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Abstract We present firstly the equation of motion for a
test scalar particle coupling to the Einstein tensor in the
Schwarzschild–Melvin black hole spacetime through the
short-wave approximation. Through analyzing Poincaré sec-
tions, the power spectrum, the fast Lyapunov exponent indi-
cator and the bifurcation diagram, we investigate the effects
of the coupling parameter on the chaotic behavior of the par-
ticles. With the increase of the coupling strength, we find
that the motion of the coupled particle for the chosen param-
eters becomes more regular and order for the negative couple
constant. While, for the positive one, the motion of the cou-
pled particles first undergoes a series of transitions betweens
chaotic motion and regular motion and then falls into hori-
zon or escapes to spatial infinity. Our results show that the
coupling brings about richer effects for the motion of the
particles.

1 Introduction

Chaos is a kind of non-periodic motion occurred in the non-
linearly and deterministically dynamical systems, which is
very sensitive to the initial conditions and presents the intrin-
sic random in systems [1–4]. In general, it is very difficult
to make a long-term prediction for chaotic motions, which
means that chaotic systems possess many novel properties
not shared by the usual dynamical systems and the non-
linear interactions bring about richer physics. This triggers
more attention for the study of chaotic dynamics in vari-
ous physical fields. In general relativity, we know that chaos
does not emerge in the geodesic motion of the particle in
the generic Kerr–Newman black hole spacetime because the
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equation of motion is variable-separable and the dynamical
system is integrable [5]. To ensure that the dynamical sys-
tem describing the motion of the particle is non-integrable
and study the corresponding chaotic phenomenon, we have
to resort to some spacetimes with complicated geometries or
introduce some extra interactions. In this spirit, the chaotic
trajectories of particle have been found in multi-black hole
spacetimes [6,7], or in the perturbed Schwarzschild space-
time [8–11], or in the spacetime of a black hole immersed in
a magnetic field [12], or in the non-standard Kerr black hole
spacetime described by the Manko–Novikov metric [13–
17], or in the accelerating and rotating black hole space-
time [18]. Moreover, the chaotic phenomenon has also been
investigated for charged particles moving in a magnetic field
interacting with gravitational waves [19]. More interestingly,
after introducing ring strings instead of point particles, chaos
in ring string dynamics has been found in the asymptoti-
cally flat Schwarzschild black hole spacetime [20], in AdS–
Schwarzschild black holes [21] and in AdS–Gauss–Bonnet
black hole spacetimes [22].

One of the most interesting interactions is the coupling
between scalar field and Einstein tensor described by the
termGμν∂μψ∂νψ . Such kinds of interactions were originally
introduced by Horndeski [23] and subsequently have been
investigated extensively in cosmology to explain the cosmic
accelerating expansion confirmed by the current observations
[24–27]. It is shown that the model of the scalar field cou-
pling to the Einstein tensor has a “good” dynamical prop-
erty since that equation of motion for the scalar field in this
coupling theory is still a second-order differential equation.
Moreover, the attractive features of such a theory are that
the derivative coupling term with the Einstein tensor cannot
only explain the accelerating expansion of the current Uni-
verse, but also it can solve naturally the problem of a grace-
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ful exit from inflation without any fine-tuned potential in the
early Universe [28,29]. From the point of view of physics, a
good theoretical model in cosmology should be examined by
black hole physics since the black hole is another fascinat-
ing aspect in the modern theories of gravity. Therefore, it is
very necessary to study such a coupling theory in black hole
physics. We [30,31] studied the dynamical evolution for a
scalar field coupled to the Einstein tensor in the background
of Reissner–Nordström black hole spacetime and found a
distinct behavior of the coupled scalar field: that the growing
modes appear as the coupling constant is larger than a certain
threshold value. Moreover, Minamitsuji [32,33] investigated
such a coupling theoretical model in braneworlds and the
scalar–tensor theory, and one found that a new phase transi-
tion from a Reissner–Nordström black hole to a hairy black
hole takes place in asymptotically flat spacetime because
the Abelian U (1) gauge symmetry is broken in the vicin-
ity of the black hole horizon when the coupling constant is
large enough [34]. Other regular black hole solutions are also
found in [35,36], which implies that such a coupling could
contribute to the effective cosmological constant at infinity.
These novel results have attracted more attention for study-
ing the full properties for such a special coupling model in
black hole physics.

