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During the past decades, quantum mechanical methods have undergone an amaz-
ing transition from pioneering investigations of experts into a wide range of practi-
cal applications, made by a vast community of researchers. First principles
calculations of systems containing up to a few hundred atoms have become a stand-
ard in many branches of science. The sizes of the systems which can be simulated
have increased even further during recent years, and quantum-mechanical calcula-
tions of systems up to many thousands of atoms are nowadays possible. This opens
up new appealing possibilities, in particular for interdisciplinary work, bridging
together communities of different needs and sensibilities. In this review we will
present the current status of this topic, and will also give an outlook on the vast
multitude of applications, challenges, and opportunities stimulated by electronic
structure calculations, making this field an important working tool and bringing
together researchers of many different domains. © 2016 John Wiley & Sons, Ltd
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INTRODUCTION

The fundamental laws for a quantum mechanical
(QM) description of atomistic systems up to the

nanoscale are known and have been well established
for a little less than a century. Yet, there are many chal-
lenges related to the QM treatment of large systems. In
the vast majority of cases, we are still unable to solve
the fundamental Schrödinger equation for systems of
realistic sizes in such a way that the results satisfy ‘uni-
versal’ requirements of accuracy, precision, and espe-
cially predictability. Unfortunately, this also implies

that we are still far from being able to quantitatively
predict experimental results at the nanoscale.

The problems are not only related to the com-
putational complexity needed to solve the equations
of QM, there are also intrinsic obstacles. To give an
example, let us remind the so-called ‘Coulson’s chal-
lenge.’ In 1960, Coulson1 noticed that the most com-
pact object needed to characterize quantum
mechanically an N-electron system (at least in its
ground state) is the two-body reduced density matrix
(2RDM). However, it turns out that we do not know
all the necessary conditions for the 2RDM to be
N-representable, i.e., coming from an anti-symmetric
wavefunction of an N-electron system. Thus, even if
a compact (and, in principle, computationally acces-
sible) object exists, theoretical and algorithmic bottle-
necks hinder its practical usage. In 19642 and 1965,3

Kohn, Hohenberg, and Sham further reduced the
complexity by showing that the electronic density is
in a one-to-one correspondence with the ground state
energy of a system of interacting electrons, and that
such an interacting system can be replaced by a
mean-field problem of N noninteracting fermions
that provide the same distribution of the density.
These are the fundamental ideas of Density Func-
tional Theory (DFT).
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DFT has been, for more than 20 years, the
workhorse method for simulations within the solid
state community. Moreover, in spite of the fact that
DFT drastically reduces the complexity with respect
to the ab initio methods of Quantum Chemistry, the
success of such a treatment in the latter community is
undeniable. This is mainly due to the fact that, on one
hand, the quality of the exchange and correlation
functionals available permits the calculation of certain
properties with almost chemical accuracy, and, on the
other hand, there are numerous software packages,
which are relatively easy to use, that have contributed
to the diffusion of the computational approach.

During the past years, there has been a multipli-
cation of DFT software packages that are able to
treat systems of increasingly large size. This has, on
one hand, been enabled by both the advances in
supercomputing architectures and the code develo-
pers continuously improving their codes to exploit
the steadily increasing performance provided, but it
is at the same time also motivated by various scien-
tific needs. This fact clearly extends the range of pos-
sible applications to new fields, and to communities
traditionally focused on larger systems. In a similar
manner to the uptake of DFT in the Quantum Chem-
istry community, things are progressing as if we are
entering a ‘second era’ of DFT calculations, where
DFT and, more generally, large-scale QM treatments,
are susceptible to wide diffusion in other
communities.

In this review paper, we will present some of
the motivations that led computational physicists and
quantum chemists into this second era. The different
aspects will be separated into various subcategories,
while trying to give a general overview, and will be
completed by notable examples in the literature. This
inspection of the state-of-the-art will provide the
reader with an outlook on the present capabilities of
QM approaches. We will then continue our discus-
sion by presenting the key concepts that have
emerged in the last decade. These concepts are often
specific to QM calculations at large scale and are
rather different from those which are typical of tradi-
tional calculations, where the systems’ sizes are lim-
ited to a few hundreds of orbitals. These concepts are
therefore of high importance for potential users of
such advanced DFT methods.

The Need for Large-scale QM
Given the unbiased predictive power of Quantum
Mechanics, there is obviously no need to explain
why systems containing only a few atoms should be
modeled using this approach. However, for

simulations of systems at the nanoscale, composed of
many thousands of atoms, the question of the need
for a QM treatment might appear legitimate. For sys-
tems of these sizes, the electronic degrees of freedom
are seldom of interest, and the interatomic potential
might be described by more compact approaches like
Force Fields, possibly fine-tuned for describing exper-
imentally known structural and dynamical or polar-
izability properties. In other terms, the intimate
nature of the problem changes: instead of focusing
solely on the correct estimation of interactions and
correlation between electrons, one rather has to con-
centrate on the exhaustive sampling of the configura-
tion space, thereby losing the need for an intrinsic
QM description.

In addition we know that, even if a QM
approach were feasible, this would not necessarily
lead to a better description. Although the complexity
of the model is certainly higher and the description is
less biased, there are still many approximations
which are hidden in a QM calculation; therefore we
are—even for a system containing only a handful of
atoms—in general still far from chemical accuracy.
The situation for large systems will be the same or
even worse, since more severe approximations have
to be adopted. However, the need for QM calcula-
tions of large systems does not solely come from a
quest for accuracy. Indeed there are other reasons
why an ab initio description for large systems is
desirable or even crucial, and one of the purposes of
this review paper is to identify and discuss some of
these aspects.

The present-day scenario of the available meth-
odological techniques to study systems at the atomis-
tic level can be sketched in Figure 1: here various
methods are illustrated within the typical scales
where they have been usually applied. It is interesting
to notice that the size where typical QM approaches
are developed and improved is of the order of few
atoms, even though some of these concepts are then
also applied to larger systems. John Perdew intro-
duced the renowned metaphor of Jacob’s Ladder,5

where the computational complexity of the imple-
mentation of the DFT exchange and correlation func-
tional is (in principle) directly related to the accuracy
of the description, aiming at the ‘heaven’ of chemical
accuracy.

Likewise, for more than 10 years, a lot of work
has been done to extend the range of applicability of
QM methods to larger systems. The so-called near-
sightedness property6 suggested that, at least in prin-
ciple, one could exploit locality to build linear-scaling
methods that are able to reach larger scales. Initially,
the development of such computational methods was

Advanced Review wires.wiley.com/compmolsci

2 of 24 © 2016 John Wiley & Sons, Ltd Volume 7, January/February 2017



driven by the ‘academic’ purpose of verifying the
computational consequences of nearsightedness. In
Large Scale QM: Methodological and Computational
Approaches section we will overview the most impor-
tant advancements in this topic and some of the
established computational approaches in large-scale
QM. This is by no means new and there are a num-
ber of valid review papers on the topic, to which we
will also refer. Our aim is not to be fully exhaustive
on this topic as there has been many research studies
in this direction. However we would like to put the

emphasis on the fact that nowadays the panorama is
so rich and there is enough diversity in the computa-
tional approaches to claim that such a discipline is
now mature enough to be largely diffused also
among nonspecialists.

The reason for this diffusion is related to the
opportunities that a QM approach opens for systems
composed of thousands, if not hundreds of thou-
sands, atoms. On the one hand, there are quantities
which are intrinsically only accessible using QM,
e.g., all investigations dealing with electronic
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FIGURE 1 | Overview of the popular methods used in simulations of systems with atomistic resolution, showing the typical length scales over
which they are applied as well as the degree of transferability of each method, i.e., the extent to which they give accurate results across different
systems without re-tuning. On the left hand side we have the Quantum Chemistry methods which are highly transferable but only applicable to a
few tens of atoms; on the right hand side we see the less transferable (semi-)empirical methods, which can however express reliable results
(as they are parameterized for) for systems containing millions of atoms; and in the middle we see the methods—in particular linear-scaling DFT—
which can bridge the gap between the two regimes. The vertical divisions and corresponding background colors give an indication of the fields in
which the methods are typically applied, namely chemistry, materials science, biology, and an intermediary regime (‘bridging the length scale gap’)
between materials science and biology. The line colors indicate whether a method is QM or MM, while the typical regime for QM/MM methods is
indicated by the shaded region. In the top left the region wherein efforts to improve the quantum mechanical treatment are focussed, that is the
quest to climb ‘Jacob’s ladder’ by developing new and improved exchange-correlation functionals, is also highlighted. Some representative systems
for the different regimes are depicted along the bottom: the amino acid tryptophan with a multi-resolution grid, a defective Si nanotube with an
extended KS wavefunction, DNA with localized orbitals, and the protein mitochondrial NADH:ubiquinone oxidoreductase.4
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excitations7; we will present some more examples in
Large-Scale QM Applications and Multiscale Linked
Together: An Example sections. On the other hand,
large QM calculations are also needed to access error
bars and statistics of the results. An example is the
need to get good statistics among different constitu-
ents in a morphology—a task which is not possible
by implicit, classical modeling of the environment. In
addition, another aspect where first-principles QM
approaches are important is the need for validation
of non-QM approaches.

For all of these tasks, there is a typical length
scale, ranging from a few hundred to many thou-
sands of atoms, where it is important to master both
QM and classical approaches. As discussed in the
Introduction section, it was not possible in the initial
implementations of DFT software packages—for var-
ious reasons, including the available computational
resources—to reach such large length scales,
i.e., there was a ‘length scale gap’ between the maxi-
mum scale which was accessible to QM and the typi-
cal scale at which classical approaches are applied.
QM computational paradigms had to bridge this gap
in order to be used as investigation tools for systems
of many thousand atoms. However, since a few years
ago and mostly driven by the development of linear-
scaling QM methods, this gap has vanished. Thus,
intensive research and investigation in this range will
allow the set up of new, powerful computational
approaches in various disciplines such as soft matter,
biology, and life sciences.

LARGE SCALE QM:
METHODOLOGICAL AND
COMPUTATIONAL APPROACHES

The problem of treating large systems with DFT is
not a new one; indeed research into this area goes
back more than two decades.8,9 This work focused
on developing new methods with reduced scaling,
leading to the different linear-scaling DFT (LS-DFT)
codes which exist today. The emphasis was initially
on academic interest, that is to say the focus was on
the methods themselves and finding new and better
ways to accelerate calculations of ever larger systems,
rather than on the application to major scientific pro-
blems. Indeed, until more recently, the vast majority
of applications were limited to proof-of-concept cal-
culations, which served to demonstrate the capability
of these algorithms to treat ever larger systems, while
hinting at future possibilities for production calcula-
tions. Nonetheless, without this pioneering work, we
would not be in the position today to tackle large

and challenging systems such as those discussed in
more detail below.

The development of reduced scaling methods
was also naturally coupled with the availability of
high performance computing (HPC) resources;
thanks to both the increase in computing power of
the fastest supercomputers and the widespread avail-
ability of commodity clusters, LS-DFT can now not
only be applied to very large systems indeed, but it
can also do so while maintaining the same accuracy
as more traditional cubic-scaling approaches.

As a result of the complexities involved in such
methods, their usage was initially mostly limited to
experts within the community. This is no longer
entirely the case, however, there remain a number of
additional concepts with which interested users must
familiarize themselves before attempting practical cal-
culations. In this section, we give an overview of
some of these important concepts, notably the
quantum-mechanical principle of nearsightedness,
which provides the justification for linear-scaling
methods, and the codes within which they are imple-
mented. This is not intended to be a fully exhaustive
list, rather the aim is to highlight the most popular
approaches and some of the key achievements within
the field. For a more thorough discussion, the reader
is encouraged to refer to other, more extensive
reviews of the subject.8–11

Nearsightedness and Linear Scaling
In the context of DFT, the tendency of the Kinetic
Energy (KE) operator to favor the delocalisation of
the Kohn-Sham orbitals means that they are in gen-
eral extended over the entire system. This nonlocality
leads to an unfavorable cubic scaling, meaning that
an increase of the system size by a factor often leads
to a computational effort which is 1000 times
greater. Even though this is considerably better than
the scaling of other popular Quantum Chemistry
methods, which ranges from O(N4) for Hartree Fock
(HF) to O(N5) for MP2, O(N6) for MP3, and O(N7)
for MP4, CISD(T) and CCSD(T), it still makes large
scale simulations prohibitive.

