605), the GI may be attributed to an inte-
grated prophage.

For visualization of the HMM-based predictions we use
scatter plot repesentations providing an overview of
codon usage similarities between all genes of a genome.
By means of a newly developed kernel for measuring sim-
ilarity of codon usage tables [51], we perform a kernel
principal component analysis (see e.g. [52]) to compute
the resulting 2D coordinates of all genes. In that represen-
tation, nearby points indicate a similar codon usage of the
corresponding genes. It is important to note that the ker-
nel-based approach does not use any information about
the location of genes on the genome. Instead, codon usage
correlations between different amino acids are used to
derive the two-dimensional representation. This approach
is different from the concept of SIGI-HMM. Therefore, a
clustering of SIGI-HMM predicted pA genes which
becomes visible in the scatter plots (see Figure 2, 3, and 4)
confirms the corresponding predictions.

Figure 2 is a plot of all genes of the E. coli K-12 genome.
The general form resembles the "rabbit head" trimodal
shape described earlier for the genome of B. subtilis [53].
Most genes belonging to integrated prophages are located
in the lower left "ear". PHX genes are clustered in the
lower right corner.

T. thermophilus is one of the genomes with lowest pA con-
tent. The plot depicted in Figure 3 represents the genome
of T. thermophilus and has a quite specific shape. This find-
ing indicates that the overall shape of the plot is massively
modulated by the fraction of genes acquired via HGT. The

Kernel-based scatter plot visualization of SIGI-HMM predic-tions for V. cholerae (chromosome II)Figure 4
Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for V. cholerae (chromosome II). Blue points (PUTAL) 
represent pA genes as predicted by SIGI-HMM, red points 
(PUTAL LIT) indicate predicted pA genes with additional evi-
dence from the current literature as described in the text. 
Yellow points (NATIVE / PHX) refer to genes which are pre-
dicted to be native or highly expressed.

Kernel-based scatter plot visualization of SIGI-HMM predic-tions for E. coli K-12Figure 2
Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for E. coli K-12. Blue points (PUTAL) represent pA 
genes as predicted by SIGI-HMM, red points (PUTAL LIT) 
indicate predicted pA genes with additional evidence from 
the current literature as described in the text. Yellow points 
(NATIVE / PHX) refer to genes which are predicted to be 
native or highly expressed.

Kernel-based scatter plot visualization of SIGI-HMM predic-tions for T. thermophilusFigure 3
Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for T. thermophilus. Blue points (PUTAL) represent pA 
genes as predicted by SIGI-HMM, red points (PUTAL LIT) 
indicate predicted pA genes with additional evidence from 
the current literature as described in the text. Yellow points 
(NATIVE / PHX) refer to genes which are predicted to be 
native or highly expressed.
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pA genes as predicted by SIGI-HMM are mainly located in
a long tail with low point density on the right hand side
of the plot.

As already mentioned, the genome of V. cholerae consists
of two chromosomes. Most essential genes are located on
chromosome I and codon usage of genes on chromosome
II is rather inhomogeneous. Again, the overall shape of
the plot, which represents chromosome II, reflects this sit-
uation (compare Figure 4) and shows a well-clustering
fraction of pA genes located in the lower left corner of the
plot. Please note that the positioning of pA genes pre-
dicted by SIGI-HMM only and those pA genes supported
by additional evidence from the literature corresponds to
a great extent in all plots.

Assessing the patchiness of GIs
Genomic islands are thought to be the result of constant
genetic rearrangement events, which account for their
observed mosaic structure. As these rearrangements could
also take place at hot spots for the integration of alien
DNA in the host genome, patches of genes having a codon
usage similar to the host have to be expected inside GIs.
This fact makes it difficult to determine the number of
false negatives, even in annotated GIs. The number of
false positives is difficult to deduce too, as it is hard to
proof that a stretch of pA genes has not been acquired via
HGT. In order to illustrate the problem and the patchiness
of GIs, we compare in more detail some predictions with
published findings.

