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1 Introduction

Supersymmetric AdS backgrounds are of central importance to gauge/gravity duality. In

the simplest examples, corresponding to branes at conical singularities where only a top-

form field strength is non-zero, they describe familiar geometries [1], such as Sasaki-Einstein

or weak-G2 spaces. However, backgrounds with generic fluxes are much more complicated

and at first glance have no simple geometrical description. Significant progress has been

made analysing them using G-structures [2–5], for example as a means of classifying AdS4

and AdS5 solutions with eight supercharges in both type II theories [6] and M-theory [7, 8].
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More generally one can use generalised geometry [9–11] to characterise the type II back-

grounds, as for example in [12–14]. In both cases the geometry is defined by set of invariant

tensors, typically only locally defined, satisfying some first-order differential equations that

capture the lack of integrability of the structure in terms of the form-field flux. It is natural

then to ask if there is a single notion of geometry that captures the known examples in

terms of a global, integrable structure, perhaps also in a way adapted to the degrees of

freedom of the dual theory.

The answer is to use Ed(d) ×R+ generalised geometry [15–18], where d = 11−D. For

backgrounds with minimal supersymmetry, there is now a classification in terms of gener-

alised special holonomy: warped supersymmetric Minkowski backgrounds are in one-to-one

correspondence with spaces of particular generalised holonomy [19]. For AdS backgrounds,

this was recently extended to show they are in correspondence with weak generalised special

holonomy spaces [20]. The geometry can be characterised by a set of invariant generalised

tensors, the analogues, for example, of the SU(3)-invariant two- and three-forms ω and Ω

on a Calabi-Yau manifold. Using structures first considered in [21, 22], we showed in a re-

cent paper [23] that a generic D = 4, 5, 6 (warped) Minkowski background preserving eight

supercharges, in type II supergravity or M-theory, defines a pair of integrable generalised

structures in Ed(d) × R+ generalised geometry. For D = 4, 5, one structure is naturally

associated to hypermultiplets and one to vector multiplets in the Minkowski space. In par-

ticular the space of hypermultiplet structures admits a natural hyper-Kähler metric, while

the space of vector-multiplet structures admits a very special real (if D = 5) or special

Kähler (if D = 4) metric. As for a conventional G-structure, the generalised structures are

defined by generalised tensors that are invariant under some subgroup of Ed(d) ×R+, and,

in order to be integrable (and hence supersymmetric) must satisfy some first-order differ-

ential conditions. We should note that the formalism of “exceptional field theory” [24–28]

gives identical equations on the internal space to those of exceptional generalised geometry

but posits not an extended tangent space but the existence of additional coordinates in

spacetime. The constructions here are thus equally applicable to any such situation where

a suitable enlarged spacetime can be defined.

In this paper we will give the extension of this formalism for “exceptional Sasaki-

Einstein” geometries, that is, generic type II and M-theory AdS backgrounds in D = 4, 5

preserving eight supercharges. The generalised structures are identical to those that appear

for Minkowski backgrounds, however the integrability conditions are modified in a way that

depends on the cosmological constant, and is equivalent to the presence of singlet intrinsic

torsion for the corresponding generalised connection [20]. In each case the vector-multiplet

structure is defined by an invariant generalised vector which is Killing: it generates a combi-

nation of diffeomorphisms and gauge transformations that leave the background invariant,

corresponding in this case to the R-symmetry of the dual field theory. By analogy to the

Sasaki-Einstein case we refer to it as the “generalised Reeb vector”. The formalism also

allows one to analyse the structure of the moduli space of backgrounds. In particular we

find that the space of integrable hypermultiplet structures appears as a Kähler slice of a

hyper-Kähler quotient of the original space of structures, in a way closely related to the

“HK/QK correspondence” of Haydys [29]. This mirrors the analysis of gauged D = 4, 5
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supergravity [30, 31] precisely because the structures can be thought of as describing a

rewriting of the ten- or eleven-dimensional supergravity as a D = 4, 5 theory coupled to

an infinite number of hyper- and vector-multiplets [21].

We analyse three explicit cases to show how known supersymmetric AdS flux back-

grounds appear in our formalism. For D = 5 in type IIB, we consider the Sasaki-Einstein

solutions, and also give the form of the generalised Reeb vector for the generic backgrounds

in terms of spinor bilinears defined in [6]. For D = 5 in M-theory, we give a completely

general analysis, showing how the structures are defined in terms of the bilinears of [7], and

also that the integrability conditions are satisfied. Finally, for D = 4 in M-theory we again

consider the Sasaki-Einstein solutions, and give the form of the generalised Reeb vector for

the generic backgrounds in terms of bilinears of [8]. We stress that, although we include a

number of examples with non-vanishing top-form flux, the integrability conditions we have

given apply to generic flux backgrounds. The integrability conditions are equivalent to the

Killing spinor equations, and so we make no assumptions about non-vanishing fluxes.

One striking point that emerges is the role played by the generalised Reeb vector.

It is already known that, remarkably, the generic D = 5 type IIB and D = 4 M-theory

backgrounds admit contact structures [8, 32, 33], which encode both the central charge a (or

free energy F) of the theory and the R-charges of operators dual to wrapped branes. This

structure appears very naturally in the exceptional Sasaki-Einstein description: it is simply

the generalised Reeb vector. As we discuss, this also leads to a very natural conjecture,

following the work of [34], for the generic notion of “volume minimisation” [35, 36], the

gravity dual of a- and F -maximisation in the field theory [37–39].

The paper is organised as follows. We begin in section 2 by reviewing the generalised

structures that appear for D = 4, 5 Minkowski backgrounds preserving eight supercharges,

and then recall the integrability conditions on the structures. We then move onto the

main result of this paper, namely the extension of the integrability conditions for AdS

backgrounds. We leave the interpretation of the conditions and a discussion of the moduli

spaces of integrable structures to section 3. We provide some concrete examples of super-

symmetric AdS backgrounds in sections 4 and 5 and show they do indeed define integrable

structures. In section 6, we comment on the relation between vector-multiplet structures

and several field theory quantities, in particular the central charge and free energy, the

dimension of operators dual to wrapped branes and the dual of a- and F -maximisation.

Finally, in section 7 we finish with a short summary and discussion of areas for further work.

The notation and conventions used in this paper can be found in appendices A

and E of [23].

2 Generalised structures for AdS

We begin by reviewing the generalised structures that define D = 4, 5 backgrounds pre-

serving eight supercharges. These were defined in [23] for Minkowski vacua, but are equally

applicable to AdS. The only difference is in the integrability conditions, and one of the

main results of this paper is to give the conditions relevant to AdS. We provide some

concrete examples, including the case of completely general fluxes in M-theory giving an
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AdS5 vacuum. We leave the interpretation of the conditions and a discussion of the moduli

spaces of integrable structures to section 3.

2.1 Hyper- and vector-multiplet structures in Ed(d) generalised geometry

We consider type II and M-theory solutions of the form AdSD ×M , where M is (10−D)-

dimensional for type II and (11 −D)-dimensional for M-theory. We assume the metric is

a warped product

ds2 = e2∆ds2(AdSD) + ds2(M), (2.1)

where ∆ is a scalar function on M . We take m to be the inverse AdS radius, so that the

Ricci tensor is normalised to Rµν = −(D − 1)m2gµν , where g is the metric on AdSD, and

the cosmological constant is Λ = −1
2(D − 1)(D − 2)m2. As in [23], we allow generic fluxes

compatible with the AdS symmetry of the external spacetime and use the string frame

metric for type II solutions.

As shown in [23], a generic background preserving eight supercharges is completely

characterised by a pair of generalised G-structures in exceptional generalised geometry.

