
Unprotected Computing : A Large-Scale Study
of DRAM Raw Error Rate on a Supercomputer

Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal
Barcelona Supercomputing Center, Barcelona, SPAIN

Simon McIntosh-Smith
University of Bristol, Bristol, UK

Abstract—Supercomputers offer new opportunities for scien-
tific computing as they grow in size. However, their growth also
poses new challenges. Resilience has been recognized as one of
the most pressing issues to solve for extreme scale computing.
Transistor scaling in the single-digit nanometer era and power
constraints might dramatically increase the failure rate of next
generation machines. DRAM errors have been analyzed in the
past for different supercomputers but those studies are usually
based on job scheduler logs and counters produced by hardware-
level error correcting codes. Consequently, little is known about
errors escaping hardware checks, which lead to silent data
corruption. This work attempts to fill that gap by analyzing
memory errors for over a year on a cluster with about 1000 nodes
featuring low-power memory without error correction. The study
gathered millions of events recording detailed information of
thousands of memory errors, many of them corrupting multiple
bits. Several factors are analyzed, such as temporal and spatial
correlation between errors, but also the influence of temperature
and even the position of the sun in the sky. The study showed
that most multi-bit errors corrupted non-adjacent bits in the
memory word and that most errors flipped memory bits from
1 to 0. In addition, we observed thousands of cases of multiple
single-bit errors occurring simultaneously in different regions of
the memory. These new observations would not be possible by
simply analyzing error correction counters on classical systems.
We propose several directions in which the findings of this study
can help the design of more reliable systems in the future.

I. INTRODUCTION

High-performance computing (HPC) is an important tool
for scientific discovery. Next generation supercomputers will
achieve unprecedented performance thanks to millions of com-
puting cores working on the same scientific problem. However,
as these machines grow, new problems arise. Reliability is
considered one of the most challenging obstacles to achieve
exascale computing [1]. The growing number of components is
increasing the frequency at which supercomputers experience
failures. If each processor of a machine has a mean time to
failure (MTTF) of 25 years [2], then a supercomputer with
one hundred thousand of those processors will have a mean
time between failures (MTBF) of only two hours.

Besides the number of components, the computing through-
put of each component is also increasing. This is achieved by
embedding more transistors in each computing device through
a process called transistor scaling. While this has certain
benefits, decreasing feature size also decreases the critical
charge (i.e., QCrit) required to change the logic level of a
circuit. Such changes are called upset events and lead to data
corruption, which are generally called soft errors in HPC. Such

upset events can have several root causes, such as pollution in
the packaging of the device, excessive temperatures or even
energetic neutrons originating from cosmic rays [3].

The situation is worse due to power constraints [4]. To limit
the power consumption of devices, industry manufacturers
are decreasing voltages, which again increases the probability
of data corruption [5], [6]. While most modern devices are
protected against data corruption with mechanisms such as
error correcting codes (ECC), it is unclear whether such
mechanisms will be enough to prevent data corruption from
occurring at extreme scale [7]. A recent study [8] identified
DRAM as more of a challenge for exascale compared to
caches composed of SRAM. In addition, such mechanisms are
not flawless, meaning that certain corruptions (i.e., more than 2
corrupted bits) could occur without being detected, leading to
silent data corruption (SDC). Little is known about SDC rates
in supercomputers today, because of the very nature of such
events (i.e., silent). SDC is often estimated as more damaging
than fail-stop errors because they could lead to scientific
results being produced that were unknowingly erroneous [9].

While some studies [10], [11], [12] have analyzed the error
rates on standard HPC systems, they often rely on scheduler
logs and ECC counters. Manufacturers estimate the DRAM
raw error rate by disabling ECC and exposing the DIMMs
to particle accelerators [13]. However, those estimates are not
exact as those accelerated soft error studies fail to consider
factors such as the impact of temperature or neutron flux
variation due to the sun’s position relative to a memory device.
In this work we adopt a more radical approach: we perform
a large-scale DRAM raw error rate study on an unprotected
supercomputer. To reach this goal, we strip the ECC off a
prototype computing node and build a cluster with almost a
thousand of such unprotected nodes. The cluster is dedicated
for debugging, benchmarking and fault tolerance research.
We monitored memory errors in this system for over a year
and perform a detailed analysis of the statistics that were
gathered. In addition to collecting the statistical data about
the frequency and nature of the observed memory errors,
we attempt to uncover patterns and find correlations. The
objective is to leverage that knowledge to understand failure
patterns and take pro-active adjustments that could lead to
higher user-perceived MTBF at large scale. Also, recording
and analyzing the DRAM raw error rate (as opposed to error
rate of DRAM shielded by ECC or chipkill) could help guide

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c© 2016 European Union

future design of hardware and software resiliency mechanisms
for DRAM. Ultimately, this analysis could give us a glimpse
of the failure rates for extreme scale systems if we do not
reach the reliability level desired at that scale.

The contributions of this work are as follows.
• We monitor DRAM memory errors 1 on a system with

over 900 ECC-less nodes for over a year. We gather
millions of events and log the location, time, temperature,
memory address and other conditions of the system.

• We analyze the gathered data and present a statistical
study about soft errors in the prototype machine, includ-
ing error frequency, corruption magnitude and MTBF for
different nodes in the system. We present evidence that
demonstrates a strong spatial and temporal correlation
between DRAM memory errors.

• We study multiple factors such as temperature and the
position of the sun in the sky that could affect the
behavior of the machine and make it more prone to
DRAM memory corruptions. We present evidence which
suggests that multi-bit errors are more likely to occur
during day time with a high peak when the sun is at the
highest point in the sky.