However, the above investigation focused mainly on the
effects of such a kind of coupling on the wave dynamical
behavior of the coupled field. It is natural to ask what effects
of these couplings have on the motion of the particles in the
background of a black hole. In order to reach this purpose,
we must firstly obtain the equation of motion of the particle
in a spacetime. Considering a perturbational material field,
one should get the equation of motion for a test particle from
the corresponding wave dynamical equation by the short-
wave approximation. In this way, the equation of motion of
the coupled photon is obtained from the corrected Maxwell
equation with the coupling between electromagnetic field
and curvature tensors [37–41]. With this technique, we here
assume the coupled scalar field as a perturbation and obtain
the equation of motion of the coupled scalar particle as a test
particle, and then study such coupling effects on the motion
of the particle in the background of a Schwarzschild–Melvin
black hole [42]. The main reason why we select this space-
time as a background is that it describes the gravity of a
black hole immersed in an external magnetic field, which
is of some astrophysical interest because such kinds of the
magnetic fields can be likely generated by currents in the
accretion disk around a black hole in real astrophysical situ-
ations, especially at the center of galaxies. Moreover, its Ein-
stein tensor has non-zero components and there exist chaotic
phenomena in the geodesic motion of the particles in this
background with an external magnetic field [12] so that we
can study such coupling effects on the chaotic motion of a
test scalar particle.

The paper is organized as follows. In Sect. 2, we obtain
the geodesic equation of a test scalar particle coupled to the
Einstein tensor in a Schwarzschild–Melvin black hole by
the short-wave approximation. In Sect. 3, we investigate the
chaotic phenomenon in the motion of the particle coupled to
the Einstein tensor in the Schwarzschild–Melvin spacetime
by the fast Lyapunov indicator, power spectrum, Poincaré
section and bifurcation diagram. We probe the effects of this
coupling together with magnetic field on the chaotic behavior
of a coupled scalar particle. Finally, we end the paper with a
summary.

2 Equation of motion for scalar particles coupling to the
Einstein tensor in the Schwarzschild–Melvin black
hole spacetime

In this section, we will derive the equations of motion
for a test particle coupled to the Einstein tensor in the
Schwarzschild–Melvin black hole spacetime. The action
describing scalar fields coupled to the Einstein tensor in the
Einstein–Maxwell theory can be expressed as

S =
∫

d4x
√−g

[
R

16πG
− 1

4
FμνF

μν + 1

2
gμν∂μψ∂νψ

+α

2
Gμν∂μψ∂νψ + μ2ψ2

]
, (1)

where the termGμν∂μψ∂νψ represents the coupling between
the Einstein tensor Gμν and the scalar field ψ with mass
μ. The factor α is a coupling parameter with dimensions of
length squared. The quantity Fμν is the usual electromagnetic
tensor. In order to study the motion of a test scalar particle
in a background spacetime, as in the previous discussion,
we treat scalar field ψ as a perturbation field and then cor-
responding scalar particle as a test particle. After doing so,
the coupling between scalar field and Einstein tensor does
not modify the background spacetime and then the action (1)
admits a solution with the metric [42]

ds2 = �2(−�2dt2 + �−2dr2 + r2dθ2)

+�−2r2 sin2 θdφ2, (2)

which describes the gravity of a static black hole immersed in
the extra magnetic field. The vector potential for the magnetic
field is given by

Aμdxμ = − Br2 sin2 θ

�
dφ. (3)

Here � and � are given by

� = 1 + 1

4
B2r2 sin2 θ, �2 = 1 − 2m

r
, (4)

where B is magnetic induction intensity of the extra mag-
netic field and m is the mass of the black hole. As in the
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Schwarzschild case, the event horizon is located at r = 2m
and there is no singularity outside the horizon. However, the
polar circumference for the event horizon increases with the
magnetic field, while the equatorial circumference decreases
[43]. Moreover, due to the presence of the magnetic field, the
Schwarzschild–Melvin spacetime is not asymptotically flat.
The non-zero components of the Einstein tensor are

G00 = 4096B2(r − 2m sin2 θ)