These structures were first defined in [21], in the context of type II theories. The gen-

eralised tangent bundle E in exceptional generalised geometry [15, 16] admits an action

of Ed(d) × R+. We can then define a generalised frame bundle F̃ for E as an Ed(d) × R+

principal bundle. There is also a generalised Lie derivative [16, 17, 40] which encodes the

infinitesimal symmetries, diffeomorphisms and gauge transformations, of the supergravity

theory, and one can use it to define generalised torsion and the analogue of the Levi-Civita

connection [17, 18]. Generalised tensors are defined as sections of vector bundles transform-

ing in some representation of Ed(d)×R+. A generalised G-structure is then defined by a set

of generalised tensors that are invariant under the action of a subgroup G ⊂ Ed(d). Equiv-

alently, it is a choice of G principal sub-bundle of the generalised frame bundle P̃G ⊂ F̃ .

The notion of an integrable generalised structure as one with vanishing intrinsic torsion

then follows in analogy to the conventional case [19].

The pairs of structures that appear for N = 2, D = 4 and N = 1, D = 5 backgrounds

were named hypermultiplet and vector-multiplet structures, or H and V structures for

short, since they are associated to hyper- and vector-multiplet scalar degrees of freedom

in D dimensions. The relevant structure groups defined by the H and V structures are

summarised in table 1. The hypermultiplet structure is defined by a triplet of sections of

a weighted adjoint bundle

H structure: Jα ∈ Γ(ad F̃ ⊗ (detT ∗M)1/2) α = 1, 2, 3, (2.2)

which define a highest weight su2 subalgebra of ed(d) and are normalised using the ed(d)

Killing form such that

[Jα, Jβ ] = 2κεαβγJγ , tr(JαJβ) = −κ2δαβ . (2.3)

Similarly, the vector-multiplet or V structure is defined by a section of the generalised

tangent bundle E

V structure: K ∈ Γ(E), (2.4)
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Gframe H structure V structure HV structure

D = 4 E7(7) × R+ Spin∗(12) E6(2) SU(6)

D = 5 E6(6) × R+ SU∗(6) F4(4) USp(6)

Table 1. The generalised G-structures with G ⊂ E7(7) and G ⊂ E6(6) that define eight-supercharge

backgrounds in D = 4 and D = 5 respectively.

which has a positive norm with respect to the E7(7) quartic invariant q(K) > 0 or the

E6(6) cubic invariant c(K) > 0.1 In D = 4, one can use the quartic invariant as a Hitchin

function to define a second invariant tensor K̂ and combine the two into a complex object

X = K + iK̂. (2.5)

Explicitly, K̂ is defined by the relation

s(V, K̂) = 2 q(K)−1/2q(V,K,K,K) , (2.6)

for arbitrary V ∈ Γ(E).

Finally the pair of structures {Jα,K} define an HV structure if they are compatible,

that is, if they satisfy the conditions

HV structure: Jα ·K = 0, tr(JαJβ) =

{
−2
√
q(K)δαβ D = 4,

−c(K)δαβ D = 5,
(2.7)

where for D = 4 from (2.6) we also have
√
q(K) = 1

2s(K, K̂).

Given a pair of globally defined spinors on M , one can construct “untwisted” structures

{J̃α, K̃} in terms of spinor bilinears. The full structures include the potentials for the

appropriate form fields and are given by the exponentiated adjoint action on the untwisted

objects [23], thus in M-theory we have

Jα = eA+ÃJ̃αe−A−Ã, K = eA+ÃK̃, (2.8)

where A is the three-form potential and Ã is the dual six-form potential, and for type IIB

Jα = eB
i+C J̃αe−B

i−C , K = eB
i+CK̃, (2.9)

where Bi is the SL(2;R) doublet of two-form potentials and C is the four-form potential.

In this case one also needs to include dressing by the IIB axion and dilaton, as described

in appendix E of [23]. Since these transformations are in Ed(d), the algebra, normalisation

and compatibility conditions (2.3) and (2.7) can be checked using either the twisted or

untwisted objects.

1Recall that for E7(7) there is a symmetric quartic invariant q(V1, V2, V3, V4) and a symplectic invariant

s(V1, V2) and for E6(6) a symmetric cubic invariant c(V1, V2, V3). We use the shorthand q(V ) = q(V, V, V, V )

and c(V ) = c(V, V, V ).

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
6

2.2 Exceptional Sasaki-Einstein geometry

We now describe the integrability conditions on the HV structure for the case of a super-

symmetric AdS background preserving eight supercharges. As discussed in [19, 20], the

difference from the Minkowski case is that there is a constant singlet component of the

generalised intrinsic torsion, resulting in a background with weak generalised holonomy.

This leads to a simple modification of the Minkowski conditions given in [23].

Recall that the space of H structures has a natural hyper-Kähler cone geometry and

admits a triplet of moment maps for the action of the generalised diffeomorphism group

GDiff, that is, the diffeomorphism and gauge transformation symmetries of the underlying

supergravity theory. Infinitesimal transformations are generated by the generalised Lie

derivative LV and so are parametrised by generalised vectors V ∈ Γ(E). The moment

maps for a given element in gdiff parametrised by V are given by

µα(V ) = −1

2
εαβγ

∫
M

tr(JβLV Jγ). (2.10)

For Minkowski backgrounds, supersymmetry implied that the moment maps vanished. For

AdS backgrounds they take a fixed non-zero value. Let us define the real functions

D = 4 : γ(V ) = 2

∫
M
q(K)−1/2q(V,K,K,K), (2.11)

D = 5 : γ(V ) =

∫
M
c(V,K,K). (2.12)

Note that the first definition can also be written in terms of K̂ using (2.6).

We can then define the exceptional generalised geometry analogue of a Sasaki-Einstein

structure, corresponding to an AdS background with generic fluxes. We have

Definition. An exceptional Sasaki-Einstein (ESE) structure is an HV structure {Jα,K}
satisfying

µα(V ) = λαγ(V ) ∀V ∈ Γ(E), (2.13)

LKK = 0, (2.14)

LKJα = εαβγλβJγ , LK̂Jα = 0, (2.15)

where γ(V ) is given by (2.11) and (2.12), and λα are real constants related to the inverse

AdS radius by |λ| = 2m for D = 4 and |λ| = 3m for D = 5, where |λ|2 = λ2
1 + λ2

2 + λ2
3.

The second condition in (2.15) is relevant only for D = 4.

The integrability condition for the vector-multiplet structure (2.14) is unchanged from the

Minkowski case. As shown in [23], for D = 4 this is equivalent to LXX̄ = 0, as LXX

vanishes identically. The other two conditions now have right-hand sides, determined by

the singlet torsion. Note that the third condition (2.15) simply states that the action of

LK is equivalent to an SU(2) rotation of the Jα. Note also that this condition is consistent

with the moment map conditions when taking V = K (and V = K̂ in D = 4). As shown
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in appendix A, for ESE spaces, the second compatibility constraint in (2.7) is actually a

consequence of the integrability conditions.

Recall that for D = 4 there is a global U(1) R-symmetry that acts on X, taking

X → X ′ = eiαX. Strictly, one should write the condition (2.15) replacing K with ReX ′

and K̂ with ImX ′. However, the point is that one can always choose a gauge where the

condition takes the form (2.15). In a similar way one can use the SU(2) global R-symmetry

to set λ1,2 = 0. (The only unbroken part of the R-symmetry is then a U(1) preserving λ3.)

The conditions (2.10) can then be written as

µ3(V ) = λ3γ(V ), µ+(V ) = 0 ∀V ∈ Γ(E), (2.16)

while the conditions (2.15) read

D = 4 : LKJ+ = iλ3J+, LK̂J+ = 0, (2.17)

D = 5 : LKJ+ = iλ3J+. (2.18)

These are the forms we will use when checking the integrability for various examples.