• We discuss some clear correlations and propose some
mechanisms to adapt and avoid failures. We classify
periods of time with high fault rates and suggest a
shortening in the checkpoint interval in order to adapt to
the reduced MTBF. In addition we propose a quarantine
strategy to cope with failure bursts and intermittent faults.

• We study intermittent faults, bursty periods of failures,
and multiple potential cases of silent corruption. We
provide detailed information showing which bits are
flipped for multi-bit errors and we found that most multi-
bit errors occur in non-adjacent bit positions in a word.

• We present evidence of multiple SDC occurring in a
completely uncorrelated fashion, proving to be extremely
hard to detect and/or predict.

The rest of this paper is composed as follows. Section II
describes the prototype machine and explains the data collec-
tion methodology. Section III analyses the data gathered from
different perspectives and tests multiple correlation hypothe-
ses. Section IV discusses correlations and proposes several
methods to adapt and avoid faulty behaviours. Section V gives
an overview of the related work. Section VI concludes the
paper and provides some future research directions.

II. HUNTING FOR MEMORY CORRUPTIONS

Our goal is to characterize DRAM memory errors on a
system without hardware ECC. To reach this goal we need
a physical machine with the required hardware characteristics
that will allow such a study. Given that the machine does not
detect errors at the hardware level, we also need to develop
a software level memory corruption detection mechanism that
could run for long periods of time to gather enough data to
guarantee statistical significance. Last but not least, we need

1For the remainder of this paper we denote memory to mean DRAM
memory (thus excluding on-chip caches)

a rigorous and clear methodology about how to recognize and
define failures for this study.

A. The Prototype

The installed prototype has system-on-chip (SoC) nodes,
each one with 2 ARM cores running at 1.7GHz, 4GB of
low-power DRAM (LPDDR) without ECC and one GPU.
We note that a lower supply voltage makes the chip more
susceptible to soft errors or silent data corruption since the
critical charge to flip a bit is lower with lower voltage. The
supply voltage of LPDDR is lower than DDR at the same
technology node (for example 1.2V for LPDDR3 versus 1.5V
for DDR3). Since supply voltage is going to scale down for
exascale technology nodes (10nm and below), the reliability
qualification conducted on LPDDR of current technology is a
good proxy for the future exascale era DDRs.

There are 15 SoC nodes packaged into one blade and the
system is composed of 72 blades, for a total of 1080 nodes.
All nodes together with the network switches are hosted in 2
racks, each rack has 4 chassis and each chassis has 9 blades.
The theoretical peak performance of the system is 35 TFLOP/s
double precision. The machine is located in Barcelona at an
altitude of about 100 meters above sea level.

Since this prototype machine is used for multiple research
projects, one chassis (i.e., 9 blades) was dedicated for another
study and did not take part on this memory reliability char-
acterization, leaving only 945 nodes available for the study.
In addition, 9 nodes were dedicated as login nodes and other
nodes had permanent hardware failures. In total, from the 1080
nodes, 923 were continuously scanned for memory errors from
February 2015 to February 2016 inclusive.

B. Memory Error Scanning Tool

In order to characterize the memory errors in this prototype,
we started a memory reliability characterization study in
February 2015 using a simple memory scanning tool. For
each node, the memory scanning tool creates log entries when
it starts/stops scanning and when it detects a memory error.
These log entries are stored in log files with each node having
a separate log file. We orchestrate the execution of the memory
scanner tool only when the node is idle (i.e., not executing any
job) by using the job scheduler and the epilogue and prologue
scripts. When a job completes, an epilogue script is run
automatically. The epilogue script contains a command that
triggers the start of the memory scanning tool. The memory
scanner continues executing on the node until a new job is
scheduled. When a new job is scheduled on that node, before
the job starts, a prologue script is executed. This prologue
script contains a command which terminates the execution of
the memory scanner by sending a SIGTERM signal.

When the memory scanner starts on a node, it attempts
to allocate 3GB of memory, which is the largest amount of
memory applications can allocate on a node in this machine
(the rest is dedicated for the OS and other libraries). If the
allocation fails (because of memory leaked by a previously
running application), the requested amount of memory for

allocation is decreased by 10MB and repeated until a suc-
cessful allocation or until the amount for allocation becomes
0MB. If memory is allocated successfully, a START log entry
is created. The START log entry contains a time stamp, the
amount of allocated memory, host name and the temperature
of the node. If memory allocation fails, that information is also
logged in a separate file and contains a time stamp and the
host name. After successful memory allocation, the memory
scanner begins the execution of an infinite loop. Inside the
loop every memory word is written with a specific value (i.e.,
0x00000000). At every iteration, the values are checked and
updated with the opposite value (i.e., 0xFFFFFFFF if the
previous one was 0x00000000 and vice versa). If the expected
and actual values do not match, an ERROR log is created.
The ERROR log contains the time stamp, host name, virtual
address, actual value, expected value, temperature and physical
page address. We also tested another way to affect values:
we start with 0x00000001 and then keep increasing by 1 at
every iteration. Most of the study was done using the former
method in an attempt to stress equally all the bit positions of
the memory. While we acknowledge that these write patterns
might not be representative of real world applications, it is
hard to capture the memory write patterns of a wide variety of
HPC applications. Both value affecting strategies log exactly
the same data when an error occurs. The memory scanner
exits the infinite loop when it receives a SIGTERM signal.
Then it logs an END command. The END command contains
a time stamp, host name and the temperature of the node.
In some rare cases, the node was manually rebooted and no
END command was logged. This will produce a START event
followed by another START event, making it impossible for
us to know how many hours the memory monitor was running
(i.e., when the hard reboot occurred). In such scenario, we took
a conservative approach and we assumed 0 hours of memory
monitoring, which leads to a slight underestimation of the total
number of hours the system was monitored.