(2m − r)(4 + B2r2 sin2 θ)6
,

G11 = 4096B2(r − 2m)[r cos2 θ − (r − 2m) sin2 θ ]
r2(4 + B2r2 sin2 θ)6

,

G22 = −4096B2[r cos2 θ − (r − 2m) sin2 θ ]
r3(4 + B2r2 sin2 θ)6

,

G33 = 16B2(2m sin2 θ − r)

r3 sin2 θ(4 + B2r2 sin2 θ)2
,

G12 = G21 = 4096B2(2m − r) sin 2θ

r2(4 + B2r2 sin2 θ)6
. (5)

Obviously, the Einstein tensor for this metric depends on
electromagnetic field. Thus, the coupling between scalar
field and Einstein tensor in Schwarzschild–Melvin black hole
spacetime can be really understand as a kind of interaction
between scalar field and electromagnetic field. Theories con-
taining the interaction between scalar field and electromag-
netic field have been studied extensively, such as Einstein–
Maxwell–dilaton theory.

Varying the action (1) with respect to ψ , one can find that
the wave equation of scalar fields is modified,

1√−g
∂μ

[√−g(gμν + αGμν)∂νψ

]
− μ2ψ = 0. (6)

In order to get the equation of motion of a test scalar particle
from the above corrected Klein–Gordon equation (6), one can
adopt the short-wave approximation in which the wavelength
of the scalar particle λs is much smaller than the typical cur-
vature scale L . This means that the propagation process of
the scalar particle does not change the background gravita-
tional field. The similar treatment for electromagnetic field
are taken in [37–41] to probe the effect of the polarization
direction on the propagation of photon in various background
spacetime. With this approximation, the scalar field ψ can be
rewritten as

ψ = f ei S . (7)

where f is a real and slowly varying amplitude and S is a
rapidly varying phase. This means that the derivative term f;μ
is not dominated and can be neglected in this approximation.
Moreover, the wave vector kμ = ∂S

∂xμ can be treated as the
usual momentum pμ in the theory of scalar particle. Inserting
Eq. (7) into the action (6), we can find that the corrected

Klein–Gordon equation (6) can be simplified as

(gμν + αGμν)kμkν = −1. (8)

Here, we set the mass of the scalar particle μ = 1. It is obvi-
ous that the motion of the coupled particle is non-geodesic in
the original metric. Actually, these coupled scalar test parti-
cles follow the geodesics in another effective spacetime with
metric g̃μν , which is related to the original metric gμν by

g̃μν = gμν + αGμν. (9)

To get a Hamiltonian formulation like in Ref. [44], one can
introduce the momenta pμ = g̃μν

dxν

dλ
(where λ is affine

parameter), and then obtain the Hamiltonian

H = 1

2
(gμν + αGμν)kμkν = 1

2
g̃μνkμkν. (10)

With the effective metric g̃μν and the Hamiltonian equation,
the canonical equations of the coupled scalar particles can be
written as

d

dλ

(
g̃μτ

dxτ

dλ

)
− 1

2
g̃ντ ;μ

dxν

dλ

dxτ

dλ
= 0. (11)

Correspondingly, Eq. (8) becomes

g̃μν

dxμ

dλ

dxν

dλ
= −1. (12)

It means that the non-geodesic motion of the coupled par-
ticle in the original spacetime can be treated as a geodesic
in the effective spacetime with metric g̃μν . Here, we must
point out that although Eqs. (11) with (12) look just like the
geodesic motion of the usual massive particles, the effective
metric coefficient g̃μν depends on the types of particles and
coupling, which means that the motions are actually different
for various particles with different couplings.

Inserting Eqs. (2) and (5) into (9) one can obtain the effec-
tive metric g̃μν for the scalar particle coupled to the Einstein
tensor

g̃00 = 16[256αB2(r − 2m sin2 θ) + r(4 + B2r2 sin2 θ)4]
(2m − r)(4 + B2r2 sin2 θ)6

,

g̃11 = 16[r(r − 2m)(4 + B2r2 sin2 θ)4 + 256αB2(r − 2m)(2m sin2 θ + r cos 2θ)]
r2(4 + B2r2 sin2 θ)6

,

g̃22 = 16[r(4 + B2r2 sin2 θ)4 − 256αB2(r cos 2θ + 2m sin2 θ)]
r3(4 + B2r2 sin2 θ)6