We can immediately deduce various properties from the integrability conditions. The

first is that the ESE space is generalised Einstein. Recall that the HV structure {Jα,K}
determines the generalised metric G that encodes the supergravity degrees of freedom

on M . Given a generalised metric one can construct a unique generalised Ricci tensor

following [17]. Using the generalised intrinsic torsion of the ESE background, which we

discuss in section 2.3, and the results of [20], we find that the generalised Ricci tensor

satisfies the generalised Einstein equation2

RMN =
(D − 1)(D − 2)

dE
m2GMN , (2.19)

where M and N are indices running over the dual generalised tangent space E∗ and dE is

the dimension of E.

Next we note that since LKK = 0 and LKJα is equal to an SU(2) R-symmetry rotation,

which simply rotates the Killing spinors but leaves the supergravity degrees of freedom

unchanged, we can conclude that LKG = 0 and so

LKG = 0 ⇔ K is a generalised Killing vector, (2.20)

as is also the case for Minkowski backgrounds. Note that for the D = 4 solutions, K̂ is

also generalised Killing. Let us decompose K into vector and form components as in [23],

K =

{
ξ + ω + σ + τ M theory,

ξ + λi + ρ+ σi + τ type IIB,
(2.21)

where ξ is the vector component. The generalised Killing vector condition in M-theory is

equivalent to

Lξg = 0, LξA− dω = 0, LξÃ− dσ +
1

2
dω ∧A = 0, (2.22)

2We are using RMN = R0
MN + 1

dE
GMNR, where R0 and R are the generalised tensors defined in [17].

– 7 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
6

where A is the three-form potential and Ã is the dual six-form potential. In type IIB it is

equivalent to

Lξg = 0, LξC = dρ− 1

2
εijdλ

i ∧Bj ,

LξBi = dλi, LξB̃i = dσi +
1

2
dλi ∧ C − 1

2
dρ ∧Bi +

1

12
Bi ∧ εklBk ∧ dλl,

(2.23)

where Bi is the SL(2;R) doublet of two-form potentials, B̃i are their six-form duals and

C is the four-form potential. In each case, the form components give compensating gauge

transformations so that the field strengths (F = dA etc.) are invariant under the diffeo-

morphism generated by ξ. We immediately see that if ξ = 0 then all the form components

are closed and hence LK acting on any generalised tensor vanishes. However, this is in

contradiction with the condition (2.15). Hence we conclude that ξ is non-zero and the solu-

tion admits a Killing vector that also preserves all the fluxes. Furthermore from (2.15) we

see that it generates the unbroken U(1) ⊂ SU(2) R-symmetry. On Sasaki-Einstein spaces

this vector is known as the Reeb vector. Thus we are led to define

Definition. We call K the generalised Reeb vector of the exceptional Sasaki-Einstein ge-

ometry, noting that its vector component ξ ∈ Γ(TM) is necessarily non-vanishing.

The fact that K is generalised Killing means that, in the untwisted frame where there

are no potentials in the generalised metric, the corresponding “twisted” generalised Lie

derivative must reduce to just a conventional Lie derivative, that is

L̂K̃ = Lξ, (2.24)

where ξ is the vector component of K̃ (and hence also of K). Acting on an arbitrary

untwisted generalised tensor α̃, the twisted generalised Lie derivative takes the form

L̂Ṽ α̃ = Lvα̃− R̃ · α̃, (2.25)

where R̃ is a tensor in the adjoint representation of Ed(d), R̃ · α̃ is the adjoint action, v is

the vector component of Ṽ , Lv is the conventional Lie derivative and

R̃ =

{
dω̃ − ıṽF + dσ̃ − ıṽF̃ + ω̃ ∧ F for M-theory,

dλ̃i−ıṽF i+dρ̃−ıṽF−εij λ̃i ∧ F j+dσ̃i+λ̃i ∧ F−ρ̃ ∧ F i for type IIB.
(2.26)

The condition (2.24) thus means that the corresponding tensor R̃ vanishes. The condi-

tions (2.14) and (2.15) can then be written as

LξJ̃α = εαβγλβ J̃γ , LξK̃ = 0. (2.27)

In what follows it will sometimes be simpler when checking solutions to use these forms of

the conditions.

Finally, we note that there is a consistency condition on K implied by the moment

map conditions (2.13). Strictly, there is a kernel in the map L• : Γ(E) → gdiff, meaning
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that two different generalised vectors can generate the same generalised diffeomorphism.

In other words, we have LV = LV+∆, which holds if

∆ =

{
ω + σ + τ with dω = dσ = 0 in M-theory,

λi + ρ+ σi + τ with dλi = dρ = dσi = 0 in type IIB.
(2.28)

Thus for the conditions (2.13) to make sense we need

γ(∆) = 0, (2.29)

which is a differential condition on K. In fact it is implied by the conditions (2.14)

and (2.15). Note first that these conditions are satisfied by both K and K+∆. As we have

already mentioned, substituting (2.15) into the expression for the moment maps (2.10) gives

µα(K) = λα

∫
M
κ2 = λαγ(K), (2.30)

where the second equality follows from the second of the compatibility conditions (2.7).

From the homogeneity of q and c, we note that upon taking the functional derivative, where

M runs over all the components of the generalised vector, we have∫
M
VM δγ(K)

δKM
= (D − 2)γ(V ). (2.31)

Then note that, using µα(K + ∆) = µα(K) and (2.30), we have

0 =

∫
M

∆M δµα(K)

δKM
= λα(D − 2)γ(∆), (2.32)

and hence indeed γ(∆) = 0. Note that this derivation did not use the moment map

conditions (2.13) themselves, only the conditions (2.14) and (2.15) involving LK .

Finally, in the D = 4 case K̂ is also generalised Killing. However, from the condition

γ(∆) = 0 and (2.6), we have

γ(τ) =

∫
M
s(τ, K̂) = 0, (2.33)

for all τ for both type IIB and M-theory. From the form of the symplectic invariant given

in [23], this implies that the vector component of K̂ vanishes. Since K̂ is Killing this means

LK̂(anything) = 0, (2.34)

or in other words, K̂ is in the kernel of the map L• : Γ(E) → gdiff, satisfying the same

conditions as ∆ in (2.28). As such, it generates a trivial generalised diffeomorphism and

hence the generalised metric is not invariant under a second symmetry; only K generates

a non-trivial transformation.
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2.3 Generalised intrinsic torsion

As conjectured in [19] and proven in [20], the Killing spinor equations for generic AdS

flux backgrounds preserving eight supercharges are in one-to-one correspondence with HV

structures with constant singlet generalised intrinsic torsion.3 In each case the non-zero

torsion was in the (3,1) of SU(2) × G, where G is the HV structure group, which breaks

the SU(2) R-symmetry to U(1). These were called spaces with weak generalised special

holonomy, in analogy with conventional G-structures. This is in constrast to Minkowski

backgrounds where all components of the intrinsic torsion vanished. Note that there are

no singlets in the generalised intrinsic torsion for D = 6, giving the standard result that

there are no N = (1, 0) AdS solutions in six dimensions.

In order to prove that our conditions (2.13), (2.14) and (2.15) are equivalent to the

conditions for supersymmetry, we need to check that they indeed admit a constant non-

zero singlet in the (3,1) component of the intrinsic torsion. To do this we can simply

repeat the calculations of [23]. One immediately notes that the (3,1) component appears

in the moment maps and LKJα, but not LKK. This explains why the LKK = 0 condition

is unchanged from the Minkowski case. By definition, the right-hand side of (2.15) is a

constant singlet in (3,1) as it is a constant linear combination of Jα. Consistency with the

moment maps then implies (2.13) for V = K. This proves that the integrability conditions

are indeed equivalent to the Killing spinor equations.