On the other hand, the density matrix F(r; r0),
which is an integrated quantity that is invariant
under unitary transformations of the Kohn-Sham
orbitals, does not reflect this nonlocality. Indeed it
can be shown that the elements of the density matrix
decay rapidly with respect to the distance between
r and r0: for insulators and metals at finite tempera-
ture exponentially,12–18 and for metals at zero tem-
perature algebraically.19 Kohn has coined the term
‘nearsightedness’ for this effect,20 and this concept is
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the key towards calculations of very large systems:
by truncating elements beyond a given cutoff radius
it is possible to reach an algorithm which scales only
linearly with respect to the size of the system.

An illustration of this effect is shown in
Figure 2 for the case of a water droplet containing
1500 atoms. Here we plot on the left side the isosur-
face of an extended Kohn-Sham orbital, and on the
right side the density matrix of the system in the
x dimension, i.e., F(x, y0, z0; x0, y0, z0) =

P
if(εi)ψ i(x,

y0, z0)ψ i(x0, y0, z0), where ψ i are the Kohn-Sham
orbitals and f(εi) their occupation numbers. As can
be seen, the summation of the extended orbitals nev-
ertheless leads to a localized quantity, meaning that
the nonlocal contributions are canceled due to inter-
ference effects.

In a linear-scaling DFT approach, this locality
must be taken advantage of, which can be achieved
by building the algorithm directly on the density
matrix, rather than the Kohn-Sham orbitals. Since
this may introduce an additional computational over-
head, these O(N) algorithms are usually slower for
small systems than traditional approaches and only
outperform the latter ones beyond a critical system
size, the so-called crossover point. This crossover
point is dependent not only on the details of the
method used, but also the properties, in particular
the dimensionality of the system being studied. In
many linear-scaling DFT approaches, such as
ONETEP,21 CONQUEST,22 QUICKSTEP,23 and BIGDFT,24,25

the density matrix is written in separable form as

F r,r0ð Þ=
X

α,β
Φα rð ÞKαβΦβ r0ð Þ ð1Þ

with a set of so-called support functions φα(r) and
the density kernel K. In order to reach a linear

complexity, the support functions are strictly loca-
lized and the density kernel is enforced to be sparse,
meaning that elements are set to zero beyond a given
cutoff radius. Different approaches can be used to
find the ground state density matrix, which are dis-
cussed below.

Reduced-scaling Approaches
and Established Codes
In the following we describe both pioneering early
approaches to LS-DFT and modern, state of the art
methods currently being used for applications. Since
this review is intended to be of practical use rather
than purely theoretical, where appropriate, we cate-
gorize the various approaches by the code in which
they are implemented. It should be noted that many,
though not all, of the approaches to LS-DFT
described below are valid only for systems with a
band gap, since, as mentioned above, the density
matrix decays only algebraically at zero temperature
for metals, rather than exponentially. Exponential
decay, is, however, recovered for metals at finite tem-
perature, thereby providing one avenue for LS-DFT
with metals. Where relevant, we mention if the codes
are capable of treating metallic systems.

Pioneering Order N Methods
The earliest LS-DFT method was the divide and con-
quer approach of Yang.26 As the name implies, in
this approach the system of interest is divided into a
number of smaller subsystems which can be treated
independently using a local approximation to the
Hamiltonian. The KS energy for the full system is
extracted from the subsystems, which are coupled via
the local potential and Fermi energy. Since the size of
the subsystems is independent of the total system
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FIGURE 2 | Left: Isosurface of one Kohn-Sham orbital for a water droplet consisting of 1500 atoms. Right: density matrix in the x dimension,
i.e., F(x, y0, z0; x0, y0, z0), for the same system.
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size, the method scales linearly, and is also straight-
forward to parallelize, however, the crossover point
can be rather high.

Another pioneering work proposed an order N
method to calculate the density of states and the
band structure by means of the Green function and a
recursion method to calculate the moments of the
electronic density27 in real space using a finite differ-
ence scheme. The evaluation of the moments of the
electronic density by means of random vectors was
also used to treat systems up to 2160 atoms.28 Many
density matrix minimization methods were also
developed; the Fermi Operator Expansion
(FOE),29,30 LNV (Li-Nunes Vanderbilt)31,32 and
other approaches related to the purification transfor-
mation33 are currently used in various codes today.
The authors refer to the comprehensive review of
S. Goedecker9 for a full description of these different
methods.

SIESTA
The first widely used code with a linear-scaling
method was SIESTA,34–36 which is based on numeri-
cal atomic orbitals. The original linear-scaling
approach is based on the minimization of the func-
tional of Kim et al.,37 which avoids explicit orthogo-
nalization. More recently a divide-and-conquer
algorithm has also been implemented.38 There are
many real applications using SIESTA for large sys-
tems, but these calculations use a traditional cubic-
scaling scheme based on the diagonalization of the
Hamiltonian. In 2000, λ-DNA of 715 atoms was cal-
culated using the linear-scaling method to show the
absence of DC-conduction.39 In 2006, the calculation
of some CDK2 inhibitors was done using SIESTA,
with also a comparison to ONETEP.40 Recently SIESTA
has been coupled41 with the PEXSI library,42 which
avoids the cubic-scaling diagonalization of the Ham-
iltonian by taking advantage of its sparsity in the
localized basis. This reduces the computational com-
plexity without the need for nearsightedness or other
simplifications, thus allowing considerably larger sys-
tems to be tackled without requiring any explicit
truncation of the density matrix. The first published
scientific application of SIESTA-PEXSI examines car-
bon nanoflakes up to a size of 11,700 atoms.43 In
addition SIESTA allows one to perform electron
transport calculations using the TranSIESTA tool44

providing a tight-binding Hamiltonian and can also
be used for QM/MM simulations45

ONETEP
The Order-N Electronic Total Energy Package
ONETEP

21,46–48 is a LS-DFT code which employs a

density matrix approach, wherein the strictly loca-
lized support functions, termed Nonorthogonal Gen-
eralized Wannier Functions (NGWFs), are
represented in a basis of periodic sinc (psinc) func-
tions and optimized in situ, adapting themselves to
the chemical environment. Since the psinc basis can
be directly related to plane-waves, the NGWFs form
a localized minimal basis with the same accuracy as a
plane-wave calculation. The density kernel is calcu-
lated primarily using the LNV approach in combina-
tion with other methods.49 A number of
functionalities have been implemented in ONETEP such
as DFT+U,50 the calculation of optical spectra,51

including via time-dependent (TD) DFT,52,53 con-
strained DFT,54 electronic transport,55 natural bond
orbital analysis,56 and implicit solvents.57 A method
to treat metallic systems at finite temperature has also
been implemented.58

Many large calculations have been performed
with ONETEP, such as on DNA (2606 atoms),21 car-
bon nanotubes (4000 atoms),59 a silicon crystal
(4096 atoms),60 and point defects in Al2O3.

59
ONETEP

was also used in biology to study the binding process
within a 1000-atom QM model of the myoglobin
metalloprotein61 and also, in a QM/MM approach,
the transition state (TS) optimization of some
enzyme-catalyzed reactions.62 Some of the applica-
tions with ONETEP have clearly highlighted the need
for and challenges associated with large scale QM
calculations. For example there is a clear need for
methods capable not only of incorporating and ana-
lyzing electronic effects on a large scale in proteins
including the solvent effect, at least implicitly, as
demonstrated by the study of a 2615-atom protein–
ligand complex,57 but also of optimizing TS struc-
tures in this context. In another study, ONETEP was
used to put in evidence the importance of preparing
systems correctly to avoid the problem of the vanish-
ing gap for large systems (proteins and water
clusters).63

OpenMX
The OPENMX code64,65 has both a linear-scaling ver-
sion, based on the divide and conquer approach
defined in a Krylov subspace,64 and a cubic-scaling ver-
sion which uses diagonalization. It uses a basis set of
pseudo-atomic orbitals (PAOs) and a number of func-
tionalities have been implemented, such as DFT+U,66

electronic transport67 and the calculation of natural
bond orbitals.68 This latter capability was used to ana-
lyze a molecular dynamics (MD) simulation on a liquid
electrolyte bulk model, namely propylene carbonate +
LiBF4 in a model containing 2176 atoms.68
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FHI-aims
The Fritz-Haber-Institute ab initio molecular simula-
tions package69,70 uses explicit confining potentials
to construct numerical atom-centered orbital basis
functions; around 50 basis functions per atom are
needed to have an accurate solution of less than one
meV per atom. This scheme can be used naturally to
achieve quasi-linear scaling for the grid based opera-
tions71 with a demonstrated O(N1.5) overall scaling
for a linear system of polyalanine up to 603 atoms.
The authors of FHI-aims have also developed a mas-
sively parallel eigensolver, ELPA,72 for large dense
matrices based on a two-step procedure (full matrix
to a banded one, and banded matrix to a tridagonal
one). Traditional DFT and embedded-cluster DFT73

calculations can be done not only on molecules,74

but also on periodic systems. Hybrid functionals,74

RPA, MP2, and GW methods are also implemented
using a resolution of identity75 based on auxiliary
basis functions.

CONQUEST
CONQUEST

10,22,76,77 uses an approach based on sup-
port functions and density matrix minimization. The
support functions can be represented either in a sys-
tematic B-spline basis, or in a basis of PAOs, accord-
ing to the user’s preference. There is also a choice of
using a linear-scaling approach wherein the density
matrix is optimized using LNV or a cubic-scaling
approach using diagonalization. Constrained DFT78

and multisite support functions are implemented,
wherein the support functions are associated with
more than one atom.79 Scaling tests have been per-
formed on up to 2 million atoms of bulk Si22 and the
approach has also been applied to Ge hut clusters on
Si, for systems of up to 23,000 atoms.80 Other exam-
ples of calculations with CONQUEST include 3400
atom simulations of hydrated DNA81 and MD simu-
lations of over 30,000 atoms of crystalline Si82 using
the extended Lagrangian Born-Oppenheimer
method.83

BIGDFT
The BIGDFT code84 emerged as an outcome of an EU
project in 2008. One of the most particular features
of this code is the basis set it uses, Daubechies wave-
lets.85 These functions have the remarkable property
of—at the same time—being orthonormal, having
compact support in both real and reciprocal space
and forming a complete basis set. Such a basis set
offers optimal properties for DFT at large scale. The
code was first designed following a traditional cubic-
scaling approach,86 and later complemented with a

linear-scaling algorithm.24,25 Since wavelets form a
very accurate basis set, BIGDFT is—in conjunction
with elaborate pseudopotentials—capable of yielding
a very high precision87 at maintainable computa-
tional costs. This is also true for the linear-scaling
version, where the support functions are expanded in
the wavelet basis and can thus be adapted in situ.
The main approach used to optimize the density
matrix and thereby achieve linear scaling is FOE.9

Some features implemented in BIGDFT are,
among others, time-dependent DFT88 and con-
strained DFT, which has been implemented based on
a fragment approach,89 along a similar spirit to the
fragment molecular orbital (FMO) approach
described in more detail below. In addition BIGDFT
incorporates a very efficient Poisson Solver based on
interpolating scaling functions,90–93 which solves the
electrostatic problem with a low O(Nlog N) com-
plexity and a small prefactor and can thus also be
used for large scale applications. BIGDFT was also
one of the first DFT codes taking benefit of accelera-
tors used in HPC systems, such as Graphic Proces-
sing Units.94 Some of the code developers are among
the authors of the present review, therefore some
illustrative examples that will be given in the follow-
ing sections originate from runs with BIGDFT.