C. Error Extraction Methodology

In addition to the prototype system and the detection tool,
it is critical to explain the error accounting methodology. As
explained above, the scanning tool logs every error observed
in the system. However, not every error log is an independent
error. In many cases, a fault in a memory cell manifests
as many consecutive error logs over time, but they are all
related to the same original root cause: a fault in one memory
cell. Even if such a fault produced many incorrect values for
thousands of consecutive iterations, we count this as one
single memory error 2.

Another special case that requires particular attention is
when in one single iteration we observe multiple single-
bit errors in different memory addresses. Such errors would
manifest as multiple ECC corrections in a classical system
with ECC but given that they occur at the same time, it would
not be correct to consider them as multiple independent errors.

2Given that we filter multiple error logs originating on the same root cause
and count them as one single fault, we use the terms memory fault and
memory error interchangeably in the reminder of this paper

In fact, they are highly likely to originate from the same root
cause, as we will show later. Thus, we also analyze such
simultaneously occurring events (See Section III-B).

III. FAILURE ANALYSIS

The study lasted for over a year, accumulating over 4.2
million node-hours of error monitoring and logging over 25
million error logs from over 900 nodes with ECC-less low-
power DRAM. The length and scale of this study were care-
fully decided in order to guarantee the statistical significance
of this DRAM memory error characterization.

A. Memory scanned

The study covered a total of 12, 135 Terabyte-hours of
memory analysis. Figure 1 shows the total number of hours
that each node was scanned during the entire period of the
study. In the figure, we map the system in 63 blades with 15
SoC per blade, each SoC being an independent node. We see
that the first blades do not perform any error monitoring in the
first SoC; this is because they are dedicated as login nodes.

Fig. 1. Hours each node was scanned for memory errors

We also notice that the SoC 12 of most blades did not get
much monitoring time. This is due to the fact that those SoC
showed significant temperature issues because of their location
in the rack. Given that they tend to overheat, and to produce
heat for other nodes, the system administrators decided to turn
them off for long periods of time. Blade 33 was also shutdown
during the year due to hardware issues. We also notice that the
number of monitoring hours is not necessarily the same for
all the SoCs of a given blade. There are a few SoC that never
got scanned as they were shutdown due to hardware issues.
Most nodes got about 5000 hours of error monitoring, which
is more than half of the total period of the study (i.e., about
7 months out of 13). This large number of monitoring hours
gives us a fair degree of statistical confidence on the results.

Fig. 2. Amount of memory analyzed per node (Terabyte-Hours)

The number of hours each node was analyzed gives an idea
of the amount of memory scanned in the system. However, a
node with more analysed time does not necessarily translate
into more memory scanned. This is because for each scan,
the amount of memory could be different (see Section II-B).
Figure 2 shows the total terabyte-hours that each node scanned
during the period of the study. We observe a strong correlation
between this figure and the previous one, showing that a node
with more hours of monitoring also scanned more memory, but
we also see the presence of a few more marked differences
between SoCs, compared to the previous figure. Overall, the
vast majority of nodes scanned about 15 terabytes-hours,
showing a rather homogeneous distribution.

B. Failure Rate

At the end of the study, the error monitoring tool had
logged over 25 million errors. Such a large number of errors
is completely out of the expected failure rate for the studied
prototype in normal conditions (i.e., machine located at sea
level, proper cooling system, etc.). As previously mentioned,
not every error log is an independent memory error (see
Section II-C). Moreover, a simple analysis showed that over
98% of the observed failures came from the same node.
This node was a faulty node that was removed from the job
scheduler pool and is a classic case of a node that gets replaced
in production systems. Thus, this node was also removed
from the error characterization study. After these filters, the
system logged over 55, 000 independent memory errors, which
corresponds to a node experiencing a memory error every 41
hours, or the cluster experiencing an error every 10 minutes.
This raw failure rate is somewhat larger than expected but it
can be explained as we will see in the rest of this study.

Fig. 3. Number of independent memory errors for each node

To analyze how the memory errors were distributed in the
system, we plot another heat map this time showing the raw
number of memory errors observed for each node during the
study. Figure 3 shows the results using a logarithmic color
scale because the difference in the number of failures varies
drastically from some nodes to others. A first observation is
that most of the nodes did not show any failure during the
study (white color in the figure). Also, most nodes with failures
had only one failure (dark blue spots). A few other nodes had
thousands of failures (yellow, orange and red spots). Note that
these represent the raw number of errors and does not take into
account the amount of time each node was scanned for errors.
However, the most faulty nodes show orders of magnitude

higher error rates than most other nodes, much higher than
the difference of time scanned between nodes.

C. Multiple Simultaneous Corruptions
In computing systems, it is well known that corruption

can affect multiple bits at the same time. Memory devices
protected with ECC often make use of single error correc-
tion/double error detection (SECDED) codes to guarantee the
correction of single-bit errors and the detection of double-bit
errors. Note that in some cases, SECDED could also detect
more than 2 bits getting corrupted, depending on which bits are
affected, but this is not guaranteed. It is usually assumed that
multi-bit errors are much less frequent than single-bit errors.
Most modern devices protected with ECC have counters that
count the number of single-bit errors corrected and multi-bit
errors detected.

During this study we observed a total of 85 failures which
corrupted multiple bits of a memory word. From those 85
cases, 76 were double-bit errors, which would be detected in
a SECDED-protected system, potentially producing a process
or system crash depending on the location and severity of the
error in system memory space. The other 9 memory errors
corrupted more than 2 bits, which could pass undetected by
the ECC protection, leading to silent data corruption.