3 Gauged supergravity and moduli spaces

3.1 Integrability conditions from gauged supergravity

As stressed in [21, 23], the infinite-dimensional spaces AH and AV of hyper- and vector-

multiplet structures correspond to a rewriting of the ten- or eleven-dimensional supergravity

theory so that only eight supercharges are manifest [41]. The local Lorentz symmetry is

broken and the fields of the theory can be reorganised into N = 2, D = 4 or N = 1,

D = 5 multiplets without making a Kaluza-Klein truncation. One can then interpret the

integrability conditions in terms of conventional gauged D = 4 or D = 5 supergravity with

an infinite-dimensional gauging by GDiff. The general conditions for supersymmetric vacua

have been given in [31, 42, 43], and it was shown in [23] that for Minkowski backgrounds

these conditions are precisely the integrability conditions on the generalised structures.

Let us now briefly show that the same is true for the AdS backgrounds. Following [43],

a generic gauged N = 2, D = 4 theory admits an AdS vacua provided

Θλ
Λµα,λ = −1

2
eK

v/2ΩΛΣ Im(µ̂X̄Σ)aα, X̄ΛΘ̂λ̂
Λk̂

i
λ̂

= 0, XΛΘλ
Λk

u
λ = caα(ξα)u, (3.1)

where |µ̂| ∝ m, aα is unit-norm vector parametrising S2, Kv is the Kähler potential and

ΩΛΣ the symplectic structure on the space of vector multiplets AV. We have written the

3Strictly for D = 4 only the N = 1 case was considered in [20]. However, combined with the comments

about N = 2 in [19], the results of [20] are sufficient to prove that for N = 2 there is a constant singlet

torsion transforming in a triplet of SU(2).
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last condition not on the quaternionic-Kähler space, but on the corresponding hyper-Kähler

cone. Any Killing vector preserving the quaternionic-Kähler structure on the base lifts to

a vector that rotates the three complex structures on the cone. Thus (ξα)u are the three

vectors generating the su2 action the cone, normalised such that ξα · ξβ = δαβ . There is a

consistency condition between the first and third conditions that arises from the identity

kλ ·ξα = −2µα,λ [44, 45]. This is the same consistency we already noted for the integrability

conditions (2.15) and (2.14). Contracting the third expression in (3.1) with ξα and the first

expression with XΛ, we find

c = eK
v/2ΩΛΣX

Λ Im(µ̂X̄Σ). (3.2)

We can then choose µ̂ to be real using the U(1) action on X. Using the identifications

between terms in the N = 2 expressions and the H and V geometries discussed in [23], we

see that, using (2.6) and for real µ̂, the three conditions in (3.1) exactly match (2.13), (2.14)

and (2.15) respectively. Explicitly we can identify

V ΛΘλ
Λµα,λ = µα(V ),

ΩΛΣV
Λ Im(µ̂X̄Σ)aα = aαΩ(V, K̂) = aαγ(V ),

X̄ΛΘ̂λ̂
Λk̂λ̂ = LX̄X,

(3.3)

and e−K
v

= iΩ(X, X̄). While acting on the section-valued functions Jα, we have

aβξ
β(Jα) = −εαβγaβJγ ,

XΛΘλ
Λkλ(Jα) = LXJα.

(3.4)

It is straightforward to see that conditions in D = 5 can similarly be matched to the gauged

supergravity expressions for AdS vacua given in [43].

3.2 Moduli spaces of ESE backgrounds

We now turn to analysing the structure of the moduli space of exceptional Sasaki-Einstein

backgrounds satisfying the integrability conditions (2.13)–(2.15). Given the relation to

gauged supergravity discussed above, we can use known results on the form of the moduli

space of AdS vacua in these theories [30, 31]. For example, for N = 2, D = 4 gauged

supergravity, it was shown in [30] that the vector-multiplet moduli space is a real subspace

of the local special Kähler manifold AV/C∗, while the hypermultiplet moduli space is a

Kähler submanifold of the quaternionic manifold AH/H∗, at least in the so called “minimal”

solution. More generally, the combined moduli space is no longer a product.

In fact, the situation here is more complicated because we have to impose the com-

patibility conditions (2.7) between the H and V structures. This means that even before

imposing the integrability conditions, the space A of HV structures is not actually a prod-

uct AV × AH. Nonetheless, as described in [23], if we drop the normalisation part of the

compatibility condition, we can view A as a fibration of a hyper-Kähler cone space over a

special Kähler space (or vice versa). The same structure arises for D = 5 but now we have

a hyper-Kähler cone over a very special real manifold (or vice versa).
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Focussing for definiteness on D = 5, though an analogous analysis applies to D = 4,

we can use this fibration picture to analyse the form of the moduli space. Let us first fix a

generalised Reeb vector K ∈ AV satisfying the integrability condition LKK = 0. We can

now consider the space of H structures AKH ⊂ AH compatible with the fixed K, that is

AKH = {Jα ∈ AH : Jα ·K = 0} . (3.5)

We can drop the normalisation condition κ2 = c(K) since, as we show in appendix A, it

is a consequence of the supersymmetry conditions. At each point on the manifold M , the

space of possible Jα is given by the hyper-Kähler cone

W = R+ × F4(4)/USp(6), W/H∗ is a Wolf space, (3.6)

and in complete analogy to the construction of AH we find that the infinite-dimensional

space AKH is itself a hyper-Kähler cone. We are now left with imposing the remaining two

supersymmetry conditions

µα(V ) = λαγ(V ), LKJα = εαβγλβJγ . (3.7)

We would like to have geometrical interpretations of both conditions. Recall first

that since AKH is a hyper-Kähler cone it admits a free SU(2) action generated by a triple

of vectors ξα ∈ Γ(TAKH ). The action of GDiff is triholomorphic (it preserves all three

symplectic structures) and is generated by a vector ρV ∈ Γ(TAKH ) for each V ∈ E. By

definition, acting on the Jα we have

ρV (Jα) = LV Jα, ξα(Jβ) = εαβγJγ . (3.8)

Because of the “source” term λαγ(V ) in the moment maps, only a subgroup U(1) ⊂ SU(2)

of transformations leave the moment map conditions invariant. This group is generated by

r = λαξ
α and preserves one linear combination of complex structures I = λαI

α on AKH .

Restricting to V = K, the vector ρK generates a one-dimensional subgroup GK ⊂ GDiff

corresponding to the generalised diffeomorphisms generated by K. As shown in [23], these

two actions commute.

We can now interpret the condition (2.15) as a vector equation

ρK − r = 0, (3.9)

that is, it restricts us to points on AKH that are fixed points of a combined action of GK and

U(1). (Note that generically we expect that fixed points will only exist for certain choices

of K satisfying LKK = 0.) We define

NH =
{
p ∈ AKH : ρK(p)− r(p) = 0

}
. (3.10)

Since both ρK and r preserve the complex structure I, both are real holomorphic vectors

and hence NH is a Kähler subspace of AKH with respect to I.

Let us now turn to the moment maps. We would like to view them as defining a hyper-

Kähler quotient. Thought of as single map µ : AKH → gdiff∗ × R3, for AdS backgrounds,
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the level set defined by (2.13) is µ−1(Λα), where the element Λα ∈ gdiff∗ × R3 is given by

the functional derivative Λα = λαδγ/δV . But since γ(V ) depends on K we see that it is

not invariant under the full generalised diffeomorphism group. A hyper-Kähler quotient is

well defined only on a level set that is invariant under the action of the quotient group.