ERGOSCF
ERGOSCF95,96 is a quantum chemistry code for large
scale HF and DFT calculations, which has a variety
of pure hybrid functionals available and is an all-
electron approach based on Gaussian basis sets. It
uses a trace-correcting purification method in con-
junction with fast multipole methods, hierarchic
sparse matrix algebra, and efficient integral screening
to achieve linear scaling. It has been applied to pro-
tein calculations, using both explicit and implicit
solvents.97

FREEON
Formerly mondoscf, FREEON is a suite of linear-
scaling experimental chemistry programs98 which
performs HF, pure DFT, and hybrid HF/DFT calcu-
lations in a Cartesian-Gaussian LCAO basis. All
algorithms are O(N) or O(NlogN) for nonmetallic
systems. Different purification and density matrix
minimization approaches have been implemented
and compared in the code.99

QUICKSTEP
The QM part of the CP2K100 package, QUICKSTEP,23

uses traditional Gaussian basis sets to expand the
orbitals, whereas the electronic density is expressed
in plane waves to perform HF, DFT, hybrid HF/DFT
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and MP2101 calculations. The Kohn-Sham energy
and Hamiltonian matrix is calculated using a linear-
scaling approach with screening techniques.23

FEMTECK
The Finite Element Method based Total Energy Cal-
culation Kit FEMTECK code102,103 uses an adaptive
finite element basis to represent Wannier functions,
in conjunction with the augmented orbital minimiza-
tion method (OMM), which imposes additional con-
straints on the orbitals to guarantee linear
independence in order to overcome the slow conver-
gence and local minima usually associated with the
standard OMM method. FEMTECK has been used for
MD simulations of liquid ethanol with 1125
atoms,104 as well as for the study of fast-ionic con-
ductivity of Li ions in the high-temperature hexago-
nal phase of LiBH4, in MD simulations of 1200
atoms.105

RMGDFT
The real space multigrid based DFT electronic struc-
ture code106 (RMGDFT) uses a multigrid107 or a
structured nonuniform mesh.108 A linear-scaling
method109 was also developed. Using maximally
localized Wannier functions expressed on a uniform
finite difference mesh, Osei-Kuffuor and Fattebert110

performed a MD simulation up to 101,952 atoms of
polymers to demonstrate the scalability of their
algorithms.

PROFESS
As the imposition of orthonormality constraints on
the KS orbitals is one of the factors which dominates
the cubic-scaling of standard DFT, one strategy to
achieve linear-scaling is to eliminate the need for the
orbitals. This so-called orbital-free (OF) DFT
approach does so by defining a KE functional, for
which several forms have been proposed, see Refs
111–113. Such an approach has been implemented
in PROFESS (Princeton Orbital-Free Electronic Struc-
ture Software),114–117 which offers a choice between
several implemented KE functionals using a grid-
based approach to represent the density. The code
requires the use of local pseudopotentials, which are
provided for certain elements only, including Mg, Si,
and Al. The approach only achieves the same accu-
racy as KS-DFT for main group elements in metallic
states, but recent work developing new KE func-
tionals for semiconductors and transition
metals113,118,119 allow some properties of semicon-
ductors to also be reproduced well. Despite this limi-
tation, large defects in crystals (e.g., dislocations,
grain boundaries) and large nanostructures

(e.g., nanowires, quantum dots) are too computation-
ally costly to treat with most first principles
approaches, and so OF-DFT offers an appealing
alternative for such systems. The code has been used
to simulate more than 1 million atoms of bulk Al120

and to study melting of Li using MD.121

Quantum Chemistry
Reduced-scaling electronic structure methods are a
domain where the ultimate goal is to have a linear-
scaling approach with chemical accuracy. Based on
pair natural orbitals, a coupled cluster theory
method122 has been developed which scales up to
1000 atoms claiming that chemical accuracy was
achieved. A Quantum Monte Carlo method is also
being developed for large chemical systems with
some calculations on peptides123,124 up to 1731
electrons.

Machine Learning
Finally we wish to mention the various works on
neural networks and other machine learning techni-
ques where the goal is to obtain interatomic poten-
tials with the same accuracy as DFT or even
quantum chemistry. The first works125–127 of
J. Behler using a high-dimensional neural network
give a way of calculating potential-energy surfaces in
order to perform metadynamics. Another approach
is to use the electronic charge density coming from
DFT to build interatomic potentials for ionic sys-
tems.128 By using GPUs it is possible to speed up the
neural network performance by two orders of magni-
tude, which permits a large computing capacity
within a single workstation. Rupp et al. considerably
improved the predictive precision and transferability
of spectroscopically relevant observables and atomic
forces for molecules using kernel ridge regression.129

Once such a system is trained, the cost for new calcu-
lations is orders of magnitude smaller than for corre-
sponding DFT calculations.

Towards Coarse-graining Modeling of
Large Systems: FMO and DFTB
Approaches

Fragment Molecular Orbitals
One important method for proteins and other biolog-
ical molecules, which could be considered an exten-
sion of the divide-and-conquer approach, is the FMO
approach.130,131 In this approach, the molecule is
divided into fragments—whose definition is based on
chemical intuition—which are each assigned a num-
ber of electrons. The size of each fragment might
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therefore vary depending on the system in question,
e.g., 2D pi-conjugated systems would need large frag-
ments for accuracy. The molecular orbitals (MOs)
are then calculated for each fragment, under the con-
straint that they remain localized within the frag-
ment. The distinguishing feature of FMO compared
with divide and conquer is that the MOs for the frag-
ments are calculated in the Coulomb field coming
from the rest of the system (i.e., the environment), so
that long range electrostatics are included. The frag-
ment MOs must be updated iteratively to ensure
self-consistency of this environment electrostatic
potential. Different levels of approximation can be
used: the most basic is FMO1, which only explicitly
calculates MOs of single fragments (referred to as
monomers) and constructs the total energy from
these results. The next, and most common level, is
FMO2, which also incorporates explicit dimer calcu-
lations (i.e., between pairs of fragments) into the total
energy. There is also FMO3,132 which also adds tri-
mers, and even FMO4, which incorporates also 4-
body terms.133 The accuracy of the approximation,
but also the cost increases with the addition of higher
order terms. FMO2 is often sufficiently accurate for
many applications, but there are some cases where
higher order interactions are required, e.g., at least
three-body terms were found to be necessary for MD
of water;134 geometry optimizations of open shell
systems may also require higher order terms, or,
where possible, larger fragments in order to ensure
good convergence.135 FMO has been implemented in
GAMESS (General Atomic and Molecular Electronic
Structure System),136–138 with an implementation
which is designed to exploit massively parallel
machines; ABINIT-MP,139,140 which has also been
designed for massively parallel calculations;141 and a
version of NWChem.142

FMO belongs to a wider class of fragment-
based methods, such as the molecular tailoring
approach.143 FMO, molecular tailoring and other
related approaches have been reviewed in detail else-
where, along with a number of example
applications.131,144–146 Here we highlight a few
examples for large systems. Aside from DFT, FMO
may also be used for HF and MP2 calculations;
e.g., the GAMESS implementation has been bench-
marked for water clusters containing around 12,000
atoms at the MP2 level of theory.147 FMO has also
been used for geometry optimizations of large sys-
tems, e.g., the prostanglandin synthase in complex
with ibuprofen, containing around 20,000 atoms,
was optimized using B3LYP and restricted HF (RHF)
for different domains of the system.148 Another
example application is the study of the influenza

virus hemagglutinin, where QM calculations of up to
24,000 atoms149,150 have been performed using
FMO-MP2 in combination with the polarizable con-
tinuum model (PCM).151,152 More than 20,000
atoms were also included in a RHF simulation of the
photosynthetic reaction center of rhodopseudomonas
viridis, which required around 1400 fragments.153

While less common, FMO can also be applied to
solids, surfaces and nanomaterials. For example a
new fragmentation scheme for fractioned bonds was
developed and applied to the adsorption of toluene
and phenol on zeolite;154 Si nanowires have also
been studied using FMO.155 FMO may also be used
for excited calculations, e.g., in combination with
TDDFT, which has been tested for solid state
quinacridone.156

DFTB
The Density Functional Tight-Binding approach was
first notably applied in carbon-based systems. The
idea was, at the first-order, to use a frozen density
from atoms. DFTB, at the second order, has been
extended in order to include a Self-Consistent Charge
(SCC) correction,157 accounting for valence electron
density redistribution due to the interatomic interac-
tions. A third-order DFTB3158 was also developed
which has introduced an additional term with cou-
pling between charges. Parameters for the whole peri-
odic table are available.159 A confinement potential
was used to tighten the Kohn-Sham orbitals. The
solution conformations of biologically mono- and di-
α-D-arabinofuranosides were investigated160 by
means of MD using dispersion-corrected self-
consistent DFTB and compared to the results from
the AMBER ff99SB force field161 with the GLYCAM
(version 04f ) parameter set for carbohydrates162,163

as well as to NMR experiments. There are also some
extensive tests on hydroxide water clusters and aque-
ous hydroxide solutions.164

FMO-DFTB
Recently, the FMO approach has been combined
with DFTB,165 with the aim being to reduce the cost
of DFTB to a few seconds, in order to perform MD
simulations. The accuracy of FMO-DFTB is very
close to that of DFTB, while excellent speedups have
also been achieved: for an MD simulation of
768 atoms of water, the speedup compared to DFTB
was shown to be more than 100.166 It has been used
to optimize an 11,000 atom nanoflake of cellulose
Iβ,158 as well as for MD simulations of liquid hydro-
gen halides containing 2000 atoms,166 for which the
speedup was an order of magnitude greater than the
above example. FMO-DFTB could therefore be a
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very promising approach of QM-MD of large
systems.

HPC Concepts/Performance
The effort for the development of the above men-
tioned computer codes has also contributed to
another improvement in the community: the ability
to exploit HPC resources. This has become a very
important aspect with the advent of petaflop super-
computers. New science can be done on these
machines only if the code developers are able to
profit from such large scale supercomputers. How-
ever, the development of accelerated methods for
large systems is not meant to replace the exploitation
of powerful HPC platforms, rather the two go hand
in hand: in order to execute calculations for systems
as large as the range for which they are designed, LS-
DFT codes require large computing resources; and
parallel compute clusters are most efficiently
exploited if they are used to treat large problem sizes,
rather than to compensate for the cubic scaling of
standard DFT codes.

In the ideal case, for a method which exhibits
both perfect linear scaling with respect to the number
of atoms and ideal parallel scaling with respect to the
number of computing cores, the time taken for a sin-
gle point calculation should remain constant if the
ratio of atoms to cores remains constant, that is, a
so-called weak scaling curve would be flat. This
allows for the definition of the concept of CPU min-
utes per atom and, correspondingly, memory per
atom. Since both the time and memory requirements
for a small system running on a few cores would be
approximately the same as a large system running on
many cores, this value for a particular code is a func-
tion of the system, which depends on the dimension-
ality of the material, the atomic species and various
user-defined quantities, such as the grid spacing and
the localization radii beyond which localized basis
functions are truncated.

In other terms, we might say that the values of
per-atom computing resources for a given code are
functionals of the input parameters of the code and
of the computing architecture employed. However,
even though they cannot be predicted beforehand
and have to be evaluated, it is interesting to compare
values of CPU minutes and memory per atom
between different systems. This is especially useful
because such a viewpoint provides a quantitative
method for estimating the cost of a large simulation
based on a small representative calculation, i.e., a
smaller but equivalent simulation domain running on
the same computing architecture. For example, when

one has a fixed number of cores available, one could
estimate the total run time for a large calculation
using the CPU minutes per atom value obtained from
the small calculation. Alternatively, in the case where
one has many cores but limited memory availability,
one could use the memory per atom value from the
small calculation to determine the minimum number
of cores needed to fit the large problem in memory.
Although in practice one might not achieve perfect
parallel scaling, the validity of these quantities has
been demonstrated in the context of the BIGDFT
code, where it has been tested for DNA fragments
and water droplets.25 A similar concept was also
demonstrated in the context of coupled cluster
theory.122

It is however fundamental that all these perfor-
mance achievements come together with the robust-
ness of the approach, or more precisely its
implementation. It is easy to imagine that QM meth-
ods become technically very complicated at large
scale, with a multiplication of the input variables and
troubleshooting techniques which are typical of the
algorithm employed. Code developers have to pro-
vide robust and reliable algorithms for nonspecialists
(failsafe mode), even at the cost of lower
performance.