TABLE I
MULTI-BIT CORRUPTIONS AFFECTING THE PROTOTYPE.

Number bits
corrupted

Expected Value Corrupted Value Ocurrences Consecutive

2 0x000016bb 0x000016b8 1 Yes
2 0xffffffff 0xffffeeff 2 No
2 0x000003c1 0x000003c2 2 Yes
2 0xffffffff 0xffff7dff 4 No
2 0xffffffff 0xfffff5ff 4 No
2 0xffffffff 0xfffff3ff 7 Yes
2 0xffffffff 0xfffff9ff 10 Yes
2 0xffffffff 0xffff77ff 10 No
2 0xffffffff 0xffff7bff 36 No
3 0xffffffff 0xffff75ff 1 No
3 0xffffffff 0xfffff1ff 1 Yes
4 0x00000461 0x00006e61 1 No
4 0x00002957 0x00002958 1 Yes
4 0x000071b2 0x00007100 1 No
5 0x000002e4 0x00000215 1 No
6 0x00006ab4 0x00006a5a 1 No
8 0xffffffff 0xffffff00 1 Yes
9 0x00000058 0xe6006358 1 No

Given that the memory scanning tool logged the expected
and the corrupted value, it is possible to give a detailed
list of the multi-bit errors observed in the system. Table I
shows the detailed information of all the observed multi-bit
errors. The largest number of bits that was corrupted on a
memory word was 9, which is somewhat unexpectedly high.
Interestingly enough, the majority of multi-bit errors did not
corrupt consecutive bits. In fact, 3 bits is the average distance
between corrupted bits in the same memory word and the
maximum observed distance is 11 bits for this system. This
could be due to DRAM layout spreading the adjacent bits of
the word. Usually this scrambling is done to avoid resonance
on the bus. This observation suggests that correcting codes
optimised for adjacent bit errors are less effective.

It is also worth highlighting that about 90% of corrupted bits
switched from 1 to 0 and only 10% the other way around. This
is an indication that in the large majority of corruptions, the
affected memory cell loses some charge. Another observation
is that the majority of the multiple bit corruptions occur in the
least significant bits of the word.

Fig. 4. Simultaneous memory errors VS multi-bit errors

One of the advantages of running this experiment on a
prototype machine without ECC and with a memory scanning
tool that does not crash when corruption happens, is that it
is possible to observe error patterns that would not be visible
otherwise. For instance, counting the ECC single-bit correc-
tions in a classical system could lead to a wrong perception
of how frequently multiple parts of the memory get corrupted
simultaneously. Given that the memory scanning tool logs
the exact timestamp of each detected error, it is possible to
find when multiple corruptions affect different memory words
simultaneously. This study revealed that over 26, 000 corrup-
tions occurred simultaneously to other corruptions in the same
node. Over 99.9% of those were multiple single-bit corruptions
that occurred simultaneously in different parts of the memory
of the same node. These would usually be observed as single-
bit corruptions in standard systems because they affect only
one bit per ECC word, but in reality they affect multiple bits on
the same node. In fact, it was found that one such failure could
corrupt up to 36 bits spread across different memory words. In
addition, 44 double-bit corruptions happened simultaneously
with a single-bit corruption in another region of the memory.
Similarly, the study revealed 2 cases of triple-bit corruption
happening simultaneously to a single-bit corruption. Moreover,
we observed a case of two double-bit corruptions occurring
simultaneously. In other words, most double-bit errors were
accompanied by other errors occurring simultaneously in other
regions of the memory. We suspect that the affected memory
cells are in physical proximity or alignment (row, column,
bank) however the memory controller maps them to different
address words. These observations suggest that the root cause
of such simultaneous errors could be linked to local hardware
defects due to manufacturing variability [14], but they could
also be related to external factors that affect multiple regions
of the devices at the same time.

If one would consider these simultaneously occurring errors
as multi-bit corruptions, then the number of multi-bit errors is

much higher. Figure 4 shows the number of multi-bit errors
depending on whether we count multi-bit errors in a per node
basis (i.e., regardless of how they affect different memory
words), and in a per memory word basis (i.e., only those
corruptions that affect multiple bits of the same memory
word). We note that per node multi-bit errors are orders of
magnitude more frequent than per memory word multi-bit
errors, which is expected given the difference in size (i.e., 3GB
vs 32 bits). However, single-bit errors are much less frequent
on a per node basis, in comparison to per memory word single-
bit errors. This might seem counter-intuitive: one would expect
per node errors to always be higher or equal to per memory
word equivalents given the difference in memory size, but the
reason for this is that thousands of per memory word single-
bit errors occur simultaneously in other memory regions of the
same node, therefore they are counted as multi-bit errors in
the per node analysis. That is to say, the tens of thousands of
per memory word single-bit errors become per node multi-bit
errors, keeping the total number of corruptions constant.

For the remainder of this paper, we consider as multi-
bit errors, only those errors affecting multiple bits of the
same memory word (i.e., the standard definition of multi-bit
errors). Nevertheless, it is interesting to highlight that phe-
nomena causing data corruption in spatially distinct locations
in DRAM is much more frequent than previously assumed.
Also, ECC event counters could be misleading if they do not
take into account time correlations between multiple events.
More importantly, single-bit errors detected by ECC are likely
to be accompanied by other single-bit errors in its proximity
and in some cases, linked to simultaneous uncorrectable errors
in the same node. This correlation gives us opportunities to
detect faulty behaviour before catastrophic failures occur.