,

g̃33 = 16αB2(2m sin2 θ − r)

r3 sin2 θ(4 + B2r2 sin2 θ)2
+ (B2r2 sin2 θ + 4)2

16r2 sin2 θ
,

g̃12 = g̃21 = 4096αB2 sin 2θ(2m − r)

r2(4 + B2r2 sin2 θ)6
. (13)

The presence of g̃12 and g̃21 shows that the motion of the
coupled scalar particle becomes more complex than that of
in the case without the coupling. It is obvious that the coef-
ficients of the above effective metric are independent of the
coordinates t and φ, which yields two constants of motion
of the geodesics, i.e., the energy and the z-component of the
angular momentum,
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E = −∂L
∂ ṫ

= −g̃00 ṫ, Lz = ∂L
∂ϕ̇

= g̃33ϕ̇, (14)

which depend also on the coupling between scalar particle
and Einstein tensor since g̃00 and g̃33 are functions of the cou-
pling parameter α. Substituting these two conserved quanti-
ties into Eqs. (11)–(12), one can obtain the equation of motion
with a constraint condition, �H = 0, where

�H ≡ E2

g̃00
+ g̃11ṙ

2 + g̃22θ̇
2 + L2

g̃33
+ 2g̃12ṙ θ̇ + 1, (15)

for a massive scalar particle coupling to the Einstein tensor
in the Schwarzschild–Melvin black hole spacetime. As in
the case without coupling, these equations of motion cannot
be variable-separable, which implies that the motion of a
particle coupled to the Einstein tensor could be chaotic in
the Schwarzschild–Melvin black hole spacetime. In the next
section, we will investigate the effect of the coupling on the
chaotic behavior of the coupled scalar particle.

3 The chaotic motion of scalar particles coupling to the
Einstein tensor in the Schwarzschild–Melvin black
hole spacetime

In order to study the chaotic motion of scalar particles cou-
pled to Einstein’s tensor, we must solve the differential equa-
tions (11) and (12) numerically with high precision. The
main reason is that the motion of a particle in the chaotic
region is very sensitive to initial value and the larger numer-
ical errors may produce pseudo chaos, which is not the real
motion of the particle. Here, we adopt to the corrected fifth-
order Runge–Kutta method suggested in Refs. [45–47], in
which the velocities (ṙ , θ̇ ) are corrected in integration and the
numerical deviation is pulled back in a least-squares shortest
path. The scale factor of the velocity correction ξ for a scalar
particle coupled to Einstein’s tensor in the Schwarzschild–
Melvin black hole spacetime (2) is

ξ =
√

− 1 + E2/g̃00 + L2/g̃33

g̃11ṙ2 + g̃22θ̇2 + 2g̃12ṙ θ̇
. (16)

As in Refs. [45–47], we find that with the velocity-
correction fifth-order Runge–Kutta method the numerical
error is controlled greatly and the value of �H is kept below
10−14, which is shown in Fig. 1. This means that this correc-
tion method is so powerful that it can avoid the pseudo chaos
caused by numerical errors.

It is well known that the motion of the particle is deter-
mined by the parameters and initial conditions of the dynam-
ical system. As in usual cases, we set the mass of black
hole m = 1. The choice of magnetic field parameter is
based on a consideration that the magnetic induction inten-
sity around black hole satisfies B � m−1 (in the natural

Fig. 1 The energy errors �H with time computed by RK5 and the
velocity-correction method (RK5+Correction) in the Schwarzschild–
Melvin black hole spacetime

unit G = c = h̄ = 1) even for the very strong magnetic
fields in centers of real galaxies [48]. Moreover, we find that
it is more difficult to obtain the stable orbit for the parti-
cle in the cases with the high numerical value of B in our
numerical calculation. For the parameters and initial condi-
tions of particle, it should be stressed that the choice should
in principle be arbitrary. Here, we take a set of parameters
(E = 0.99, L = 3.9, m = 1, B = 0.02) and initial condi-
tions (r(0) = 9.7, θ(0) = π

2 , ṙ(0) = 0) only as an example
to illustrate the change of the degree of disorder of particle
orbits with the coupling parameter α. The other sets of the
parameters and initial conditions are also chosen to analyze
the orbit of particles in the subsequent discussion.