LARGE-SCALE QM APPLICATIONS

As already mentioned, first principle calculations are
a priori the most accurate approach to any atomistic
simulation. Unfortunately an exact analytical or com-
putational solution to the fundamental QM equa-
tions is only possible for a few, rare cases at present;
for all other systems one either has to introduce
approximations, solve the equations numerically, or
both. Owing to these approximations there might
thus even be situations where an empirical approach,
which is tuned for one particular property, might
yield more precise results than a first principles calcu-
lation. One particular, but important example is
water, where traditional ab initio approaches like
DFT do not come as close to the experimental values
(see, for instance, Ref 167 and references therein) as
empirical force fields.168,169 On the other hand such
empirical approaches will only work for systems
which are very similar to the ones which were used
for the tuning and will in general fail for systems
which are distinct, making the simulation of
unknown materials tricky. In addition, traditional
force fields do not in general allow for bond breaking
and forming, which is however abundant in chemical
reactions. This is in strong contrast to ab initio
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approaches, which are less biased and are thus
expected to yield the correct tendencies over a much
larger range of systems.

Moreover there are situations where a first
principles description is not only desirable, but also
essential. Obviously this is the case when quantities
are needed which are not accessible with classical
force field approaches. For instance, a major short-
coming of classical approaches is that they cannot
provide direct insights into electronic charge rearran-
gements. This is however necessary if one wants to
analyze charge transfers, which play an important
role for instance in biology. Since such electronic
charge transfers can occur over a large distance and
over a long time frame, such simulations would
quickly go beyond the scope of pure ab initio calcula-
tions. A possible solution is to let the system evolve
according to a classical approach, which is orders of
magnitudes faster, and only analyze certain snap-
shots or averages on a QM level. An example is the
work of Livshitz et al.,170 which investigates the
charge transfer properties of DNA molecules
adsorbed onto a mica surface, or the work of Lech
et al.171 which investigates the electron–hole transfer
in various stacking geometries of nuclear acids. With
respect to DNA, ab initio calculations have also been
used to investigate the molecular interactions of
nucleic acid bases172 and to study the impact of ion
polarization.173 A nice overview over the various
approaches for DNA can be found in174

The volume of an atom is also an example of
such an intrinsic QM quantity, which is most
straightforwardly defined using its charge distribu-
tion, but cannot be accessed directly using force fields;
consequently other models must be adopted.175

Another case where first principles calculations are
needed is the determination of photophysical and
spectroscopic properties. These calculations do not
only require the determination of the ground state,
but also of excited states, which is not possible with
classical approaches based on empirical force fields.
This application is also very demanding from the
point of view of the QM method, since popular
approaches like HF or DFT are ground state theories
and therefore usually give rather poor results for
excited states. A popular solution to this problem is
to use TDDFT for the calculation of the excitations.88

Highly accurate QM methods are also required
in the determination of small energy differences, for
instance, the calculation of activation energy barriers
in chemical reactions. The problem is that, in particu-
lar for biological systems, the reaction is often cata-
lyzed by an environment which can be much larger
than the actual active site, making a fully ab initio

treatment impossible. However, if there is no charge
transfer between the active site and its environment,
it is possible to use so-called QM/MM schemes,
where only the active site is treated on a highly accu-
rate ab initio level and the environment is handled
using force fields. As an example, such an approach
was used, among others, to investigate catalysts for
the Kemp eliminase,176 and QM calculations in gen-
eral are an important ingredient for the computa-
tional design of enzymes.177

Obviously such a QM/MM strategy raises the
question of how the coupling between QM and MM
regions can be done;178 for an interesting review on
the subject. Typically one distinguishes between three
different setups, namely mechanical embedding, elec-
tronic embedding and polarized embedding.179–181 In
the first case, the interaction between the QM and
MM region is treated in the same way as the interac-
tion within the MM region itself; in the second case,
the MM environment is incorporated into the QM
Hamiltonian, thus leading to a polarization of the
electronic charge density; and in the third case, the
MM environment is also polarized by the QM charge
distribution. The second method is the most popular
one, and the coupling between QM and MM region
can for instance be done using a multipole represen-
tation which is fitted to the exact electrostatic
potential.182

Unfortunately electronic embedding is known
to exhibit the shortcoming of ‘overpolarization’ at
the boundary between the QM and MM
region,181,183 in particular if covalent bonds are cut.
This overpolarization problem is due to the fact that
for the electrons of the MM atoms the Pauli repul-
sion is not accounted for, resulting in an incorrect
description of the short range interaction at the
QM/MM interface. In particular, positive atoms on
the MM side might act as traps for QM electrons,
leading to an excessive polarization. However, there
exist several approaches to address this issue, for
instance the use of a delocalized charge distribution
for the MM atoms,184–186 and indeed it can be
shown that a careful implementation allows the cor-
rect description of polarization effects within a
QM/MM approach.187 Another, more straightfor-
ward solution to this problem is to increase the size
of the QM region, keeping the problematic boundary
farther away from the active site. Since in this way
the QM region easily contains hundreds or thou-
sands of atoms, the use of a linear-scaling algorithm
for the QM part is indispensable. In a ONETEP applica-
tion by Zuehlsdorff et al.188 they even found that an
explicit inclusion of the solvent into the QM region
was required to get a reliable description.
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In another recent work employing ONETEP,
Lever et al.62 used this LS-DFT code to investigate
the transition states (TS) in enzyme-catalyzed reac-
tions. The same reaction has already been investi-
gated earlier with a QM/MM approach employing
for the QM part highly accurate quantum chemistry
methods such as MP2, LMP2, and LCCSD(T0).189

Even though the development of reduced scaling
algorithms190–196 made their use somewhat afforda-
ble also for larger systems, the cost of these methods
is still very high. On the other hand they have the
advantage that they yield very accurate estimates for
activation barriers, in contrast to DFT, which in gen-
eral tends to underestimate these values. Indeed
another study by Mlýnský et al. demonstrated the
need for using appropriate methods for the QM
treatment within a QM/MM approach. Whereas all
methods (quantum chemistry, DFT and semi-empiri-
cal) gave similar reaction barriers, the reaction path-
ways were considerably different for the semi-
empirical calculations.197 Recent developments also
allow the embedding of a small region which is trea-
ted by quantum chemistry methods within a larger
region which is treated by DFT, and both regions
can then also be used within a QM/MM
approach.198,199

Instead of falling back to expensive quantum
chemistry methods it is also possible to improve the
accuracy of DFT calculations in a cheap way by
including dispersion corrections. A study by Lonsdale
et al. found that this considerably improved the
values of the calculated energy barriers.200 Generally
speaking, it is recommendable to include such disper-
sion corrections in any large scale QM calculation, as
they add only a small overhead, but may improve the
physical description considerably.

The QM/MM philosophy is also useful to cal-
culate, for a given subsystem, quantities which are
intrinsically only possible with an ab initio approach,
but influenced by a surrounding which does not
require a strict first principles treatment. For
instance, excitation energies and the absorption spec-
trum of DNA were calculated by Spata et al.201 using
an electrostatic embedding QM/MM approach and
by Gattuso et al.202 using a QM/MM approach
based on the Local Self Consistent Field (LSCF)
method.203 Also heavy atoms like actinides can be
considered in this scheme.204

Additionally, as QM/MM calculations try to
couple various levels of theory, see e.g., Ref 205. It
might be necessary in some cases to manually adjust
some force field parameters, as for instance done by
Pentikäinen et al. for the QM/MM simulation nucleic
acid bases,206 and to carefully check the compatibility

of the chosen methods.207 For some applications it
might even be the case that a ‘traditional’ QM/MM
approach (i.e., involving two levels of description) is
not sufficient in order to cover the entire length
scale. Thus one might have to use additional levels
of coarse graining and abstraction, together with a
coupling between them, as has for instance been
done by Lonsdale et al.208

To summarize, QM/MM approaches seem to
give, at least qualitatively, very useful results, and the
main source of error is rather due to a lack of physi-
cal correctness in the QM model than in the
QM/MM partitioning.

The calculation of the partial density of states is
another example intrinsically requiring a QM treat-
ment, which we will demonstrate for the system
depicted in Figure 3, showing a small fragment of
DNA in a water-Na solution consisting in total of
15,613 atoms. The determination of the electronic
structure is only possible using a QM method, but the
influence of the environment on the DNA can also be
modeled with a less expensive classical approach. In
Figure 4, we compare the outcome of a full QM calcu-
lation with a static QM/MM approach, where all the
solvent except for a small shell around the DNA has
been replaced by a multipole expansion up to quadru-
poles, leaving in total only 1877 atoms in the QM
region. Both calculations were done with BIGDFT,
and the multipoles were calculated as a post-
processing of the full QM calculation. As can be seen
from the plot, the two curves are virtually identical,
but the QM/MM approach had to treat about 8 times
fewer atoms on a QM level and was thus computa-
tionally considerably cheaper.

FIGURE 3 | Visualization209 of a DNA fragment containing
11 base pairs, surrounded by a solvent of water and Na ions (giving in
total 15,613 atoms), with periodic boundary conditions.
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Another field of application for QM methods is
the parameterization of force fields. Many of the
widely used force fields are fitted to reproduce experi-
mental data of a certain test set of structures. How-
ever the outcome of this fitting procedure is not
necessarily transferable to other compounds.210 A
more severe problem is the lack of applicability to
different physicochemical conditions, such as pres-
sure or temperature. This approach might thus lead
to bad results when these force fields are applied to
systems or conditions which are considerably differ-
ent than the ones used for the parameterization. A
possible solution is to parameterize a force field using
results from ab initio calculations, which widens the
range of possible applications. For instance, certain
versions of the AMBER force field have been para-
meterized using atomic charges derived from ab-
initio calculations, as for instance those described by
Weiner et al.,211 Cornell et al.212 or Wang et al.;213

for the last two, charges derived from the restrained
electrostatic potential (RESP) approach214 have been
used. Ab initio results were also included—among
experimental results—into the parameterization of
the CHARMM22 force field.215 There have also
been attempts to develop force fields which determine
the optimal set of parameters in an automatic way,
using ab initio results as target data.216 A logical con-
tinuation of this line uses statistical learning and big
data analytics as envisioned in the European project
NOMAD217 which has the goal of using these techni-
ques on top of a large computational material
database.

Finally we also highlight the advantages of
large scale QM simulations. Sometimes one is inter-
ested in atomistic characteristics averaged over a
large number of samples, in this way generating the

macroscopic behavior. An example is the dipole
moment of liquid water, which is a macroscopic
observable with a microscopic origin. In order to cal-
culate it accurately it is not sufficient to simply com-
pute the dipole moment of one water molecule in
vacuum. Instead one has to take into account the
polarization effects generated by the other surround-
ing water molecules. Owing to thermal fluctuations
each molecule will however yield a different value,
and the macroscopic observable result (keeping in
mind that this can only be determined indirectly and
is thus itself subject to fluctuations) can therefore
only be obtained by averaging over all molecules,
thereby requiring a truly large scale first principles
simulation. The outcome of such a simulation, car-
ried out using the MM code POLARIS(MD)218 and
the QM code BIGDFT is shown in Figure 5. Here we
plot the dispersion of the molecular dipole moments,
calculated based on atomic monopoles (i.e., atomic
charges and dipoles) of a water droplet consisting of
600 molecules at ambient conditions and taking
50 snapshots of an MD simulation. As can be seen,
there is a wide dispersion of the molecular dipole
moments, which however yield a mean value in line
with other theoretical and experimental studies.219

MULTISCALE LINKED TOGETHER:
AN EXAMPLE

The above presented studies, linking together differ-
ent models and length scales, are of course only a
small set of representatives of the ongoing works in
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the literature. The need for a connection of models in
the common scale regimes is not only related to the
QM/semiclassical regime. Such multi-method
schemes can be applied also to larger length scales,
up to sizes of interest for actual industrial applica-
tions. There is therefore a direct implication of large-
scale QM methods on present-day technological
challenges.