D. Relation Between Detectable and Undetectable Errors

The previous analysis gives us some correlations between
correctable and uncorrectable (detectable) errors. Now, we try
to analyze the relation between detectable and undetectable
errors. In particular, we focus on errors with more than 3
bit-flips (i.e., the last 7 lines of Table I). We looked at the
logs of the nodes in which those undetectable errors occurred,
in search for other detectable errors occurring nearly at the
same time than the undetectable errors. Surprisingly, not only
we did not find any errors occurring at the same time, but
in addition, those nodes did not show any other error during
the entire study. Those 7 undetectable errors occurred in 5
different nodes that did not show any other error in the whole
period. In fact, 4 of those undetectable errors occurred in a
node that had only that one error. Moreover, other nodes did
not log any strange activity at the time of those undetectable
errors. That is to say, those cases of undetectable errors are
extremely silent in that they are both undetectable by hardware
mechanisms and completely uncorrelated to detectable errors.

We noticed that 6 of these errors occurred before we turned
off the overheating nodes and 4 of the concerned nodes
are located near the SoC 12 (i.e., the overheating SoCs).
Overheating could have partially damaged part of the memory
making them more prone to SDC. Unfortunately, these errors

occurred before we started login the temperature of the system,
so we do not know the temperature of the concerned nodes at
the moment of the corruption. However, temperature seems to
be an unlikely direct cause given that no other errors where
logged. Independently of the root cause, it is surprising that no
any other corruption was detected in those nodes or in other
nodes at the same time.

E. Memory Errors VS Time of Day
Given that all the error occurrences were logged with their

corresponding date and time, we can plot the number of
memory errors observed at each hour of the day. Figure 5
shows the total number of observed memory corruptions for
each hour of the day, for different numbers of corrupted bits.
Note that corruption with more than 5 bit-flips are rare, thus
we group them all in a single group (”6+”).

Fig. 5. Number of errors per hour for different number of corrupted bits

Clearly, single bit-flips (magenta) are the predominant type
of memory errors, as shown in the analysis above. We observe
a rather homogeneous distribution of memory errors through
the day; that is to say, when we look at all the corruptions
logged during our study, we do not find any particular time of
day where memory errors are more or less frequent.

Fig. 6. Number of memory errors per hour for multi-bit corruptions

Given that single bit-flips are so predominant, we perform
a second analysis in which we filter single bit-flips and we
focus on multi bit-flips only. This is plotted in Figure 6. We
found that the number of multi-bit corruptions between 7am
and 6pm is double the number of multi-bit corruptions during
the night. The distribution seems to have a bell shape with

its highest point at noon. This got our attention because, in
contrast with single-bit corruptions, there seems to be a high
correlation between the position of the sun and the number of
multi-bit corruptions. It is known that neutron showers, caused
by the interaction between the solar wind and our atmosphere,
can affect electronic components [15], [16]. The results of this
study point in that direction, and suggest that multi-bit memory
errors are mostly caused by cosmic rays. This is also supported
by the previous analysis showing that multi-bit errors are often
accompanied by errors in other memory regions.

F. Memory Errors VS Temperature

We study whether there is any correlation between mem-
ory errors and high temperatures. We started logging the
temperature of the nodes in April 2015, so during the first
months of the study we do not have information about the
temperature when an error occurred. Nonetheless, we have
over nine months of data with thousands of memory errors and
their respective node temperature, which give as a statistically
significant dataset. The room temperature was maintained
between 18◦C and 26◦C during the whole period of the study.

Fig. 7. Memory errors vs temperature for different numbers of corrupted bits

The temperature of the node for the different types of
memory errors (i.e., single bit-flips, etc.) is shown in Figure 7.

Fig. 8. Number of errors vs temperature for multi-bit corruptions

There is a small set of memory errors that show a node
temperature over 60◦C which is higher than the normal work-
ing temperature for a compute node and those errors could be
temperature induced. Nevertheless, most errors happen when
the node has a temperature between 30◦C and 40◦C, which

Fig. 9. Total amount of memory scanned per day (in Terabyte-Hours)

Fig. 10. Number of errors per day for different number of corrupted bits

is a nominal temperature for a computing node. Note that the
memory scanning tool does not stress the CPU, hence the low
temperatures. Thus, we observe no high correlation between
temperature and high memory error rates in our test system.

Again, we do a second study in which we filter single-
bit corruptions and focus on multi-bit corruptions and their
respective node temperature. As we can see on Figure 8, all
multi-bit corruptions occur at nominal temperatures and we do
not see any correlation between high temperatures and multi-
bit errors (for those errors with temperature information). It is
important to note that the SoC 12 of the blades were turned off
due to temperature issues. Also, our memory error monitoring
program does not stress the CPU, hence the low temperatures
observed. This analysis, does not challenge previous findings
that show correlations between high temperature and errors,
and we do not claim that such a correlation does not exist.
We simply state that given this error gathering methodology,
the hardware is not stressed enough to expose that phenomena
and this is reflected in the data gathered.

G. Memory Errors VS Memory Scanned

The next analysis aims to study if there is any correlation
between the amount of memory scanned per day and the
number of memory corruptions observed each day. Figure 9
shows the number of terabyte-hours scanned each day. We
observe large periods of intense memory scanning in August,

September and December which seem to coincide with the low
activity periods of academic vacations. We also observe lower
levels of memory scanned from April to July which seems to
coincide with the last part of the academic year.