However, we can define a subgroup of generalised diffeomorphisms GDiffK ⊂ GDiff as

those that leave K invariant, that is the stabiliser group,

GDiffK = {Φ ∈ GDiff : Φ ·K = K}, (3.11)

so that infinitesimally, V parametrises an element of the corresponding algebra gdiffK if

LVK = 0. Since LKK = 0 note that GK ⊂ GDiffK . For a fixed K, any two H structures

related by an element of GDiffK are equivalent. If we restrict to the subgroup GDiffK ,

then we can view the moment maps as a hyper-Kähler quotient.4 Since the moment map

conditions break the SU(2) action to U(1), although the quotient space is by definition

hyper-Kähler, it is not a hyper-Kähler cone, that is, there is no longer an underlying

quaternionic-Kähler space.

Combining the quotient with the fixed-point conditions (3.9) we then have two pos-

sibilities: either take a quotient and then impose (3.9) or impose (3.9) and then take a

quotient. Doing the latter we note that the fixed-point condition already imposes that we

are on a Kähler subspace, so there is no notion of a hyper-Kähler quotient. However, we

show in appendix A that, restricting to GDiffK on NH, two of the moment map conditions

are identically satisfied. Thus we are actually only taking a symplectic quotient with a

moment map given by µ(V ) = λαµα(V ). Thus we have the diagram

AKH NH

M′H MH

ρK−r=0

HK quotient sympl. quotient

r′=0

(3.12)

where M′H = AKH ///GDiffK is a hyper-Kähler manifold, and the final moduli space

MH = NH//GDiffK is Kähler. (3.13)

The vector r′ in (3.12) generates the U(1) action on the quotient space M′H. Since the

action of ρK is modded out on the quotient space, it is trivial and so the condition becomes

just r′ = 0. However, since r′ is still real holomorphic with respect to I, we see that going

via M′H, the space MH is again Kähler. One caveat to taking the hyper-Kähler quotient

first is that there might be additional solutions to r′ = 0. Since r is freely acting, we

have r′ = 0 whenever there is a generalised diffeomorphism such that LV Jα = εαβγλβJγ .

4The one caveat is that the conditions (2.13) are satisfied for arbitrary V parametrising all of gdiff not

just V with LVK = 0 parametrising gdiffK . Thus we need to be sure the conditions arising from the

moment maps with restricted V , together with the other supersymmetry conditions (2.14) and (2.15), are

sufficient. Although we have not found a general proof, we can see this is true in a number of explicit

examples. This is not surprising, since, as shown in [23], the moment maps only constrain a relatively small

independent component (2,6) of the intrinsic torsion.
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However, since LVK = 0 as V ∈ gdiffK , we see that such V are generalised Killing

vectors. Thus, provided K is the only generalised Killing vector, we can take either path

in the diagram (3.12).

We can slightly refine the construction to make a connection to the “HK/QK corre-

spondence” of Haydys [29], which physically is related to the c-map. This also helps the

analysis in the case where there are fixed points. Given V satisfying LVK = 0, acting on

any generalised tensor α we have

[LV , LK ]α = LLVKα = 0. (3.14)

Thus GK is in the centre of GDiffK and as such is a normal subgroup. Thus we can define

the quotient group GDiff0
K = GDiffK/GK and write GDiffK as a semi-direct product

GDiffK = GK o GDiff0
K . (3.15)

We can then perform the hyper-Kähler quotient in two stages: first by the action of GK
and then by GDiff0

K , as described in symplectic case, for example, in [46]. We can then

add one more level to the diagram (3.12)

AKH NH

PH QH

M′H MH

ρK−r=0

•///GK •//GK

r′=0

•///GDiff0
K •//GDiff0

K

r′=0

(3.16)

Consider the path through the diagram with two commuting Abelian actions on AKH given

by GK and U(1) ⊂ SU(2), with the latter preserving only one linear combination of the

three complex structures. This is exactly the set up that appears in the HK/QK corre-

spondence [29]: the hyper-Kähler manifold is PH while the quaternionic-Kähler manifold

is AKH /H∗.

4 AdS5 backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds for AdS5.

The generic flux backgrounds for type IIB were analysed in [6], and for M-theory in [7].

Here we first show how the standard type IIB Sasaki-Einstein reduction with five-form flux

embeds as an ESE background, and comment on how this extends to the generic case. We

then give the ESE form of the generic M-theory background, showing explicitly how the

integrability conditions reproduce those given in [7].

4.1 Sasaki-Einstein in type IIB

Backgrounds of the form AdS5×M , where the five-dimensional space M is Sasaki-Einstein

and there is a non-trivial self-dual five-form flux, are supersymmetric solutions of type
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IIB supergravity preserving at least eight supercharges [47]. The metric is a product of

the form (2.1) with D = 5 and a constant warp factor, which we take to be zero. Five-

dimensional Sasaki-Einstein spaces admit a nowhere-vanishing vector field ξ, known as the

Reeb vector and a pair two-forms Ω and ω, that together define an SU(2) ⊂ GL(5;R)

structure (for a review see for example [48, 49]). They satisfy the algebraic conditions

Ω ∧ Ω̄ = 2ω ∧ ω, ıξΩ = ıξω = 0, ıξσ = 1, (4.1)

where σ is the one-form constructed from ξ by lowering the index with the metric (that is

ξ = σ]). In addition one has the differential conditions

dσ = 2mω, dΩ = 3imσ ∧ Ω, (4.2)

where m is the inverse AdS5 radius, usually normalised to m = 1. Such a compactification

is supersymmetric provided there is a five-form flux given by

dC = F = 4m vol5, (4.3)

where vol5 = −1
2σ ∧ ω ∧ ω.

Note that these conditions imply that the Reeb vector ξ is a Killing vector that pre-

serves σ and ω, but rotates Ω by a phase

Lξσ = Lξω = Lξg = 0, LξΩ = 3imΩ. (4.4)

The rotation of Ω corresponds to the R-symmetry of the solution. In what follows we also

need the (transverse) complex structure

Imn = −ωmn =
i

4
(Ω̄mpΩnp − ΩmpΩ̄np), (4.5)

which satisfies IpmΩpn = iΩmn.

The Sasaki-Einstein geometry defines an “unwtwisted” HV structure given by an H

structure invariant under SU∗(6)

J̃+ =
1

2
κuiΩ +

1

2
κviΩ],

J̃3 =
1

2
κI +

1

2
κτ̂ ij +

1

8
κΩ] ∧ Ω̄] − 1

8
κΩ ∧ Ω̄,

(4.6)

where ui = (−i, 1)i, vi = (−1,−i)i, τ̂ is given in terms of the second Pauli matrix τ̂ = −iσ2,

and the E6(6)-invariant volume is κ2 = vol5. The V structure invariant under F4(4) is

given by

K̃ = ξ − σ ∧ ω. (4.7)

Using the adjoint action and the e6(6) Killing form in [23], one can check that J̃α satisfy

the su2 algebra and are correctly normalised as in (2.3), while using the cubic invariant

from [23] and the algebraic conditions (4.1), one can check that K̃ and J̃α satisfy the

compatibility conditions (2.7), so that together {Jα,K} define a USp(6) structure. The

full “twisted” structures include the four-form potential C as in (2.9), however, in what
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follows, it will actually be easier to work with the untwisted structures and use the twisted

generalised Lie derivative in the differential conditions.

Let us now see how the integrability conditions on σ, ω, Ω and F arise. We turn first

to the moment map conditions (2.16). Let Ṽ be an untwisted generalised vector. Using

the untwisted K̃, we see that the function (2.12) takes the form

γ(Ṽ ) =
1

3

∫
M
ıṽσ vol5 +ω ∧ ρ̃, (4.8)

where ṽ and ρ̃ are the vector and three-form components of Ṽ . As the moment map

condition must hold for an arbitrary generalised vector, we can consider each component

of Ṽ in turn. We begin with the ρ̃ components of µ3:

µ3(ρ̃)− λ3γ(ρ̃) = −1

8

∫
M
κ2(Ω] ∧ Ω̄])ydρ̃− 1

3
λ3

∫
M
ρ̃ ∧ ω

=

∫
M

1

2
dρ̃ ∧ σ − 1

3
λ3ρ̃ ∧ ω,

(4.9)

which vanishes for dσ = 2
3λ3ω. Next we consider the µ+ condition, which gives

µ+(Ṽ ) ∝
∫
M
κ2Ω]yd(λ̃1 + iλ̃2)

∝
∫
M

(Ω]y vol5) ∧ d(λ̃1 + iλ̃2)

∝
∫
M

d(σ ∧ Ω) ∧ (λ̃1 + iλ̃2).