Chromosome II of V. cholerae contains an integron island
of size 125.3 kbp, which includes genes VCA0271 to
VCA0491 [43]. Of these 214 genes, SIGI-HMM labels 188
as pA (87%), 1 as AT (atypical) and 25 as pN (putatively
native). SIGI-HMM did subdivide the integron island into
the following patches: VCA0271 – VCA0282 pN,
VCA0283 – VCA0286 pA, VCA0287 – VCA0291 pN,
VCA0292 – VCA0324 pA, VCA0325 – VCA0329 pN,
VCA0330 – VCA0379 pA, VCA0380 – VCA0385 pN,

VCA0386 – VCA0507 pA. From the remaining 611 genes
on the chromosome, 42 were predicted as pA.

The chromosome of Mesorhizobium loti consists of 6.725
protein coding genes. It contains a 611 kbp DNA segment
which is, as the authors put it, "a highly probable candi-
date of a symbiotic island" [3]. SIGI-HMM predicted
5.561 genes as pN, 1.161 (17%) as pA and 30 as AT. Of
the symbiotic island, 145 genes were pN, 421 pA (72%)
and 14 AT. The pA genes were clustered in 29 GIs ranging
in size from 2 to 108 genes.

As already mentioned, ten integrated prophages or
prophage-like elements were reported for the genome of
B. subtilis [9]. Five of these elements are flanked by
sequence repeats which we considered as the original inte-
grations sites indicating the actual borders of the GIs.
Table 2 summarizes composition and location of related
GIs predicted by SIGI-HMM. Skin prophage and P7 have
a mosaic structure and harbour ≈ 50% pN genes. In four
of the five cases, the borders of the predicted GIs are in
good agreement with the location of the repeats.

Discussion
Analysis of codon usage reliably allows to identify most 
HGT events
We have to stress that our approach entirely relies on the
analysis of codon usage. SIGI-HMM does not interpret
additional signals like direct repeats or disrupted tRNA
sequences frequently flanking GIs. Therefore, the out-
come of the HMM analysis are DNA regions showing
atypical codon usage. This fact has two consequences: 1)
SIGI-HMM is unable to identify GIs having an unsuspi-
cious codon usage and 2) the rationale of naming these
stretches GIs merely depends on the correlation with bio-
logical findings.

However, we have shown that DNA regions identified by
SIGI-HMM as suspicious correspond to known cases of
horizontally transferred elements like phages. Our
approach of focusing on the analysis of codon usage is not
a completely new one. There exist several methods to
identify horizontally transferred genes. These approaches
rely on the analysis of codon or amino acid sequences or
the construction of phylogenetic trees. For a comparison
see e.g. [14]. Each approach has individual drawbacks and
it might be that each method identifies a specific class of
genes acquired in a different time of genome evolution
[13]. It was argued that codon usage is no reliable indica-
tor for the study of HGT [54]. However, it was shown that
related methods identify pA genes to a great extent [55].
The assumption that methods analyzing codon usage
might overlook horizontally acquired genes could be
valid for more ancient events. For these genes, the effect of
amelioration [56] might have rendered codon usage

Table 2: Prophages and prophage-like elements integrated into 
the genome of B. subtilis. Column 1 lists the elements flanked by 
sequence repeats. Column 2 gives the location of the repeats. 
Column 3 and 4 list the number of pA and pN genes predicted 
for these GIs by SIGI-HMM. The two last columns indicate the 
offset of the GI from the sequence repeats. An offset of -1 means 
that the GI predicted by SIGI-HMM starts (ends) one gene after 
(before) the repeat. Positions are as in [9] and given in kbp.

Element Repeats # pA # pN Offset Begin Offset End

P1 202 – 213 10 1 0 -1
P2 555 – 567 10 1 -1 0
P6 2050 – 2060 9 0 0 0
Skin 2654 – 2701 32 31 0 0
P7 2725 – 2735 7 6 -6 0
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unsuspicious. Lawrence and Ochman estimated the age of
imported genes [4]. Their conclusion was that most were
relatively recent, i.e. acquired within the last few million
years; see also [57]. This suggests that older imports have
been purged presumably because the acquired genes did
not improve fitness. If this argument is true, there is no
need to search for larger amounts of ancient pA genes.
Therefore, methods based on the analysis of codon usage
should have the potential of identifying a great fraction of
horizontally transferred genes. Low values of pA content
can frequently be explained with biological findings. It
was argued that species populating extreme ecological
niches tend to have relative small genomes [58]. The size
of the sequenced T. thermophilus genomes support this
notion. If selective pressure minimizes genome size, it will
also effect acquisition and conservation of foreign DNA.
The low fraction of pA genes determined for both strains
is in agreement with the above hypothesis.