As an illustrative example we present the
European project H2020 EXTMOS. The objective of
this project is to build a model simulating organic
light emitting diodes (OLEDs) in order to calculate
their efficiency, where the only inputs are the organic
molecule components. In the OLED realization proc-
ess, acceptor and donor molecules, together with
some dopant molecules, are mixed in a thin film; see
Figure 6. It can be easily imagined that the investiga-
tion of such a process requires a multiscale approach
with a coupling between different description levels.
We will briefly describe them here.

Phase Organizations
Calculating the morphology of the organic film is the
first step, which is done by means of molecular
mechanics or MD at room temperature using an
appropriate polarizable force field (PFF).220 These
PFFs are fitted with a charge analysis coming from
DFT in order to reproduce the electrostatic potential.
This step is crucial especially when considering differ-
ent dopant molecules in the process. Systems of a few
hundred atoms are simulated in QM, calculating the

atomic forces and electrostatic potential214 which are
compared with those coming from PFFs. As soon as
the PFF is fitted, morphologies of the organic film
can be calculated and correct statistics of many thou-
sands of atoms with their atomic positions can be
easily generated even at different temperatures. Since
the device will only operate within a limited tempera-
ture range—in particular only within one phase—the
PFF parameters should be transferable without nota-
ble loss of accuracy.

Determination of the Electronic Properties
As soon as atomic configurations are determined,
quantities of interest for the electronic properties of
the molecules need to be extracted. Other QM meth-
ods coming from many-body perturbation theory
(MBPT) such as GW221 and Bethe-Salpeter meth-
ods222 can be used to calculate the intrinsic proper-
ties of the organic molecules.223,224 The challenge is
to use such methods within an environment, modeled
by adequate electrostatic degrees of freedom to
describe the morphology of the organic film.225

Hopping Integrals
The previous step permits the calculation of the
charge transfer of a few organic molecules in a given
embedding environment. Since configurational statis-
tics are important to represent correctly an organic
film, constrained DFT226 is well suited to under-
standing the influence of the environmental degrees
of freedom227 as well as to impose the correct charge
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transfer and to calculate the statistics of hopping and
site integrals228 over an ensemble of molecules from
the morphology (see Figure 7 for an illustration).
Here again, another important quantity is the disper-
sion of the results provided by the morphologies. The
QM fragment approach is well suited to calculate a
set of hundreds of molecules in different orientations
and environments.

Towards Device Simulation
The hopping and site integral parameters are finally
used to calculate the efficiency229 of the organic film
using a Kinetic Monte Carlo method to predict
charge and exciton transport processes through a
random walk simulation. Transport parameters and
device characteristics are deduced from the trajec-
tories. Finally these parameters are included in a drift
diffusion simulation in order to simulate larger
region sizes and determine a circuit model.

In this example, the role of QM is important to
determine correctly the film morphology and also the
electronic properties. Nevertheless, QM needs to be
used in collaboration with complementary methods:
force fields for tractable MD and kinetic Monte
Carlo methods to deal with larger systems.

CONCLUSION AND OUTLOOK

Advanced atomistic simulation techniques of many
different flavors have found widespread applicability
during the past years. Out of this plethora, we have
seen the features of some QM codes that are now
able to deal with systems with many thousands of

atoms. Most of these techniques were invented more
than a decade ago, however the approach to large-
scale QM calculations is changing in the present day.
We might even say that we are entering a ‘second
era’ of DFT and, more generally, of QM methods in
computational science.

On the one hand, the large research effort
within the Quantum Chemistry and materials science
communities is still ongoing with a focus on small
scale systems, trying to achieve very high accuracy
(e.g., novel exchange-correlation functionals, MBPT
methods) and to improve the precision and reliability
of the various codes and approaches.230 However, as
this ongoing work concentrates on small scale sys-
tems, the QM methods which are nowadays able to
arrive at large scales rely on slightly more mature
approaches and are thus forcibly less accurate than
state-of-the-art QM methods. In other words, the fact
that we have nowadays the ability to efficiently treat
big systems does not mean that all problems at lower
scale are solved.

On the other hand, we have seen a considerable
effort of the community to enlarge the accessible
length scales of QM simulations. These developments
did not aim at developing new approaches to solve
the fundamental QM equations, but rather tried to
translate existing concepts into new domains. We
have seen that this transition was driven by various
aspects.

The first important point is related to the relia-
bility of a calculation. One might raise the question
whether a QM treatment is still appropriate above
‘traditional’ length scales: as already stated, a calcula-
tion which is more complex is not necessarily more
accurate. But a QM approach is definitely less biased,
leading therefore to considerably less arbitrariness.
This is in strong contrast to established approaches
such as force fields, where the output of a calculation
depends strongly on the input of the calculation, for
instance the chosen parameterization. When possible,
it is helpful and important to use QM approaches
also for large systems, in order to get unbiased
insights into the effects of realistic experimental con-
ditions on the values of interest, thereby yielding a
deeper understanding of fundamental descriptions
and trends. It is therefore important to have the pos-
sibility to extend already established QM models to
large sizes, in order to have an idea of the effects of
such realistic conditions. This leads to a statistical
approach to large-scale calculations.

These considerations come at hand with the
obvious observation that we have to abandon the
QM treatment above a given length scale where a
quantum description will be unnecessary. We used

FIGURE 7 | Plot showing the HOMOs of two neighboring
molecules calculated using a fragment approach. Their nearest
neighbors extracted from a large disordered host-guest morphology
are also depicted. Using this setup, one can calculate transfer integrals
which take into account the environment.228
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on purpose ‘unnecessary’ instead of ‘impossible’ or
‘not affordable’; at large scale, a QM calculation is
justified only if there is the need to perform it. There
will be no point in obtaining, with a QM treatment,
results that could have been obtained with a more
compact description like Force Fields or Coarse-
Grained Models, unless these need to be validated
first. This means that we have to provide strategies to
couple the QM description with the modeling meth-
ods above this maximum length scale. In other terms,
we must be able to provide, eventually, a reduction
of the complexity of the description, implying that a
good QM method at large scale has to provide differ-
ent levels of theory and precision that can be linked
to mesoscopic scales (e.g., atomic charges, Hamilto-
nian matrix elements, basis set multipoles, second
principles).231 We have presented in Multiscale
Linked Together: An Example section one example
where such a multi-method approach, completed
with a modern QM treatment for the electronic exci-
tations, can lead to results with potential technologi-
cal implications.

This is also important in those cases where the
QM level of theory alone is not able to correctly
describe the properties of the system and must be
complemented with other approaches. Thus, the
large-scale QM methods described above are impor-
tant to ‘bridge’ the length scale gap with non-QM
methods; only if we can perform QM and post-QM
approaches for systems with the same size, are we
able to see if the trends—if not the actual

quantities—are similar, in this way validating the
respective levels of theory. A fundamental aspect for
this task is the systematicity of the investigation. The
ability to refine coarse-grained results at a QM level
would help at least to identify if a refinement of the
description might provide different trends. With
respect to this task, the diversity of available QM
approaches is thus essential.

The approach to large-scale QM calculations is
not a mere question of a ‘good software’; rather, it
represents an opportunity to work in connection with
different sensibilities. This will help in establishing a
cross-disciplinary community, working at large scales
and connecting together researchers with different
sensibilities working with different computational
methods and know-how. This point will be beneficial
in both directions. Specialists of QM methods will
learn to deal with the typical problems related to
simulations at the million atom scale, taking advan-
tage of the large experience acquired through the well
established classical approaches over the past dec-
ades. For people with a background in classical
approaches, tight collaborations with the electronic
structure community will offer access to quantities
and descriptions that are out of reach without the
sensibility and experience of researchers working in
QM methods.

Owing to all these reasons the field of large
scale QM calculations might attract much attention
during the forthcoming years. The topic presents big
challenges, but offers even greater opportunities.

ACKNOWLEDGMENTS

We would like to thank Modesto Orozco and Hansel Gómez for fruitful discussions and Fátima Lucas for pro-
viding various test systems and helping with some visualizations. This work was supported by the EXTMOS
project, grant agreement number 646176, and the Energy oriented Centre of Excellence (EoCoE), grant agree-
ment number 676629, funded both within the Horizon2020 framework of the European Union. This research
used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

REFERENCES
1. Coulson CA. Present state of molecular structure cal-

culations. Rev Mod Phys 1960, 32:170.

2. Hohenberg P, Kohn W. Inhomogeneous electron gas.
Phys Rev 1964, 136:B864.

3. Kohn W, Sham LJ. Self-consistent equations including
exchange and correlation effects. Phys Rev A 1965,
140:1133.

4. Zickermann V, Wirth C, Nasiri H, Siegmund K,
Schwalbe H, Hunte C, Brandt U. Mechanistic insight

from the crystal structure of mitochondrial complex I.
Science 2015, 5:4.

5. Perdew JP, Schmidt K. Jacob’s ladder of density func-
tional approximations for the exchange-correlation
energy. In: AIP Conference Proceedings, 577, 1, 2001.

6. Kohn W. Density-functional theory for systems of very
many atoms. Int J Quantum Chem 1995, 56:229.

7. Severo Pereira Gomes A, Jacob CR. Quantum-chemical
embedding methods for treating local electronic

Advanced Review wires.wiley.com/compmolsci

16 of 24 © 2016 John Wiley & Sons, Ltd Volume 7, January/February 2017



excitations in complex chemical systems. Annu Rep
Prog Chem C Phys Chem 2012, 108:222.

8. Galli G. Linear scaling methods for electronic struc-
ture calculations and quantum molecular dynamics
simulations. Curr Opin Solid State Mater Sci
1996, 1:864.

9. Goedecker S. Linear scaling electronic structure meth-
ods. Rev Mod Phys 1999, 71:1085.

10. Bowler DR, Miyazaki T, Gillan MJ. Recent progress
in linear scaling ab initio electronic structure techni-
ques. J Phys Condens Matter 2002, 14:2781.

11. Bowler DR, Miyazaki T. O(N) methods in electronic
structure calculations. Reports on progress in physics.
Phys Soc (Great Britain) 2012, 75:036305.

12. Cloizeaux JD. Energy bands and projection operators
in a crystal: analytic and asymptotic properties. Phys
Rev 1964, 135:A685.

13. Cloizeaux JD. Analytical properties of n-dimensional
energy bands and Wannier functions. Phys Rev 1964,
135:A698.

14. Kohn W. Analytic properties of bloch waves and
Wannier functions. Phys Rev 1959, 115:809.

15. Baer R, Head-Gordon M. Sparsity of the density
matrix in Kohn-sham density functional theory and
an assessment of linear system-size scaling methods.
Phys Rev Lett 1997, 79:3962.

16. Ismail-Beigi S, Arias TA. Locality of the density
matrix in metals, semiconductors, and insulators.
Phys Rev Lett 1999, 82:2127.

17. Goedecker S. Decay properties of the finite-
temperature density matrix in metals. Phys Rev B
1998, 58:3501.

18. He L, Vanderbilt D. Exponential decay properties of
Wannier functions and related quantities. Phys Rev
Lett 2001, 86:5341.

19. March N, Young W, Sampanthar S. The Many-Body
Problem in Quantum Mechanics. New York: Dover
Publications, Incorporated; 1967.

20. Kohn W. Density functional and density matrix
method scaling linearly with the number of atoms.
Phys Rev Lett 1996, 76:3168.

21. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC.
Introducing ONETEP: linear-scaling density func-
tional simulations on parallel computers. J Chem
Phys 2005, 122:84119.

22. Bowler DR, Miyazaki T. Calculations for millions of
atoms with density functional theory: linear scaling
shows its potential. J Phys Condens Matter 2010,
22:074207.

23. VandeVondele J, Krack M, Mohamed F,
Parrinello M, Chassaing T, Hutter J. QUICKSTEP: fast
and accurate density functional calculations using a
mixed Gaussian and plane waves approach. Comput
Phys Commun 2005, 167:103.

24. Mohr S, Ratcliff LE, Boulanger P, Genovese L,
Caliste D, Deutsch T, Goedecker S. Daubechies wave-
lets for linear scaling density functional theory.
J Chem Phys 2014, 140:204110.