(4.10)

Using dσ ∝ ω from the previous condition, this vanishes for σ ∧ dΩ = 0. Finally we have

the ṽ components of µ3:

µ3(ṽ)− λ3γ(ṽ) =
1

8

∫
M

iLṽΩ ∧ σ ∧ Ω̄−iLṽΩ̄ ∧ σ ∧ Ω−4ıṽF ∧ σ−
1

3
λ3

∫
M
ıṽσ vol5

=

∫
M
ıṽσ

(
1

4
idΩ ∧ Ω̄− 1

2
F − 1

3
λ3 vol5

)
,

(4.11)

where we have simplified using the previous conditions. Requiring that the expression

above vanishes for all ṽ fixes the flux to F = 1
2 i dΩ ∧ Ω̄− 2

3λ3 vol5.

For the vector-multiplet structure (2.14), using the expression for the twisted Dorfman

derivative, we find

L̂K̃K̃ = Lξξ + Lξ(−σ ∧ ω)− ıξ
(
d(−σ ∧ ω)− ıξF5

)
= −dω, (4.12)

which vanishes if ω is closed. Finally, the condition (2.18) on LKJα, combined with the

conditions from the hyper- and vector-multiplet structures, fixes the remaining SU(2) tor-

sion classes and the five-form flux in terms of the cosmological constant. Setting λ3 = 3m,

we have

dσ = 2mω, dΩ = 3imσ ∧ Ω, F = 4m vol5 . (4.13)

We see that we reproduce the full set of Sasaki-Einstein integrability conditions (4.2).
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In summary, we have shown that a background consisting of a five-dimensional man-

ifold with an SU(2) structure, and generic five-form flux defines a generalised USp(6) HV

structure. Furthermore, requiring that the HV structure is ESE implies that the SU(2)

structure is Sasaki-Einstein and the five-form flux takes the correct supersymmetric value.

4.2 Generic fluxes in type IIB

Let us makes some comments on the case of generic fluxes in type IIB, first considered in [6].

In this case, the Killing spinors define a local U(1) structure and there are a large number of

tensors that can be defined in terms of spinor bilinears. The H and V structures for generic

backgrounds, as in the Sasaki-Einstein case, can be written in terms of appropriate spinor

bilinears. A full analysis of this was given in [50], where it was shown that our integrability

conditions are equivalent to the Killing spinor equations. Here we give a sketch of how this

works in terms of the bilinears defined in [6].5

It is relatively easy to show that the untwisted V structure takes the form

K̃ = ξ + e2∆′λi + e4∆′ρ, (4.14)

where, in terms of the fermion bilinears, using the notation of [6], we have6

ξ = K]
5, λ1 = eφ/2 ReK3, λ2 = Aeφ/2 ReK3 + e−φ/2 ImK3, ρ = − ? V, (4.15)

where ξ is again the Killing vector for the R-symmetry and A is the axion. As we pointed

out in (2.24), the fact that K is a generalised Killing vector means that the generalised

Lie derivative along K̃ reduces to a conventional Lie derivative along the Killing direction.

For this to be true, the tensor R̃, defined in (2.26), must vanish. This follows from the

differential conditions

d(e2∆′K3) = iQ ∧K3 − e2∆′P ∧ K̄3 − iK5G, (4.16)

d(e4∆′ ? V ) = −ıξF +
i

2
e2∆′(G ∧ K̄3 − Ḡ ∧K3), (4.17)

where G is the complex three-form flux and the other forms are defined in [6]. These

conditions are most easily derived directly from the Killing spinor equations.

Recall that there is also a complex bilinear two-form W satisfying

D(e6∆′W ) + P ∧ e6∆′W̄ = (f/4m)G, (4.18)

where f is a constant related to the five-form flux on M . This condition implies that

B1 + iB2 = (4m/f)e6∆′W are potentials for the three-form flux G [33]. Using these

potentials in (2.9), and the explicit forms of the bilinears given in [6], we then find that

5We note that the work in [6] assumed a non-vanishing five-form flux. The generic case with vanishing

five-form flux was analysed in [51]. There will also be an ESE structure for this case, but it will be different

from the one we give in this section.
6Note that ∆′ = ∆− 1

4
φ is the warp factor in the Einstein frame, corresponding to that used in [6].
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the full twisted V structure is given by7

K = ξ − σ ∧ ω + ıξC, (4.19)

where dσ = (8m2/f)ω, C is the four-form potential for the five-form flux F = dC− 1
2F

i∧Bj .

In the notation of [6], σ and ω are defined as

σ =
4m

f
e4∆′K4, ω = −e4∆′V. (4.20)

We see that the form of K is identical to the Sasaki-Einstein case. Furthermore, in [32, 33],

it was shown that σ is a contact structure, even in the case of generic flux, and ξ is the

corresponding Reeb vector. The corresponding contact volume is

1

2
σ ∧ dσ ∧ dσ = −

(
8m2

f

)2

e3∆′ vol5 = −
(

8m2

f

)2

c(K), (4.21)

where vol5 is the volume of M in the Einstein frame, and we see that it is the E6(6)-invariant

volume up to a constant.

4.3 Generic fluxes in M-theory

We now consider the most general supersymmetric solutions of eleven-dimensional super-

gravity of the form AdS5 × M , as first discussed in [7]. In this case, the internal six-

dimensional space M has a local SU(2) structure characterised by tensor fields constructed

as bilinears of the Killing spinor on M . The metric on M always admits a Killing vector

corresponding to the R-symmetry of the dual N = 1 superconformal field theory. As we

will see, in this case, the embedding of the SU(2) structure into the H and V structures is

fairly intricate.

Let us start by summarising the structure of the solution and the relevant spinor

bilinears. The metric is a warped product of the form (2.1) with D = 5. Locally, the

internal metric can be written as

ds2(M) = ds2
SU(2) + ζ1

1 + ζ2
2 , (4.22)

where the SU(2) structure on ds2
SU(2) is captured by a complex two-form Ω and a real

fundamental two-form ω. The volume form is given by

vol6 =
1

2
ω ∧ ω ∧ ζ1 ∧ ζ2 =

1

4
Ω ∧ Ω̄ ∧ ζ1 ∧ ζ2. (4.23)

We also have an almost complex structure for ds2
SU(2) given by

Imn = −ωmn =
1

4
i(Ω̄mpΩnp − ΩmpΩ̄np). (4.24)

7Note that this includes the dressing by the axion-dilaton degrees of freedom. There is a slight subtlety

that here we first twist by the Bi potentials defined by W and then dress by the axion-dilaton, whereas

in [23], the transformations were made in the opposite order. Thus strictly the potentials defined by W

differ from those in [23] by the axion-dilaton dressing.
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The set of spinor bilinears defined in [7] are8

sin θ = ε̄+ε−, Y = ω − sin θ ζ1 ∧ ζ2 = −iε̄+γ(2)ε
+,

ζ̃1 = cos θ ζ1 = ε̄+γ(1)ε
+, Y ′ = ζ1 ∧ ζ2 − sin θ ω = iε̄+γ(2)ε

−,

ζ̃2 = cos θ ζ2 = iε̄+γ(1)ε
−, X = −Ω ∧ (sin θ ζ1 − iζ2) = ε+Tγ(3)ε

+,

Ω̃ = cos θΩ = ε−Tγ(2)ε
+, V = cos θ ω ∧ ζ2 = ε̄+γ(3)ε

−,

(4.25)

where γ are gamma matrices for Cliff(6) in an orthonormal frame for M and the Killing

spinor on M is split into ε+ and ε−, where ε− ∝ γ7ε
+. In the following we will also need

four other, related bilinears

−i ? X = ε−Tγ(3)ε
+, −ζ̃1 ∧ Y = iε̄+γ(3)ε

+,

1

3!
Y ∧ Y ∧ Y = iε̄+γ(6)ε

+, Z = − ? ζ̃1 = iε̄+γ(5)ε
−.