Let us now analyze the frequency components in these
solutions by the power spectrum method in which the heights
of the bars are dominated by the square of the amplitude
related to each frequency in a Fourier decomposition [1,2].
From Fig. 2, we find that it is a discrete spectrum for α = 0,
−20 and −40, which means that in the cases α = 0, −20
and −40 the motion of the particle is the order and regular
motion. Compared with the case with α = 0, we also find that
there exist much fewer frequency components in the cases
with negative α. For the signals with α = 20, 40 and 60, it
is obvious that there exists a continuous spectrum, and then
the corresponding motion is chaotic for the coupled particle.

Thus, with the increase of the coupling strength, one can
find that for the chosen parameters the degree of disorder and
non-integrability of the motion of the particle increases for
the positive α and decrease for the negative one.
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Fig. 2 The power spectrum of the solutions for different α with a set of parameters (E = 0.99, L = 3.9, m = 1, B = 0.02) and initial conditions
(r(0) = 9.7, θ(0) = π

2 , ṙ(0) = 0)

Fig. 3 The Fast Lyapunov indicators with two nearby trajectories for the solutions plotted in Fig. 2
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Fig. 4 The Poincaré surface of section (θ = π
2 ) with different coupling parameter α and fixed B = 0.02. The initial conditions are set as r(0) = 9.7,

θ(0) = π
2 and ṙ(0) = 0

The Lyapunov indicator is another useful tool to discern
the chaotic orbits of particles by measuring two adjacent
orbits over time with the average separation index [2,49].
The motion of the particle is chaotic if there exists a positive
Lyapunov exponent and it is order if all of Lyapunov expo-
nents are negative. Recently, a faster and more convenient
Lyapunov indicator is proposed by Froeschlé et al. in [50]
and then it is extended to the cases in general relativity by
Wu [51]. In the curve spacetime, the version of the Fast Lya-
punov indicator (FLI) with the two particles method can be
expressed as

FL Ik(τ ) = −k · (1 + log10 ‖�x(0)‖) + log10
‖�x(τ )‖
‖�x(0)‖ .

(17)

Here ‖�x(τ )‖ = √|gμν�xμ�xν |, and �xα(τ ) is the
deviation vector between two nearby trajectories at proper
time τ , which is given by

�xα(τ ) = x̃α(τ ) − xα(τ ). (18)

The quantity k stands for the sequential number of renormal-
ization which is used to avoid the numerical saturation arising
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Fig. 5 The Poincaré surface of section (θ = 2π
5 ) with different coupling parameter α and fixed B = 0.02. The initial conditions are set as

r(0) = 12.0, θ(0) = 3π
5 and ṙ(0) = 0

from the fast separation of the two adjacent orbits. It is shown
that FLI(τ ) grows with exponential rate for chaotic motion,
even for weak chaotic motion, and grows algebraically with
time for the regular resonant orbit and for the periodic one
[2,49–51]. In Fig. 3, we plot the FLI with proper time for the
solutions plotted in Fig. 2 with �r(0) = 10−8,�ṙ(0) = 0
and �θ(0) = 0. From Fig. 3, we find that with increase of
time τ , FLI(τ ) grow with exponential rate for the signal with
α = 20, 40 and 60, but with polynomial rate in the cases
with α = 0, −20 and −40. This confirms further that in Fig.
2 the orbits in the cases with α = 20, 40 and 60 are chaotic
and the orbits with α = 0, −20 and −40 are ordered in this
case. It also supports that for chosen parameters and initial
conditions the degree of disorder and non-integrability of the
motion of the particle increases with the coupling parameter
α. Especially, the presence of α could mean that the motion of
the particle changes from the order motion in the case with-
out coupling to the chaotic motion, which implies that the
coupling between scalar particle and Einstein tensor brings
about richer properties for the motion of the particles.