25. Mohr S, Ratcliff LE, Genovese L, Caliste D,
Boulanger P, Goedecker S, Deutsch T. Accurate and
efficient linear scaling DFT calculations with universal
applicability. Phys Chem Chem Phys 2015,
17:31360.

26. Yang W. Direct calculation of electron density in
density-functional theory. Phys Rev Lett 1991,
66:1438.

27. Baroni S, Giannozzi P. Towards very large-scale
electronic-structure calculations. Europhys Lett 1992,
17:547.

28. Drabold D, Sankey O. Maximum entropy approach
for linear scaling in the electronic structure problem.
Phys Rev Lett 1993, 70:3631.

29. Goedecker S, Colombo L. Efficient linear scaling algo-
rithm for tight-binding molecular dynamics. Phys Rev
Lett 1994, 73:122.

30. Goedecker S, Teter M. Tight-binding electronic struc-
ture calculations and tight-binding molecular dynam-
ics with localized orbitals. Phys Rev B 1995,
51:9455.

31. Li X-P, Nunes RW, Vanderbilt D. Density-matrix
electronic-structure method with linear system-size
scaling. Phys Rev B 1993, 47:10891.

32. Nunes RW, Vanderbilt D. Generalization of the
density-matrix method to a nonorthogonal basis.
Phys Rev B 1994, 50:17611.

33. McWeeny R. Some recent advances in density matrix
theory. Rev Mod Phys 1960, 32:335.

34. Artacho E, Sánchez-Portal D, Ordejón P, García A,
Soler JM. Linear-scaling ab-initio calculations for
large and complex systems. Phys Status Solidi B
1999, 215:809.

35. Soler JM, Artacho E, Gale JD, García A, Junquera J,
Ordejón P, Sánchez-Portal D. The SIESTA method
for ab initio order-N materials simulation. J Phys
Condens Matter 2002, 14:2745.

36. ICMAB. Available at: http://departments.icmab.es/
leem/siesta/. (Accessed October 17, 2016).

37. Kim J, Mauri F, Galli G. Total-energy global optimi-
zations using nonorthogonal localized orbitals. Phys
Rev B 1995, 52:1640.

38. Cankurtaran BO, Gale JD, Ford MJ. First principles
calculations using density matrix divide and- conquer
within the SIESTA methodology. J Phys Condens
Matter 2008, 20:294208.

39. De Pablo PJ, Moreno-Herrero F, Colchero J, Gómez
Herrero J, Herrero P, Baró AM, Ordejón P, Soler JM,
Artacho E. Absence of dc-conductivity in λ-DNA.
Phys Rev Lett 2000, 85:4992.

WIREs Computational Molecular Science Challenges in large scale quantum mechanical calculations

Volume 7, January/February 2017 © 2016 John Wiley & Sons, Ltd 17 of 24

http://departments.icmab.es/leem/siesta/.
http://departments.icmab.es/leem/siesta/.


40. Heady L, Fernandez-Serra M, Mancera RL, Joyce S,
Venkitaraman AR, Artacho E, Skylaris C-K,
Ciacchi LC, Payne MC. Novel structural features of
CDK inhibition revealed by an ab initio computa-
tional method combined with dynamic simulations.
J Med Chem 2006, 49:5141.

41. Lin L, García A, Huhs G, Yang C. SIESTA-PEXSI:
massively parallel method for efficient and accurate
ab initio materials simulation without matrix diago-
nalization. J Phys Condens Matter 2014, 26:305503.

42. Lin L, Chen M, Yang C, He L. Accelerating atomic
orbital-based electronic structure calculation via pole
expansion and selected inversion. J Phys Condens
Matter 2013, 25:295501.

43. Hu W, Lin L, Yang C, Yang J. Electronic structure
and aromaticity of large-scale hexagonal graphene
nanoflakes. J Chem Phys 2014, 141:214704.

44. Stokbro K, Taylor J, Brandbyge M, Ordejón P. Tran-
SIESTA: a spice for molecular electronics. Ann N Y
Acad Sci 2003, 1006:212.

45. Sanz-Navarro CF, Grima R, García A, Bea EA,
Soba A, JM, Ordejón P. An efficient implementation
of a QM-MM method in SIESTA. Theor Chem Acc
2011, 128:825.

46. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC.
Recent progress in linear-scaling density functional
calculations with plane waves and pseudopotentials:
the ONETEP code. J Phys Condes Matter 2008,
20:64209.

47. Hine N, Haynes P, Mostofi A, Skylaris C-K,
Payne M. Linear-scaling density-functional theory
with tens of thousands of atoms: expanding the scope
and scale of calculations with ONETEP. Comput Phys
Commun 2009, 180:1041.

48. http://www.onetep.org. (Accessed October 17, 2016).

49. Haynes PD, Skylaris C-K, Mostofi AA, Payne MC.
Density kernel optimization in the ONETEP code.
J Phys Condens Matter 2008, 20:294207.

50. O’Regan DD, Hine NDM, Payne MC, Mostofi AA.
Linear-scaling DFT+U with full local orbital optimi-
zation. Phys Rev B 2012, 85:085107.

51. Ratcliff LE, Hine NDM, Haynes PD. Calculating
optical absorption spectra for large systems using
linear-scaling density functional theory. Phys Rev B
2011, 84:165131.

52. Zuehlsdorff TJ, Hine NDM, Spencer JS,
Harrison NM, Riley DJ, Haynes PD. Linear-scaling
time-dependent density-functional theory in the linear
response formalism. J Chem Phys 2013, 139:064104.

53. Zuehlsdorff TJ, Hine NDM, Payne MC, Haynes PD.
Linear-scaling time-dependent density-functional the-
ory beyond the Tamm-Dancoff approximation:
obtaining efficiency and accuracy with in situ opti-
mised local orbitals. J Chem Phys 2015, 143:204107.

54. Turban DHP, Teobaldi G, O’Regan DD, Hine NDM.
Supercell convergence of charge-transfer energies in
pentacene molecular crystals from constrained DFT,
ArXiv e-prints, 2016, arXiv:1603.02174 [physics.
chem-ph].

55. Bell RA, Dubois SMM, Payne MC, Mostofi AA. Elec-
tronic transport calculations in the ONETEP code:
implementation and applications. Comput Phys Com-
mun 2015, 193:78.

56. Lee LP, Cole DJ, Payne MC, Skylaris C-K. Natural
bond orbital analysis in the ONETEP code: applications
to large protein systems. J Comput Chem 2013,
34:429.

57. Dziedzic J, Helal HH, Skylaris C-K, Mostofi AA,
Payne MC. Minimal parameter implicit solvent model
for ab initio electronic-structure calculations. Euro-
phys Lett 2011, 95:43001.

58. Ruiz-Serrano A, Skylaris C-K. A variational method
for density functional theory calculations on metallic
systems with thousands of atoms. J Chem Phys 2013,
139:054107.

59. Hine NDM, Haynes PD, Mostofi AA, Payne MC.
Linear-scaling density-functional simulations of
charged point defects in Al2O3 using hierarchical
sparse matrix algebra. J Chem Phys 2010, 133:1.

60. Hine N, Robinson M, Haynes P, Skylaris C-K,
Payne M, Mostofi A. Accurate ionic forces and geom-
etry optimization in linear-scaling density-functional
theory with local orbitals. Phys Rev B 2011,
83:195102.

61. Weber C, Cole DJ, O’Regan DD, Payne MC. Renor-
malization of myoglobin-ligand binding energetics by
quantum many-body effects. Proc Natl Acad Sci
U S A 2014, 111:5790.

62. Lever G, Cole DJ, Lonsdale R, Ranaghan KE,
Wales DJ, Mulholland AJ, Skylaris C-K, Payne MC.
Large-scale density functional theory transition state
searching in enzymes. J Phys Chem Lett 2014,
5:3614.

63. Lever G, Cole DJ, Hine NDM, Haynes PD,
Payne MC. Electrostatic considerations affecting the
calculated HOMO–LUMO gap in protein molecules.
J Phys Condens Matter 2013, 25:152101.

64. Ozaki T. O(N) Krylov-subspace method for large-
scale ab initio electronic structure calculations. Phys
Rev B 2006, 74:245101.

65. http://www.openmx-square.org. (Accessed October
17, 2016).

66. Han MJ, Ozaki T, Yu J. O(N) LDA+U electronic
structure calculation method based on the nonortho-
gonal pseudoatomic orbital basis. Phys Rev B 2006,
73:045110.

67. Ozaki T, Nishio K, Kino H. Efficient implementation
of the nonequilibrium Green function method for

Advanced Review wires.wiley.com/compmolsci

18 of 24 © 2016 John Wiley & Sons, Ltd Volume 7, January/February 2017

http://www.onetep.org.
http://www.openmx-square.org


electronic transport calculations. Phys Rev B 2010,
81:035116.

68. Ohwaki T, Otani M, Ozaki T. A method of orbital
analysis for large-scale first-principles simulations.
J Chem Phys 2014, 140:244105.

69. Blum V, Gehrke R, Hanke F, Havu P, Havu V,
Ren X, Reuter K, Scheffler M. Ab initio molecular
simulations with numeric atom-centered orbitals.
Comput Phys Commun 2009, 180:2175.

70. https://aimsclub.fhi-berlin.mpg.de. (Accessed October
17, 2016).

71. Havu V, Blum V, Havu P, Scheffler M. Efficient O(N)
integration for all-electron electronic structure calcu-
lation using numeric basis functions. J Comput Phys
2009, 228:8367.

72. Marek A, Blum V, Johanni R, Havu V, Lang B,
Auckenthaler T, Heinecke A, Bungartz H-J,
Lederer H. The ELPA library: scalable parallel eigen-
value solutions for electronic structure theory and
computational science. J Phys Condens Matter 2014,
26:213201.

73. Berger D, Logsdail AJ, Oberhofer H, Farrow MR,
Catlow CRA, Sherwood P, Sokol AA, Blum V,
Reuter K. Embedded-cluster calculations in a numeric
atomic orbital density-functional theory framework.
J Chem Phys 2014, 141:024105. doi:10.1063/
1.4885816, arXiv:arXiv:1404.2130v1.

74. Schubert F, Rossi M, Baldauf C, Pagel K, Warnke S,
von Helden G, Filsinger F, Kupser P, Meijer G,
Salwiczek M, et al. Exploring the conformational pre-
ferences of 20-residue peptides in isolation: Ac-Ala19-
Lys + H+ vs. Ac-Lys-Ala19 + H+ and the current reach
of DFT. Phys Chem Chem Phys 2015, 17:7373.

75. Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A,
Sanfilippo A, Reuter K, Scheffler M. Resolution of-
identity approach to Hartree-Fock, hybrid density
functionals, RPA, MP2 and GW with numeric atom-
centered orbital basis functions, New Journal of Phys-
ics 14 (2012), 10.1088/1367-2630/14/5/053020,
arXiv:1201.0655.

76. Bowler DR, Bush IJ, Gillan MJ. Practical methods for
ab initio calculations on thousands of atoms. Int J
Quantum Chem 2000, 77:831.

77. http://www.order-n.org (Accessed October 17, 2016).

78. Sena AMP, Miyazaki T, Bowler DR. Linear scaling
constrained density functional theory in CONQUEST.
J Chem Theory Comput 2011, 7:884.

79. Nakata A, Bowler DR, Miyazaki T. Efficient Calcula-
tions with Multisite Local Orbitals in a Large-Scale
DFT Code CONQUEST. J Chem Theory Comput 2014,
10:4813.

80. Miyazaki T, Bowler DR, Gillan MJ, Ohno T. The
energetics of hut-cluster self-assembly in Ge/Si(001)
from linear-scaling DFT calculations. J Physical Soc
Japan 2008, 77:123706.

81. Otsuka T, Miyazaki T, Ohno T, Bowler DR,
Gillan M. Accuracy of order-N density-functional
theory calculations on DNA systems using CONQUEST.
J Phys Condens Matter 2008, 20:294201.