(4.26)

The differential conditions on the SU(2) structure derived from the Killing spinor

equations are given in (B.9)–(B.16) of [7]: we reproduce those that we need here9

d(e3∆ sin θ) = 2me2∆ζ̃1, d(e5∆ζ̃2) = ?F + 4me4∆Y,

d(e3∆X) = 0, d(e3∆V ) = e3∆ sin θ F + 2me2∆ ? Y ′.
(4.27)

One can use the Killing spinor equations to derive additional identities for forms that were

not considered in [7] (but are implied by the conditions therein). We find

d(e∆Y ′) = −ıξF, d(e∆Z) = e∆Y ′ ∧ F, (4.28)

where ξ = e∆ζ̃]2 is the Killing vector that preserves the full solution

LξF = Lξ∆ = Lξg = 0, (4.29)

and generates the U(1) R-symmetry. Since the R-symmetry maps ε± to eiαε±, Lie deriva-

tives of the spinor bilinears vanish except for

LξΩ̃ = 3imΩ̃, LξX = 3imX, (4.30)

as can be derived from the conditions in [7].

4.3.1 Embedding as a generalised structure

The untwisted HV structure is defined in terms of the spinor bilinears as follows. For the

SU∗(6) structure we have

J̃+ =
1

2
κ
(
Ω̃R − i ? X + i ? X]

)
,

J̃3 = −1

2
κYR +

1

2
κ
(
ζ̃1 ∧ Y − ζ̃]1 ∧ Y

]
)
− 1

2
κ

(
1

3!
Y ∧ Y ∧ Y +

1

3!
Y ] ∧ Y ] ∧ Y ]

)
,

(4.31)

8Note that, compared with [7], we have relabelled λ to ∆, ζ to θ and Ki to ζi. We have also absorbed

an overall warp factor into ds2(M).
9As mentioned, we have absorbed an overall warp factor into the metric on M , so that the powers of ∆

appearing here are different to those in [7].
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where κ2 = e3∆ vol6 is the E6(6)-invariant volume and Ω̃R and YR are sections of TM⊗T ∗M ,

constructed by raising the first index of the corresponding two-form with the metric, that

is (Ω̃R)mn = gmpΩ̃pn and (YR)mn = gmpYpn. The F4(4) structure is given by the generalised

Reeb vector

K̃ = ξ − e∆Y ′ + e∆Z. (4.32)

Using the adjoint action, e6(6) Killing form and cubic invariant given in [23], one can check

the Jα satisfy an su2 algebra and that both structures are correctly normalised. To be sure

that together they define an USp(6) structure we also need to check the first compatibility

condition in (2.7), or equivalently J̃+ · K̃ = 0. Splitting into vector, two-form and five-form

components, we find

J̃+ · K̃
∣∣
TM
∝ Ω̃R · ζ̃]2 − i(?X)]yY ′ = 0,

J̃+ · K̃
∣∣∧2T ∗M

∝ Ω̃R · Y ′ + iζ̃]2y(?X)− i(?X)]yZ = 0,

J̃+ · K̃
∣∣∧5T ∗M

∝ Ω̃R · Z + i(?X) ∧ Y ′ = 0,

(4.33)

where we have used the expressions for the spinor bilinears in terms of the SU(2) structure

to see that each term vanishes. The full structures will be twisted by the three-form gauge

potential A as in (2.8). However, it is again actually easier to work with the untwisted

structures and use the twisted generalised Lie derivative in the differential conditions.

4.3.2 Integrability

We now turn to the integrability conditions starting with the moment maps (2.16). Let

Ṽ = ṽ+ ω̃+ σ̃ be an untwisted generalised vector. The function (2.12) then takes the form

γ(Ṽ ) = −1

3

∫
M

e2∆
(
ζ̃1 ∧ σ̃ + ?Y ′ ∧ ω̃ − ıṽY ′ ∧ Z

)
. (4.34)

We first consider µ3. The moment map is a sum of terms that depend on arbitrary ṽ, ω̃

and σ̃, so we can consider each component in turn. The σ̃ component is

µ3(σ̃)− λ3γ(σ̃) =
1

16
i

∫
M
κ2
(
?X̄] ∧ ?X]

)
ydσ̃ +

1

3
λ3

∫
M

e2∆ζ̃1 ∧ σ̃

=
1

2

∫
M

e3∆ sin θ dσ̃ +
1

3
λ3

∫
M

e2∆ζ̃1 ∧ σ̃

= −1

2

∫
M

d(e3∆ sin θ) ∧ σ̃ +
1

3
λ3

∫
M

e2∆ζ̃1 ∧ σ̃.

(4.35)

Remembering that λ3 = 3m, this vanishes for

d(e3∆ sin θ) = 2me2∆ζ̃1. (4.36)
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This is the first differential condition in (4.27). The ω̃ component is

µ3(ω̃)− λ3γ(ω̃) =
1

16
i

∫
M
κ2
(

i
( ¯̃ΩR · ?X] + Ω̃R · ?X̄]

)
ydω̃+

(
?X̄] ∧ ?X]

)
y(ω̃ ∧ F )

)
+

1

3
λ3

∫
M

e2∆ ? Y ′ ∧ ω̃

= −1

2

∫
M

(
e3∆V ∧ dω̃ − sin θe3∆ω̃ ∧ F

)
+

1

3
λ3

∫
M

e2∆ ? Y ′ ∧ ω̃

= −1

2

∫
M

(
d(e3∆V ) ∧ ω̃ − sin θe3∆ω̃ ∧ F

)
+

1

3
λ3

∫
M

e2∆ ? Y ′ ∧ ω̃.

(4.37)

This vanishes for

d(e3∆V ) = e3∆ sin θF + 2me2∆ ? Y ′. (4.38)

This is the fourth differential condition in (4.27). The ṽ component is rather long but can

be shown to vanish as a result of the differential conditions in (4.27). For the µ+ moment

map, the contribution from terms containing σ̃ vanishes without imposing any differential

conditions. The contribution from the ω̃ terms simplifies to

µ+(ω̃) = − i

2

∫
M

e3∆X ∧ dω̃ = − i

2

∫
M

d(e3∆X) ∧ ω̃. (4.39)

This vanishes after imposing the third differential condition in (4.27)

d(e3∆X) = 0. (4.40)

The ṽ component is again somewhat involved but can be shown to vanish as a result of

the conditions (4.27).

For the vector-multiplet structure we first use the condition (2.24), which, substituting

for K̃ in (2.26), gives

R̃ = −d(e∆Y ′)− ıξF + d(e∆Z)− e∆Y ′ ∧ F = 0, (4.41)

which reproduces the two equations in (4.28). We then have

L̂K̃K̃ = LξK̃ = 0, (4.42)

since the bilinears ξ = e∆ζ]2, Y ′ and Z are all invariant. Finally we have the condition (2.18)

which, given (4.30), reads

L̂K J̃+ = LξJ̃+ = 3imJ̃+, (4.43)

in agreement with λ3 = 3m.