If we look at how many memory errors were observed each
day, we get a rather different picture. As shown in Figure 10,
we can see that there are more memory errors from September
to December and rather fewer ones in the first half of the year.
To quantify this contrast we performed a correlation analysis
between both datasets using Pearson correlation. We found that
these two datasets have a Pearson correlation of −0.17966
with a p-value of 0.0002; this is a rather low level of anti-
correlation between the two datasets. This demonstrates that
the memory scanning methodology does not influence in any
way the number of memory errors observed.

A second analysis filtering the single-bit corruptions and
plotting only the multi-bit memory errors observed each day
is shown in Figure 11. Multi-bit corruptions are rather rare, and
they only occur a few times during the year, except for several
days of unusually high rates of multi-bit errors in November
2015. However, during those dates the system also experienced
high rates of single-bit errors, and those might be correlated
(see Section III-I). We also observe two undetectable errors
occurring the same day in March and May. Although they
occur on the same day, those events are separated by hours.

Fig. 11. Number of errors per day for multi-bit errors

Fig. 12. Number of errors per day for different nodes

H. Spatial Correlation
The space correlation between memory errors can show

evidence for different root causes and provide ideas for failure
prediction and ultimately failure avoidance. Figure 12 shows
memory errors for the three nodes with the highest error rate
in the system and all other nodes in another group (purple).
Clearly, node 02− 04 (red) is responsible for the majority of
memory errors (over 50, 000 of them). The errors seem to stop
abruptly toward the end of November, re-appear shortly for a
couple of days in December and then disappear again until
the end of the study. However, a detailed analysis showed that
the reason for those silent periods is due to the fact that no
memory monitoring was done on that node during those dates.
This means that node 02−04 started having errors from August
and its behaviour degraded to over a 1000 memory errors per
day in November without any sign of improvement.

Thanks to the detailed information recorded for the errors,
it was possible to count the number of different memory
addresses that were affected by errors. Over 11, 000 addresses
showed memory corruption with almost 30 different corruption
patterns, with the vast majority of them corresponding to single
bit-flips switching from 1 to 0. Such large numbers of locations
affected in such a random way suggests that corruption might
have been happening in another component of the node and not
in the memory itself, but it could also be due to a loose DIMM
connection or even some capacitative noise in one of the chips.

Such permanent failure would force system administrators to
replace the failed component in production systems.

The other two nodes (i.e., 04 − 05 & 58 − 02) showed
a completely different behaviour. Although, they were re-
sponsible for over five thousand memory errors, absolutely
all the memory errors were identical. In other words, the
corrupted bit was the same in 100% of the cases (although
in a different bit position for each node). This suggests that in
these two cases, the intermittent memory errors were caused
by a faulty memory cell that would occasionally leak charge.
This could be due to what is termed as a weak bit. Those
bits are faulty due to manufacturing variability, and normally
they are caught during burn-in [17] which accelerates device
aging by subjecting the chips to maximum voltage at very
high temperature - typically at 120◦C - in test ovens before
product is shipped. However, error-detection coverage of burn-
in to isolate weak bits is not 100% effective, and so sometimes
DRAM devices are shipped with weak bits. The manifestation
of this error only affects a single bit, and are therefore
corrected by ECC. We note that if we did the experiment with
ECCs we might not be able to see this phenomenon because
of the lack of information about which bit was corrupted.

All other nodes combined (i.e., purple) had less than 30
memory errors. This shows a very strong spatial correlation
between memory errors, with over 99.9% of errors occurring
in less than 1% of the nodes. Such an error pattern is highly

Fig. 13. Regime of the system for each day of the study

beneficial for failure prediction and avoidance. For instance,
spatial correlation information can be added into the scheduler
algorithm to avoid large high priority jobs running in nodes
with a long history of failures. A more aggressive approach
would be to run only short debugging jobs on those nodes.

I. Temporal correlation

Memory errors are not only clustered in a few nodes,
but also clustered in time, as it can be seen in Figure 12.
When a node starts having errors, many subsequent errors are
observed in the following hours. Those periods of abnormal
behaviour could be taken into account while setting resilience
parameters, such as the checkpoint interval of a long job. To
quantify the benefits of detecting periods of higher error rate,
we classify days in two categories. In normal conditions, the
system observes between one and two memory errors per day.
Days with more errors than that show when the system is
working in a degraded mode. To add a safety margin, we
consider any day with three or less errors as normal.

Given that node 02− 04 kept having errors until the end of
the study (i.e., permanent failure) we assume that such a node
would be taken offline on production systems, hence we do
not take it into account for computing the MTBF and other
similar analyses in the remainder of this paper. During the
entire period of this study, the prototype spent 77 days (18.1%
of the time) in degraded mode as opposed to 348 days with
normal behaviour. The error monitoring tool detected about 50
memory errors occurring during normal days, so the MTBF is
167 hours (i.e., more than six days). In contrast, almost 5, 000
errors were observed during the days on which the system was
working in degraded mode; giving as a result a MTBF of only
0.39 hours (i.e., less than 30 minutes). Figure 13 shows in red
the days the system suffered from a high error rate.

When the system starts to experience several failures in a
short period of time, it is relatively simple to foresee future
failures using the spatio-temporal analysis above. This high
spatio-temporal correlation has been observed in several recent
studies [2], [18], [19]. Thus, the system can adapt to the new
MTBF by increasing the checkpoint frequency or using more
robust algorithms with extra safety checks.

IV. FAILURE AVOIDANCE AND RESILIENCE DIRECTIONS

Given the high spatio-temporal correlation between memory
errors shown in the previous section, we propose putting com-
pute nodes in quarantine as soon as they show an abnormally
high error rate. Putting nodes in quarantine has been proposed
in the past for nodes that have a long history of failures [20].
What this study suggests is that given the high spatio-temporal
correlation of this type of error, it is preferable to put the node
in quarantine as soon as it shows abnormal behaviour, instead
of waiting for it to create a long failure history.