82. Arita M, Bowler DR, Miyazaki T. Stable and efficient
linear scaling first-principles molecular dynamics for
1000+ atoms. J Chem Theory Comput 2014,
10:5419.

83. Niklasson AMN. Extended Born-Oppenheimer
molecular dynamics. Phys Rev Lett 2008,
100:123004.

84. http://www.bigdft.org. (Accessed October 17, 2016).

85. Daubechies I. Ten lectures on wavelets. In: CBMS-
NSF Regional Conference Series in Applied Mathe-
matics, 61, SIAM, 1992.

86. Genovese L, Neelov A, Goedecker S, Deutsch T,
Ghasemi SA, Willand A, Caliste D, Zilberberg O,
Rayson M, Bergman A, et al. Daubechies wavelets as
a basis set for density functional pseudopotential cal-
culations. J Chem Phys 2008, 129:014109.

87. Willand A, Kvashnin YO, Genovese L, Vázquez-

Mayagoitia �A, Deb AK, Sadeghi A, Deutsch T, S.
Norm-conserving pseudopotentials with chemical
accuracy compared to all-electron calculations.
J Chem Phys 2013, 138:104109.

88. Natarajan B, Genovese L, Casida ME, Deutsch T,
Burchak ON, Philouze C, Balakirev MY. Wavelet-
based linear-response time-dependent densityfunc-
tional theory. Chem Phys 2012, 402:29.

89. Ratcliff LE, Genovese L, Mohr S, Deutsch T. Frag-
ment approach to constrained density functional the-
ory calculations using Daubechies wavelets. J Chem
Phys 2015, 142:234105.

90. Genovese L, Deutsch T, Neelov A, Goedecker S,
Beylkin G. Efficient solution of Poisson’s equation
with free boundary conditions. J Chem Phys 2006,
125:074105.

91. Genovese L, Deutsch T, Goedecker S. Efficient and
accurate three-dimensional Poisson solver for surface
problems. J Chem Phys 2007, 127:054704.

92. Cerioni A, Genovese L, Mirone A, Sole VA. Efficient
and accurate solver of the three-dimensional screened
and unscreened Poissons equation with generic
boundary conditions. J Chem Phys 2012,
137:134108.

93. Fisicaro G, Genovese L, Andreussi O, Marzari N,
Goedecker S. A generalized Poisson and Poisson-
Boltzmann solver for electrostatic environments.
J Chem Phys 2016, 143:014103.

94. Genovese L, Ospici M, Deutsch T, Méhaut J-F,
Neelov A, Goedecker S. Density functional theory cal-
culation on many-cores hybrid central processing
unit-graphic processing unit architectures. J Chem
Phys 2009, 131:034103.

WIREs Computational Molecular Science Challenges in large scale quantum mechanical calculations

Volume 7, January/February 2017 © 2016 John Wiley & Sons, Ltd 19 of 24

https://aimsclub.fhi-berlin.mpg.de
http://dx.doi.org/10.1063/1.4885816
http://dx.doi.org/10.1063/1.4885816
http://www.order-n.org
http://www.bigdft.org


95. Rudberg E, Rubensson EH, Sałek P. Kohn–Sham den-
sity functional theory electronic structure calculations
with linearly scaling computational time and memory
usage. J Chem Theory Comput 2011, 7:340.

96. http://ergoscf.org/. (Accessed October 17, 2016).

97. Rudberg E. Difficulties in applying pure Kohn-Sham
density functional theory electronic structure methods
to protein molecules. J Phys Condens Matter 2012,
24:072202.

98. Bock N, Challacombe M, Gan CK, Henkelman G,
Nemeth K, Niklasson AMN, Odell A, Schwegler E,
Tymczak CJ, Weber V. FreeON, Los Alamos
National Laboratory, 2012, http://www.freeon.org.

99. Jordan DK, Mazziotti DA. Comparison of two genres
for linear scaling in density functional theory: purifi-
cation and density matrix minimization methods.
J Chem Phys 2005, 122:084114.

100. https://www.cp2k.org/quickstep. (Accessed October
17, 2016).

101. Del Ben M, Hutter J, Vandevondele J. Forces and
stress in second order Møller-Plesset perturbation the-
ory for condensed phase systems within the resolution
of identity Gaussian and plane waves approach.
J Chem Phys 2015, 143:102803.

102. Tsuchida E, Tsukada M. Large-scale electronic struc-
ture calculations based on the adaptive finite element
method. J Physical Soc Japan 1998, 67:3844.

103. Tsuchida E. Augmented orbital minimization method
for linear scaling electronic structure calculations.
J Physical Soc Japan 2007, 76:034708.

104. Tsuchida E. Ab initio molecular dynamics simulations
with linear scaling: application to liquid ethanol.
J Phys Condens Matter 2008, 20:294212.

105. Ikeshoji T, Tsuchida E, Morishita T, Ikeda K,
Matsuo M, Kawazoe Y, Orimo S-i. Fast-ionic con-
ductivity of Li+ in LiBH4. Phys Rev B 2011,
83:144301.

106. http://rmgdft.sourceforge.net/. (Accessed October
17, 2016).

107. Fattebert J-L, Bernholc J. Towards grid-based O(N)
density-functional theory methods: optimized non-
orthogonal orbitals and multigrid acceleration. Phys
Rev B 2000, 62:1713.

108. Fattebert J, Hornung R, Wissink A. Finite element
approach for density functional theory calculations
on locally-refined meshes. J Comput Phys 2007,
223:759.

109. Fattebert J-L, Gygi F. Linear scaling first-principles
molecular dynamics with controlled accuracy. Com-
put Phys Commun 2004, 162:24.

110. Osei-Kuffuor D, Fattebert J-L. Accurate and scalable
N algorithm for first-principles molecular-dynamics
computations on large parallel compute. Phys Rev
Lett 2014, 112:046401.

111. Wang L-W, Teter MP. Kinetic-energy functional of
the electron density. Phys Rev B 1992, 45:13196.

112. García-Aldea D, Alvarellos JE. Kinetic energy density
study of some representative semilocal kinetic energy
functionals. J Chem Phys 2007, 127:144109.

113. Huang C, Carter EA. Nonlocal orbital-free kinetic
energy density functional for semiconductors. Phys
Rev B 2010, 81:45206.

114. Ho GS, Lignères VL, Carter EA. Introducing PRO-
FESS: a new program for orbital-free density func-
tional theory calculations. Comput Phys Commun
2008, 179:839.

115. Hung L, Huang C, Shin I, Ho GS, Lignères VL,
Carter EA. Introducing PROFESS 2.0: a paralle-
lized, fully linear scaling program for orbital-free
density functional theory calculations. Comput
Phys Commun 2010, 181:2208.

116. Chen M, Xia J, Huang C, Dieterich JM, Hung L,
Shin I, Carter EA. Introducing PROFESS 3.0: an
advanced program for orbital-free density functional
theory molecular dynamics simulations. Comput Phys
Commun 2015, 190:228.

117. https://carter.princeton.edu/research/software/.
(Accessed October 17, 2016).

118. Shin I, Carter EA. Enhanced von Weizsäcker wang-
govind-carter kinetic energy density functional for
semiconductors. J Chem Phys 2014, 140:18A531.

119. Huang C, Carter EA. Toward an orbital-free density
functional theory of transition metals based on an
electron density decomposition. Phys Rev B 2012,
85:045126.

120. Hung L, Carter EA. Accurate simulations of metals at
the mesoscale: explicit treatment of 1 million atoms
with quantum mechanics. Chem Phys Lett 2009,
475:163.

121. Chen M, Hung L, Huang C, Xia J, Carter EA. The
melting point of lithium: an orbital-free firstprinciples
molecular dynamics study. Mol Phys 2013,
111:3448.

122. Riplinger C, Pinski P, Becker U, Valeev EF, Neese F.
Sparse maps—a systematic infrastructure for reduced-
scaling electronic structure methods. II. Linear scaling
domain based pair natural orbital coupled cluster the-
ory. J Chem Phys 2016, 144:024109.

123. Scemama A, Caffarel M, Oseret E, Jalby W. Quan-
tum Monte Carlo for large chemical systems: imple-
menting efficient strategies for petascale platforms
and beyond. J Comput Chem 2013, 34:938.

124. Scemama A, Caffarel M, Oseret E, Jalby A.
QMC=Chem: a quantum Monte Carlo Program for
large-scale simulations in chemistry at the petascale
level and beyond, high performance computing for
computational science. Vecpar 2013, 2012:118.

Advanced Review wires.wiley.com/compmolsci

20 of 24 © 2016 John Wiley & Sons, Ltd Volume 7, January/February 2017

http://ergoscf.org/
http://www.freeon.org
https://www.cp2k.org/quickstep
http://rmgdft.sourceforge.net/
https://carter.princeton.edu/research/software/


125. Behler J, Parrinello M. Generalized neural-network
representation of high-dimensional potential-energy
surfaces. Phys Rev Lett 2007, 98:146401.

126. Behler J, Marto�nák R, Donadio D, Parrinello M.
Pressure-induced phase transitions in silicon studied
by neural network-based metadynamics simulations.
Phys Status Solidi B 2008, 245:2618.

127. Behler J, Marto�nák R, Donadio D, Parrinello M.
Metadynamics simulations of the high-pressure
phases of silicon employing a high-dimensional neu-
ral network potential. Phys Rev Lett 2008,
100:185501.

128. Ghasemi SA, Hofstetter A, Saha S, Goedecker S.
Interatomic potentials for ionic systems with density
functional accuracy based on charge densities
obtained by a neural network. Phys Rev B 2015,
92:045131.

129. Rupp M, Ramakrishnan R, von Lilienfeld OA.
Machine learning for quantum mechanical properties
of atoms in molecules. J Phys Chem Lett 2015,
6:3309.

130. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M.
Fragment molecular orbital method: an approximate
computational method for large molecules. Chem
Phys Lett 1999, 313:701.

131. Fedorov DG, Kitaura K. Extending the power of
quantum chemistry to large systems with the frag-
ment molecular orbital method. J Phys Chem A
2007, 111:6904.

132. Fedorov DG, Kitaura K. The importance of three-
body terms in the fragment molecular orbital method.
J Chem Phys 2004, 120:6832.

133. Nakano T, Mochizuki Y, Yamashita K, Watanabe C,
Fukuzawa K, Segawa K, Okiyama Y, Tsukamoto T,
Tanaka S. Development of the four-body corrected
fragment molecular orbital (fmo4) method. Chem
Phys Lett 2012, 523:128.

134. Pruitt SR, Nakata H, Nagata T, Mayes M,
Alexeev Y, Fletcher G, Fedorov DG, Kitaura K,
Gordon MS. Importance of three-body interactions in
molecular dynamics simulations of water demon-
strated with the fragment molecular orbital method.
J Chem Theory Comput 2016, 12:1423–1435.

135. Pruitt SR, Fedorov DG, Gordon MS. Geometry opti-
mizations of open-shell systems with the fragment
molecular orbital method. J Phys Chem A 2012,
116:4965.

136. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST,
Gordon MS, Jensen JH, Koseki S, Matsunaga N,
Nguyen KA, Su S, et al. General atomic and molecu-
lar electronic structure system. J Comput Chem 1993,
14:1347.

137. Gordon MS, Schmidt MW. Chapter 41 – Advances
in electronic structure theory: GAMESS a decade
later. In: Scuseria CEDFSKE, ed. Theory and

Applications of Computational Chemistry. Amster-
dam: Elsevier; 2005, 1167–1189.

138. http://www.msg.ameslab.gov/gamess/. (Accessed
October 17, 2016).

139. Nakano T, Mochizuki Y, Fukuzawa K, Amari S,
Tanaka S. Chapter 2—developments and applications
of abinit-mp software based on the fragment molecu-
larorbital method. In: Starikov E, Lewis J, Tanaka S,
eds. Modern Methods for Theoretical Physical Chem-
istry of Biopolymers. Amsterdam: Elsevier Science;
2006, 39–52.

140. http://moldb.nihs.go.jp/abinitmp/. (Accessed October
17, 2016).