Poincaré section is an intersection of trajectory of a con-
tinuous dynamical system with a given hypersurface which
is transversal to the trajectory in the phase space. It can be
applied to discern chaotic motions of particles moving in
the curve spacetime. In general, the solutions of the con-
tinuous dynamical system with different initial conditions
can be classified as three kinds by the intersection points
in a Poincaré section. The periodic solutions and the quasi-
periodic correspond to a finite number of points and a series of
close curves in the Poincaré section, respectively. The chaos
solutions correspond to strange patterns of dispersed points
with complex boundaries [52]. In Fig. 4, Poincaré sections
with θ = π

2 on the plane (r, ṙ) for different coupling param-
eters α are plotted for the motion of a coupled particle in the
Schwarzschild–Melvin black hole spacetime with the fixed
parameters B = 0.02, E = 0.99, L = 3.9 and the initial
conditions {r(0) = 9.7; ṙ(0) = 0; θ(0) = π

2 }. We find that
for α < 10.7 the phase path is a quasi-periodic Kolmogorov–
Arnold–Moser (KAM) tori and the behavior of this system
is non-chaotic. Especially, there are more complicated KAM
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Fig. 6 The Poincaré surface of section (θ = π
2 ) with different coupling parameter α and fixed B = 0.02

tori trajectories for α = 0. It is composed of six secondary
KAM tori belonging to the same trajectories where the suc-
cessive points jump from one loop to the next. These little
loops are called a chain of islands. With the coupling param-
eter α increasing, the chain of islands are joined together and
become a big KAM tori. This shows that trajectory is regular
and integrable in this case. However, when α ∼ (10.7, 30),
we find that KAM tori is destroyed and the corresponding
trajectory is non-integrable, which indicates that the behav-

ior of this system is chaotic. As the value of α ∼ (31, 37),
one can find that the motion of the particle becomes order
again. With the further increasing of α, the motion of the
particle undergoes a series of transitions between chaotic
motion and regular motion. As α � 100, the particle falls
finally into the event horizon of the black hole or spatial infi-
nite after undergoing some chaotic oscillations around black
hole. In this case, one can note that there exist a few discrete
points in the Poincaré section, but it is different essentially
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Fig. 7 The Poincaré surface of section (θ = π
2 ) with different magnetic induction B and fixed coupling parameter α = 20

from those in the case of usual multiple-periodic motion.
Thus, with the increase of the coupling strength, one can
find that for the chosen parameters the degree of disorder
and non-integrability of the motion of the particle almost
increases for the positive α and almost decrease for the neg-
ative one. It is shown in Figs. 2 and 3 that the motion is
regular when α = 0 for the selected initial conditions set
{r(0) = 9.7; ṙ(0) = 0; θ(0) = π

2 }. It does not means that
the motion is regular in the case α = 0 with any initial con-

dition set since the behavior of non-linear dynamical system
depends on the choice of the initial conditions. In Ref. [12],
the chaotic motion of a test particle is found in the case α = 0
for the proper initial condition. Here, we adopt another ini-
tial condition {r(0) = 12.0; ṙ(0) = 0; θ(0) = 3π

5 } as an
example to indicate that the chaotic motion is allowable in
the case α = 0, which is shown in Fig. 5. We also investi-
gate the dependence of Poincaré sections with θ = 2π

5 on the
coupling parameters α with this initial condition. For the neg-
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Fig. 8 The bifurcation diagram with coupling parameter α for different B in the Schwarzschild–Melvin black hole spacetime. The set of initial
conditions for the graphics are {r(0) = 9.7; ṙ(0) = 0; θ(0) = π

2 } in the top row and are {r(0) = 12; ṙ(0) = 0.1; θ(0) = 2π
5 } in the bottom row

ative α, we find that with the increase of the coupling inten-
sity, the chaos becomes weak monotonously. As α ≤ −25,
the KAM tori recovers and the motion is regular. For the
positive α, with the increase of the coupling intensity, one
can find that the behavior of the system undergoes a process
from chaotic to regular then to chaotic. Correspondingly, the
non-integrability of the motion of the particle in Fig. 5 first
decreases and then increases with α. Similarly, for the larger
α, we can obtain a kind of unstable escape solutions for this
chosen initial condition as in the previous discussion. Thus,
the dependence of the non-integrability of the motion on the
coupling parameter α depends on the initial conditions and
the parameters of system.