The methods will fail at alien genes having a codon usage
undistinguishable from the host's preferences. Among
them might be ancient pA genes. Because of the ameliora-
tion process, ancient pA genes are harder to detect. These
pA genes, surviving the selection process may actually
constitute important and useful genes. In order to com-
plete the set of identified HGT events and to reduce the
number of false negatives, it will be necessary to use a
completely different approach like the construction of
phylogenetic trees.

If not processed correctly, highly expressed genes could be
a source for false positive predictions. It is known that
these genes show a distinct codon usage by preferring a
species-specific set of major codons. In order to reduce the
rate of false positive predictions, we use a filter which is
based on a method [30] shown to be effective in predict-
ing gene expressivity [31]. We have adjusted the parame-
ters (see Equation 4) in such a way that the errors of the
first and second kind are equally likely. Highly expressed
genes belong to the core of a genome and it is unlikely
that these genes are subject to HGT. Nevertheless, the user
may disable this filter in order to study its influence on GI
prediction.

Focusing on the prediction of GIs is biologically reasonable 
and reduces the risk of false predictions
Intrinsically, increasing the sensitivity of a test also
increases the risk of predicting false positives. For the pre-
diction of pA genes, the risk can however be minimized, if
an algorithm focuses on the prediction of genomic islands
as SIGI-HMM does. The pieces of DNA acquired via HGT
typically have a considerable length. Examples are the
symbiotic island of size 611 kbp described for the genome
of M. loti or the integron island of size 125 kbp found on
chromosome II of V. cholerae (see Results). Genes respon-

sible for pathogenicity are also agglomerated in islands;
see [2] and references therein. Therefore, a focusing on
predicting GIs rather than all pA genes is an appropriate
strategy to avoid false positives without missing relevant
HGT events. Consequently, this argument was considered
for the design of recently introduced algorithms [23,59].
However, the rate of false positive predictions will
increase, if codon usage of a genome is inhomogeneous.
To avoid this situation, it is important, to determine the
CSC of a genome.

Codon usage is a reliable indicator to predict the origin of 
pA genes
For each completely sequenced genome, we have com-
puted a variant of the CSC defined above; see [60]. It con-
sisted of those genes having a homogeneous codon usage.
The results obtained with the classification of genes from
CSCs show that codon usage hints at the origin of genes.
First tests indicate that prediction quality is high, as long
as the CSC contains at least 70% of the genes. In addition,
the results of performance tests (see [23]) carried out to
demonstrate SIGI's ability of predicting the putative
donor are also valid for SIGI-HMM.

Omelchenko et al. [61] used BLAST on the protein level to
determine HGT events in the genome of T. thermophilus
HB27. The protein sequences of many genes were similar
to those of hyperthermophilic archaea. Taxonomical clas-
sification of donors for genes constituting GIs predicted
by SIGI-HMM was rather inhomogeneous. The putative
donors belonged to bacteria, archaea and eukaryota. It
will be necessary to evaluate methods for pA prediction
with a standardized test bed. Artificial genomes as intro-
duced recently [62] may constitute the basis for such a val-
idation, which may lead to a contest of methods for pA
prediction.

Conclusion
An inhomogeneous HMM on gene level allows to identify
GIs in microbial genomes and to predict the putative
donor of horizontally transferred genes. The predictions
are consistent with known findings and do not depend on
the optimization of many parameters. Our implementa-
tion as a freely available tool written in Java allows an
independent inspection of genomes in great detail. The
genome-specific predictions can be used for further anal-
ysis or the comparison of several methods.
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