141. Mochizuki Y, Yamashita K, Murase T, Nakano T,
Fukuzawa K, Takematsu K, Watanabe H, Tanaka S.
Large scale FMO-MP2 calculations on a massively
parallel-vector computer. Chem Phys Lett 2008,
457:396.

142. Sekino H, Sengoku Y, Sugiki S, Kurita N. Molecular
orbital analysis based on fragment molecular orbital
scheme. Chem Phys Lett 2003, 378:589.

143. Ganesh V, Dongare RK, Balanarayan P, Gadre SR.
Molecular tailoring approach for geometry optimiza-
tion of large molecules: energy evaluation and paral-
lelization strategies. J Chem Phys 2006, 125:104109.

144. Gordon MS, Mullin JM, Pruitt SR, Roskop LB,
Slipchenko LV, Boatz JA. Accurate methods for large
molecular systems. J Phys Chem B 2009, 113:9646.

145. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV.
Fragmentation methods: a route to accurate calcula-
tions on large systems. Chem Rev 2012, 112:632.

146. Pruitt SR, Bertoni C, Brorsen KR, Gordon MS. Effi-
cient and accurate fragmentation methods. Acc Chem
Res 2014, 47:2786.

147. Fletcher GD, Fedorov DG, Pruitt SR, Windus TL,
Gordon MS. Large-scale MP2 calculations on the
Blue Gene architecture using the fragment molecular
orbital method. J Chem Theory Comput 2012, 8:75.

148. Fedorov DG, Alexeev Y, Kitaura K. Geometry opti-
mization of the active site of a large system with the
fragment molecular orbital method. J Phys Chem Lett
2011, 2:282.

149. Sawada T, Fedorov DG, Kitaura K. Role of the key
mutation in the selective binding of avian and human
influenza hemagglutinin to sialosides revealed by
quantum-mechanical calculations. J Am Chem Soc
2010, 132:16862.

150. Sawada T, Fedorov DG, Kitaura K. Binding of influ-
enza a virus hemagglutinin to the sialoside receptor is
not controlled by the homotropic allosteric effect.
J Phys Chem B 2010, 114:15700.

151. Fedorov DG, Kitaura K, Li H, Jensen JH,
Gordon MS. The polarizable continuum model
(PCM) interfaced with the fragment molecular orbital
method (fmo). J Comput Chem 2006, 27:976.

WIREs Computational Molecular Science Challenges in large scale quantum mechanical calculations

Volume 7, January/February 2017 © 2016 John Wiley & Sons, Ltd 21 of 24

http://www.msg.ameslab.gov/gamess/
http://moldb.nihs.go.jp/abinitmp/


152. Barone V, Cossi M, Tomasi J. A new definition of
cavities for the computation of solvation free energies
by the polarizable continuum model. J Chem Phys
1997, 107:3210.

153. Ikegami T, Ishida T, Fedorov DG, Kitaura K,
Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S.
Full electron calculation beyond 20,000 atoms:
ground electronic state of photosynthetic proteins,
supercomputing, 2005. In: Proceedings of the
ACM/IEEE SC 2005 Conference, 10, 2005.

154. Fedorov DG, Jensen JH, Deka RC, Kitaura K. Cova-
lent bond fragmentation suitable to describe solids in
the fragment molecular orbital method. J Phys
Chem A 2008, 112:11808.

155. Fedorov DG, Avramov PV, Jensen JH, Kitaura K.
Analytic gradient for the adaptive frozen orbital bond
detachment in the fragment molecular orbital
method. Chem Phys Lett 2009, 477:169.

156. Fukunaga H, Fedorov DG, Chiba M, Nii K,
Kitaura K. Theoretical analysis of the intermolecular
interaction effects on the excitation energy of organic
pigments: solid state quinacridone. J Phys Chem A
2008, 112:10887.

157. Elstner M, Porezag D, Jungnickel G, Elsner J,
Haugk M, Frauenheim T, Suhai S, Seifert G. Self-con-
sistent-charge density-functional tight-binding method
for simulations of complex materials properties. Phys
Rev B 1998, 58:7260.

158. Nishimoto Y, Fedorov DG, Irle S. Third-order
density-functional tight-binding combined with the
fragment molecular orbital method. Chem Phys Lett
2015, 636:90.

159. Wahiduzzaman M, Oliveira AF, Philipsen P,
Zhechkov L, Van Lenthe E, Witek HA, Heine T.
DFTB parameters for the periodic table: part 1, elec-
tronic structure. J Chem Theory Comput 2013,
9:4006.

160. Islam SM, Roy P-N. Performance of the SCCDFTB
model for description of five-membered ring carbohy-
drate conformations: comparison to force fields, high-
level electronic structure methods, and experiment.
J Chem Theory Comput 2012, 8:2412.

161. Hornak V, Abel R, Okur A, Strockbine B,
Roitberg A, Simmerling C. Comparison of multiple
Amber force fields and development of improved pro-
tein backbone parameters. Proteins: Struct Funct
Bioinf 2006, 65:712, arXiv:0605018 [q-bio].

162. Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B.
Molecular mechanical and molecular dynamic simu-
lations of glycoproteins and oligosaccharides. 1. GLY-
CAM 93 parameter development. J Phys Chem 1995,
99:3832.

163. Case DA, Cheatham TE, Darden T, Gohlke H,
Luo R, Merz KM, Onufriev A, Simmerling C,
Wang B, Woods RJ. The Amber biomolecular

simulation programs. J Comput Chem 2005,
26:1668, arXiv:NIHMS150003.

164. Choi TH, Liang R, Maupin CM, Voth GA. Applica-
tion of the SCC-DFTB method to hydroxide water
clusters and aqueous hydroxide solutions. J Phys
Chem B 2013, 117:5165.

165. Nishimoto Y, Fedorov DG, Irle S. Density- functional
tight-binding combined with the fragment molecular
orbital method. J Chem Theory Comput 2014,
10:4801.

166. Nishimoto Y, Nakata H, Fedorov DG, Irle S. Large-
scale quantum-mechanical molecular dynamics simu-
lations using density-functional tight-binding com-
bined with the fragment molecular orbital method.
J Phys Chem Lett 2015, 6:5034.

167. Zen A, Luo Y, Mazzola G, Guidoni L, Sorella S. Ab
initio molecular dynamics simulation of liquid water
by quantum Monte Carlo. J Chem Phys 2015,
142:144111.

168. Vega C, Abascal JLF. Simulating water with rigid
non-polarizable models: a general perspective. Phys
Chem Chem Phys 2011, 13:19663.

169. Kiss PT, Baranyai A. Density maximum and polariza-
ble models of water. J Chem Phys 2012, 137:084506.

170. Livshits GI, Stern A, Rotem D, Borovok N,
Eidelshtein G, Migliore A, Penzo E, Wind SJ, Di
Felice R, Skourtis SS, et al. Long-range charge trans-
port in single G-quadruplex DNA molecules. Nat
Nanotechnol 2014, 9:1040.

171. Lech CJ, Phan AT, Michel-Beyerle ME, Voityuk AA.
Electron–hole transfer in G-quadruplexes with differ-
ent tetrad stacking geometries: a combined QM and
MD study. J Phys Chem B 2013, 117:9851.

172. Sponer J, Leszczynski J, Hobza P. Electronic proper-
ties, hydrogen bonding, stacking, and cation binding
of DNA and RNA bases. Biopolym (Nucl Acid Sci)
2002, 61:3.

173. Gkionis K, Kruse H, Platts JA, Mládek A, Ko�ca J,
Šponer J. Ion binding to quadruplex DNA stems.
Comparison of MM and QM descriptions reveals siz-
able polarization effects not included in contempo-
rary simulations. J Chem Theory Comput 2014,
10:1326.

174. Dans PD, Walther J, Gómez H, Orozco M. Multi-
scale simulation of DNA. Curr Opin Struct Biol
2016, 37:29.

175. Gaines JC, Smith WW, Regan L, O’Hern CS. Ran-
dom close packing in protein cores. Phys Rev E
2016, 93:032415.

176. Kiss G, Röthlisberger D, Baker D, Houk KN. Evalua-
tion and ranking of enzyme designs. Protein Sci
2010, 19:1760.

177. Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D,
Houk KN. Computational enzyme design. Angew
Chem Int Ed 2013, 52:5700.

Advanced Review wires.wiley.com/compmolsci

22 of 24 © 2016 John Wiley & Sons, Ltd Volume 7, January/February 2017



178. Jacob CR, Neugebauer J. Subsystem density func-
tional theory. WIREs Comput Mol Sci 2014, 4:325.

179. Bakowies D, Thiel W. Hybrid models for combined
quantum mechanical and molecular mechanical
approaches. J Phys Chem 1996, 100:10580.

180. Lin H, Truhlar DG. QM/MM: what have we learned,
where are we, and where do we go from here? Theor
Chem Acc 2007, 117:185.

181. Senn HM, Thiel W. QM/MM methods for biomole-
cular systems. Angew Chem Int Ed 2009, 48:1198.

182. Ferré N, �Angyán JG. Approximate electrostatic inter-
action operator for QM/MM calculations. Chem
Phys Lett 2002, 356:331.

183. Neugebauer J. Subsystem-based theoretical spectros-
copy of biomolecules and biomolecular assemblies.
ChemPhysChem 2009, 10:3148.

184. Eichinger M, Tavan P, Hutter J, Parrinello M. A
hybrid method for solutes in complex solvents: den-
sity functional theory combined with empirical force
fields. J Chem Phys 1999, 110:10452.

185. Das D, Eurenius KP, Billings EM, Sherwood P,
Chatfield DC, Hodoš�cek M, Brooks BR. Optimiza-
tion of quantum mechanical molecular mechanical
partitioning schemes: Gaussian delocalization of
molecular mechanical charges and the double link
atom method. J Chem Phys 2002, 117:10534.

186. Biswas PK, Gogonea V. A regularized and renorma-
lized electrostatic coupling Hamiltonian for hybrid
quantum-mechanical-molecular-mechanical calcula-
tions. J Chem Phys 2005, 123:1.

187. Senthilkumar K, Mujika JI, Ranaghan KE,
Manby FR, Mulholland AJ, Harvey JN. Analysis of
polarization in QM/MM modelling of biologically
relevant hydrogen bonds. J R Soc Interface 2008, 5-
(Suppl 3):S207.

188. Zuehlsdorff TJ, Haynes PD, Hanke F, Payne MC,
Hine NDM. Solvent effects on electronic excitations
of an organic chromophore. J Chem Theory Comput
2016, 12:1853.

189. Claeyssens F, Harvey JN, Manby FR, Mata RA,
Mulholland AJ, Ranaghan KE, Schütz M, Thiel S,
Thiel W, Werner H-J. High-accuracy computation of
reaction barriers in enzymes. Angew Chem Int Ed
2006, 45:6856.

190. Schütz M, Hetzer G, Werner H-J. Low-order scaling
local electron correlation methods. I. Linear scaling
local MP2. J. Chem. Phys. 1999, 111:5691.

191. Hetzer G, Schütz M, Stoll H, Werner H-J. Loworder
scaling local correlation methods II: splitting the Cou-
lomb operator in linear scaling local second-order
Møller-Plesset perturbation theory. J Chem Phys
2000, 113:9443.

192. Schütz M. Low-order scaling local electron correla-
tion methods. III. Linear scaling local perturbative tri-
ples correction (T). J Chem Phys 2000, 113:9986.

193. Schütz M, Werner H-J. Low-order scaling local elec-
tron correlation methods. IV. Linear scaling local
coupled-cluster (LCCSD). J Chem Phys 2001,
114:661.

194. Schütz M. Low-order scaling local electron correla-
tion methods. V. Connected triples beyond (T): linear
scaling local CCSDT-1b. J Chem Phys 2002,
116:8772.

195. Schütz M, Werner H-J. Local perturbative triples cor-
rection (T) with linear cost scaling. Chem Phys Lett
2000, 318:370.

196. Werner HJ, Manby FR, Knowles PJ. Fast linear scal-
ing second-order Moller-Plesset perturbation theory
(MP2) using local and density fitting approximations.
J Chem Phys 2003, 118:8149.
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