TABLE II
SYSTEM MTBF FOR DIFFERENT QUARANTINE PERIODS

Quaratine period (Days) Number of errors Day-Nodes in Quarantine System MTBF (Hours)

00 04779 000 002.1
05 00131 090 077.9
10 00095 100 107.4
15 00077 135 132.5
20 00067 140 152.2
25 00073 150 139.7
30 00065 180 156.9

We implemented this quarantine algorithm in a simulator
and fed it with the error logs gathered during this study. The
time a node stays in quarantine is a parameter that can be
set by the system administrator. Long quarantine periods can
prevent many failures but it can also decrease the productivity
of the system. Table II shows the number of failures, the
MTBF and the node-days spent in quarantine for different
quarantine periods. The results shows that we can obtain a
MTBF of almost 157 hours for 30 days of quarantine and
the system spends only 180 node-days in quarantine. Please
note that this does not mean that the whole system was in
quarantine for 180 days, but rather that during 180 days one
node was in quarantine from the 945 nodes in the system.
This can be translated as a loss in node availability of lower
than 0.1% for the whole system. As we see, the number of
memory errors occurring per day is reduced dramatically, as
any node showing abnormal behavior is immediately put in
quarantine. By leveraging the spatio-temporal correlation of
memory errors, it is possible to increase the system MTBF by
almost three orders of magnitude while imposing a negligible

decrease in productivity. This, however, does not completely
remove the possibility of SDC, which has been shown to be
a real concern given the results presented in Section III-D.

Another simple strategy that could partially solve some
cases of intermittent memory errors is page retirement [21].
This mechanism could be useful in particular for nodes
showing evidence of a weak bit. Nonetheless, the evidence
of multiple single-bit corruptions happening simultaneously
in different regions of the memory, leads us to conclude that
such a technique would not be effective in all cases.

We acknowledge that the ultimate strategy to efficiently
cope with all type of memory errors at extreme scale (includ-
ing SDC) is not clear yet, but large-scale detailed research
studies of unprotected systems, like this one, are important
for the design, implementation and testing of future resilience
mechanisms at extreme scale.

V. RELATED WORK

The HPC community has arrived to the consensus that
reliability is one of the most important challenges to achieve
exascale computing [22]. Several reports [23], [1] have high-
lighted the importance of large-scale failure characterization
studies in order to drive technology design and development.
In particular, SDC is known to be particularly harmful for
these systems and their applications [24], [25], [26].

Several research works [11] have studied the failure rates of
HPC systems. Some studies focus on disk failures [27] while
others try to analyze all type of failures [10]. Also, a large-
scale study [28] of DRAM errors on Google datacenters was
done some years ago, showing that error rates are higher than
previously reported. Of particular relevance are these large-
scale studies of DRAM errors in production systems [21],
[29] with a full characterization of hard and soft errors in
production systems. These studies are important milestones
given the scale of the analysis (i.e., millions of DIMM days,
hundreds of Terabyte-years). Unfortunately, since the analysis
was based on pre-processed failure logs of detected failures,
little information is revealed about multi-bit and silent errors.

Temporal and spatial correlation between failures have been
analyzed quite extensively in recent years [19], [2], [30]. The
findings of those research works are of major importance for
the efficient utilization of extreme scale production systems.
They have demonstrated the huge gains that can be obtained
by taking into account the spatio-temporal correlation of
failures. However, those studies do not target memory errors
specifically, hence a detailed analysis of corruption errors
(including silent errors) is out of the scope in those papers.

A study [31] of single-bit and multi-bit errors on DRAM
memory showed that chipkill ECC offers 42x higher reliability
than SECDED ECC. The study also found that DRAM are sus-
ceptible to multi-bit errors affecting an entire column or row.
In addition, DRAM and SRAM faults in HPC systems have
been analyzed and compared [32], in particular to understand
the impact of aging on those devices. Interestingly, the authors
found a marked shift from permanent to transient failures in
the first years of usage. They also found a correlation between
SRAM faults and rack positioning. Studies in production

systems are critical for the understanding of failure rates in
HPC, but they are also limited by the error data gathering
methodology, as they cannot get information about which
bits are frequently corrupted or when silent errors occur. The
analysis of unprotected electronic devices has been restricted
to first-level caches [33] showing that reliability is highly
application-dependent at that level, which is consistent to
different application having different cache miss and cache
eviction rates. However, we are not aware of any other large-
scale study of unprotected low-power DRAM memory.

VI. CONCLUSION

This work shows a large-scale study of DRAM memory
errors in a low-power unprotected system. The study logged
millions of events from over 900 compute nodes for over
a year, covering more than 12, 000 terabyte-hours of error
monitoring. More than 55, 000 DRAM faults were observed,
analyzed and characterized. The study revealed the presence of
multiple single-bit errors occurring simultaneously in different
regions of the memory, affecting sometimes tens of different
memory words. In addition, multi-bit errors were shown to be
twice as likely to occur during the day time, with an important
increase at noon, which suggests that they could be correlated
to the position of the sun in the sky. Moreover, a large fraction
of double-bit errors happened simultaneously with single-bit
errors in other parts of the memory showing a correlation
between correctable and uncorrectable errors. Interestingly, the
vast majority of errors happened to switch from 1 to 0 and
not the other way around. Another finding worth noting is
that most multi-bit errors affected non-adjacent bits in the
memory word, sometimes having as much as 11 non-corrupted
bits between corrupted bits. Moreover, we present disturbing
evidence of SDC occurring in an isolated and independent
fashion, making it extremely hard to detect and/or predict.
All this detailed information can help with the design of more
reliable and efficient devices in the future by targeting specific
types of corruption, such as the ones found in this study. We
discuss some strategies that could be implemented in HPC
systems to limit the impact of DRAM errors on production.