In Figs. 6 and 7, we also plot the Poincaré surface of
section (θ = π

2 ) on the plane (r, ṙ) for the motion of the scalar
particle with different initial conditions. From Fig. 6, we find
that the chaotic region decreases with the strength of the
coupling between Einstein tensor and particle for the negative
α. When α is positive, the chaotic region first decreases and
then increases with the coupling strength. Moreover, it is
shown in Fig. 7 that for fixed α = 20 the chaotic region of this
system first increases and then decreases with the increase of
the magnetic induction B. As B = 0, one can find that only
some closed curves appear in Poincaré surface of section,
of which the motion is orderly and non-chaotic. The main
reason is that in this case the Schwarzschild–Melvin black
hole spacetime reduces to the usual Schwarzschild one, in
which all components of the Einstein tensor vanish and then
the motions of the coupled particles are consistent with those
of particles without coupling.

The bifurcation diagram can tell us about the dependence
of the dynamical behaviors of system on the dynamical
parameters, which could lead to the chaotic phenomenon in
the system. In Figs. 8 and 9, we plot the bifurcation diagram
of the radial coordinate r with the coupling parameter α and
magnetic induction B for the coupled scalar particles mov-
ing in the Schwarzschild–Melvin black hole spacetime with
fixed E = 0.99 and L = 3.9. Here we chose two set of initial
conditions (i.e., {r(0) = 9.7, ṙ(0) = 0 and θ(0) = π

2 } and
{r(0) = 12.0, ṙ(0) = 0.1 and θ(0) = 2π

5 }). As B = 0, one
can find that in both cases there is only a periodic solution
and no bifurcation for the dynamical system, which means
that the motions of particles are regular in this case. For the
case with magnetic field, it is easy to find that there exist
periodic, chaotic and escape solutions, which depend on the
magnetic field parameter B and the coupling parameter α.
Moreover, we can find that with the increase of the parame-
ters B and α the motion of coupled scalar particle transform
among single-periodic, multi-periodic and chaotic motions,
and the effects of the parameters B and α on the motion
of the coupled scalar particle are very complex, which are
typical features of bifurcation diagram for the usual chaotic
dynamical system. However, Figs. 8 and 9 tell us that the
lower bound of α for the existence of the oscillation solu-
tion increases with the magnetic field parameter B. With the
increase of the coupling strength, the upper bound of B for the
existence of the oscillation solution decreases with α for the
negative α, and almost increases for the positive one. These
results imply that the scalar field coupling to the Einstein
tensor yields much richer effects on the motion of particles.
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Fig. 9 The bifurcation diagram with magnetic field parameter B for
different α in the Schwarzschild–Melvin black hole spacetime. The set
of initial conditions for the graphics are {r(0) = 9.7; ṙ(0) = 0; θ(0) =

π
2 } in the top two rows and are {r(0) = 12; ṙ(0) = 0.1; θ(0) = 2π

5 } in
the bottom two rows

4 Summary

In this paper we present firstly the equation of motion for
a test scalar particle coupled to the Einstein tensor in the
Schwarzschild–Melvin black hole spacetime through the
short-wave approximation. We have studied the dynami-
cal behaviors of the motion of the test coupled particles
by numerical method. Through analyzing Poincaré sections,
power spectrum, fast Lyapunov exponent indicator and bifur-

cation diagram, we probe the effects of the coupling between
scalar particle and Einstein tensor on the chaotic motion of
the particles in the Schwarzschild–Melvin black hole space-
time. For fixed B = 0.02, we find that the chaotic region in
Poincaré sections decreases monotonously with the strength
of the coupling intensity for the negative, but it first decreases
and then increases in the case with the positive α. For fixed
α = 20, one can find with the increase of the magnetic induc-
tion B, the chaotic region of this system first increases and
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then decreases. The bifurcation diagram shows that the sys-
tem undergoes a series of processes from regular to chaotic
with the increase of α. Moreover, we also find that the
lower bound of α for the existence of the oscillation solu-
tion increases with the magnetic field parameter B. With the
increase of the coupling strength, the upper bound of B for
the existence of the oscillation solution decreases with α for
the negative α, and almost increases for the positive one.
These results show that the coupling between scalar parti-
cle and Einstein tensor yields richer effects on the motion of
the particles in the Schwarzschild–Melvin black hole space-
time. It would be of interest to generalize our study to the
cases of the coupling with other curvature tensors, such as
Weyl tensor etc. Work in this direction will be reported in the
future.
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