As future work, we are planning to stress test our system by
turning on the nodes with heating issues and monitoring them
as well as their neighbors. In addition, we want to swap some
components from the most faulty nodes with some healthy
nodes to further improve the memory error characterization.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under the Mont-Blanc 2 Project
(www.montblanc-project.eu), grant agreement n 610402 and
it has been supported in part by the European Union (FEDER
funds) under contract TTIN2015-65316-P.

REFERENCES

[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” International Journal of High Perfor-
mance Computing Applications, 2014.

[2] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. IEEE, 2014,
pp. 25–36.

[3] J. F. Ziegler, M. E. Nelson, J. D. Shell, R. J. Peterson, C. J. Gelderloos,
H. P. Muhlfeld, and C. J. Montrose, “Cosmic ray soft error rates of 16-
mb dram memory chips,” Solid-State Circuits, IEEE Journal of, vol. 33,
no. 2, pp. 246–252, 1998.

[4] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. M. Chen, R. Patti,
B. Hold, C. Chakrabarti, T. Mudge, and D. Blaauw, “Exploring DRAM
Organizations for Energy-efficient and Resilient Exascale Memories,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 23:1–23:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503215

[5] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, 2005.

[6] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference
on, 2014, pp. 610–621.

[7] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A Large-
Scale Study of Soft-Errors on GPUs in the Field,” in 2016 IEEE 22nd
International Symposium on High Performance Computer Architecture
(HPCA), 2016.

[8] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems:
The good, the bad, and the ugly,” SIGARCH Comput. Archit.
News, vol. 43, no. 1, pp. 297–310, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2786763.2694348

[9] A. Geist, “How to kill a supercomputer: Dirty
power, cosmic rays, and bad solder,” 2016. [Online].
Available: http://spectrum.ieee.org/computing/hardware/how-to-kill-a-
supercomputer-dirty-power-cosmic-rays-and-bad-solder

[10] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” TDSC, 2010.

[11] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series 78:012022, 2007.

[12] C.-D. Lu, “Failure data analysis of hpc systems,” Technical Report CoRR
abs/1302.4779, 2013.

[13] L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of acceler-
ated DRAM soft error rates measured at component and system level,”
in Reliability Physics Symposium, 2008. IRPS 2008. IEEE International.
IEEE, 2008, pp. 482–487.

[14] O. S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez,
and O. Ergin, “Impact of parameter variations on circuits and microar-
chitecture,” IEEE Micro, vol. 26, no. 6, pp. 30–39, Nov 2006.

[15] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error
resilience of the IBM POWER6 processor,” IBM Journal of Research
and Development, vol. 52, no. 3, pp. 275–284, 2008.

[16] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of
single-event upset in digital microelectronics,” Nuclear Science, IEEE
Transactions on, vol. 50, no. 3, pp. 583–602, 2003.

[17] I.-G. Kim, S.-K. Choi, J.-H. Choi, and J.-S. Park, “Real impact of
dynamic operation stress during burn-in on DRAM retention time,”
Electron Devices, IEEE Transactions on, vol. 51, no. 4, pp. 603–608,
2004.

[18] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation,” in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Sympo-
sium on, Feb 2015, pp. 331–342.

[19] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell,
“Reliability Lessons Learned from GPU Experience with the Titan
Supercomputer at Oak Ridge Leadership Computing Facility,” in
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 38:1–38:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807666

[20] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale
hpc systems,” in Dependable Systems and Networks (DSN), 2015 45th
Annual IEEE/IFIP International Conference on. IEEE, 2015, pp. 37–
44.

[21] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike
twice: understanding the nature of DRAM errors and the implications
for system design,” SIGARCH Comput. Archit. News, 2012.

[22] J. Dongarra et al., “The international exascale software project
roadmap,” International Journal of High Performance Computing Ap-
plications, 2011.

[23] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Performance
Computing Applications, 2009.

[24] C. Constantinescu, I. Parulkar, R. Harper, and S. Michalak, “Silent data
corruption: Myth or reality?” in Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on,
June 2008, pp. 108–109.

[25] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
resilience of the algebraic multi-grid solver,” in Proceedings of the 26th
ACM international conference on Supercomputing. ACM, 2012, pp.
91–100.

[26] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2015, p. 72.

[27] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1, 000, 000 hours mean to you?” FAST, vol. 7, pp.
1–16, 2007.

[28] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the
wild: a large-scale field study,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 1. ACM, 2009, pp. 193–204.

[29] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller, “Understanding
soft error resiliency of bluegene/q compute chip through hardware
proton irradiation and software fault injection,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2014, pp. 587–596.

[30] T. J. Hacker, F. Romero, and C. D. Carothers, “An analysis of clustered
failures on large supercomputing systems.” in JPDC, 2009.

[31] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 76.

[32] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng shui of supercomputer memory positional effects in
DRAM and SRAM faults,” in High Performance Computing, Network-
ing, Storage and Analysis (SC), 2013 International Conference for.
IEEE, 2013, pp. 1–11.

[33] G.-H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Balancing
performance and reliability in the memory hierarchy,” in Performance
Analysis of Systems and Software, 2005. ISPASS 2005. IEEE Interna-
tional Symposium on. IEEE, 2005, pp. 269–279.