In summary, we have shown that the most general AdS5 solutions of eleven-dimensional

supergravity do indeed define an exceptional Sasaki-Einstein space.

5 AdS4 backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds for AdS4.

We first show how the standard M-theory Sasaki-Einstein reduction with seven-form flux

embeds as an ESE background, and comment on how this extends to the generic case,

given in [8].
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5.1 Sasaki-Einstein in M-theory

We now briefly discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds

for AdS4, focussing on the example of conventional Sasaki-Einstein geometry in M-theory.

These are supersymmetric solutions preserving at least eight supercharges [1], and are dual

to a three-dimensional superconformal field theory living on a stack of M2-branes placed

at the tip of the corresponding Calabi-Yau cone.

The metric is a product of the form (2.1) with D = 4 and a constant warp factor, which

we take to be zero. Seven-dimensional Sasaki-Einstein spaces admit a nowhere-vanishing

vector field ξ, known as the Reeb vector, a complex three-form Ω and real two-form ω, which

together define an SU(3) ⊂ GL(7;R) structure. They satisfy the algebraic conditions

1

8
iΩ ∧ Ω̄ =

1

3!
ω ∧ ω ∧ ω, ıξΩ = ıξω = 0, ıξσ = 1, (5.1)

where σ is the one-form constructed from ξ by lowering the index with the metric. In

addition one has the differential conditions

dσ = mω, dΩ = 2imσ ∧ Ω, (5.2)

where m is the inverse AdS4 radius, usually normalised to m = 2. Such a compactification

is supersymmetric provided there is a seven-form flux given by

dÃ = F̃ = −3m vol7, (5.3)

where vol7 = 1
3!σ ∧ ω ∧ ω ∧ ω. (Recall that F̃ is the Hodge-dual of the four-form flux

F = 6m vol(AdS4) in eleven-dimensions.) These conditions imply that the Reeb vector ξ

is a Killing vector that preserves σ and ω, but rotates Ω by a phase

Lξσ = Lξω = Lξg = 0, LξΩ = 2imΩ. (5.4)

The rotation of Ω corresponds to the R-symmetry of the N = 2 solution. In what follows

we also need the (transverse) complex structure

Imn = −ωmn =
1

8
i(Ω̄mpqΩnpq − ΩmpqΩ̄npq), (5.5)

which satisfies IqmΩqnp = iΩmnp. For simplicity of presentation, we assume that the four-

form flux and warp factor vanish, though one can show that these also follow from the

integrability conditions.

The HV structure defined by the SU(3) structure is actually the same as an example

considered in [23], namely a Calabi-Yau threefold times a circle. The difference between

the two is in the differential conditions on the SU(3) invariant forms. We have the un-

twisted tensors

J̃+ =
κ

2
Ω− κ

2
Ω],

J̃3 =
κ

2
I − κ

2

i

8
Ω ∧ Ω̄− κ

2

i

8
Ω] ∧ Ω̄],

(5.6)
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where κ2 = vol7 is the E7(7)-invariant volume and

X̃ = ξ + iω − 1

2
σ ∧ ω ∧ ω − iσ ⊗ vol7 . (5.7)

Using the adjoint action, the symplectic invariant and e7(7) Killing form given in [23], one

can check that J̃α generate an su2 algebra and that both structures are correctly normalised

and are compatible, as in (2.3) and (2.7).

We now show how the integrability conditions on the SU(3) structure arise by requiring

{Jα,K} to be ESE. Starting with the moment maps (2.16), we note that if Ṽ = ṽ+ω̃+σ̃+τ̃

is an arbitrary untwisted generalised vector, then

γ(Ṽ ) =

∫
M
s(Ṽ ,

˜̂
K) = −1

4

∫
M

(ıṽσ vol7 +σ̃ ∧ ω). (5.8)

Starting with µ3, the terms that depend on σ̃ are

µ3(σ̃)− λ3γ(σ̃) = − 1

16
i

∫
M
κ2(Ω̄] ∧ Ω])ydσ̃ +

1

4
λ3

∫
M
σ̃ ∧ ω

= −1

2

∫
M

dσ̃ ∧ σ +
1

4
λ3

∫
M
σ̃ ∧ ω

= −1

2

∫
M
σ̃ ∧ dσ +

1

4
λ3

∫
M
σ̃ ∧ ω,

(5.9)

which vanishes for dσ = 1
2λ3ω. The µ+ moment map is (using the notation of [23])

µ+(Ṽ ) = −1

2
i

∫
M
−1

4
κ2 tr

(
I · (jΩ]yjdω̃)

)
+

1

24
κ2(ω] ∧ ω] ∧ ω])y(dω̃ ∧ Ω)

= −1

8
i

∫
M

3iκ2Ω]ydω̃ + σ ∧ dω̃ ∧ Ω

=
1

2
i

∫
M
σ ∧ Ω ∧ dω̃,

(5.10)

which, using dσ ∝ ω from above, vanishes for σ ∧ dΩ = 0. In the language of [52], this

fixes the torsion classes {W1,W2,W5} to zero. Finally, the ṽ components of µ3 are

µ3(ṽ)− λ3γ(ṽ) = − 1

16
i

∫
M
κΩ̄]yLṽ(κΩ) + Lṽ(κΩ])yκΩ̄− κ2(Ω̄] ∧ Ω])yıṽF̃

− 1

4
λ3

∫
M
ıṽσ vol7

=
1

8

∫
M

(
ıṽσ dΩ ∧ Ω̄ + 4 ıṽσ F̃

)
− 1

4
λ3

∫
M
ıṽσ vol7,

(5.11)

where we have used the previous results to reach the final line. Requiring this to vanish

fixes the flux to F̃ = 1
2λ3 vol7−1

4dΩ ∧ Ω̄.

For the vector-multiplet structure, using the expression for the twisted generalised Lie

derivative (2.25) and (2.26), we find

L̂K̃K̃ = Lξξ + Lξ
(
−1

2
σ ∧ ω ∧ ω

)
− ıξ

(
d

(
−1

2
σ ∧ ω ∧ ω

)
− ıξF̃

)
= −dω ∧ ω, (5.12)
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so that integrability implies dω ∧ ω = 0. In the language of [52], the torsion classes

corresponding to {W4, E + Ē, V2, T2} must vanish. Finally, the conditions from (2.17)

combined with those from the H and V structures fix the remaining SU(3) torsion classes

to S = 0 and E = iλ3, so that, with λ3 = 2m, we have

dσ = mω, dΩ = 2imσ ∧ Ω, F̃ = −3m vol7 . (5.13)

We see we reproduce the full set of Sasaki-Einstein integrability conditions.

In summary, we have shown that a background consisting of a seven-dimensional mani-

fold with an SU(3) structure and generic seven-form flux defines a generalised SU(6) struc-

ture. Furthermore, requiring that the HV structure is ESE implies the manifold must

be Sasaki-Einstein and the seven-form flux matches that of the standard supersymmetry-

preserving solution.

5.2 Generic fluxes in M-theory

Although we will not give the full analysis, let us now discuss some aspects of how the

previous analysis extends to the case of generic fluxes in M-theory, first considered in [8].

In this case, the Killing spinors define a local SU(2) structure. The H and V structures for

generic backgrounds, as in the Sasaki-Einstein case, can be written in terms of appropriate

spinor bilinears. Assuming the seven-form F̃ is non-zero, it is relatively straightforward to

show that the complex untwisted V structure takes the form

X̃ = ξ + e3∆Y + e6∆Z − ie9∆τ, (5.14)

where, in terms of the fermion bilinears, using the notation of [8], we have

ξ = iχ̄c+γ
(1)χ−, Y = iχ̄c+γ(2)χ−, Z = iχ̄c+γ(5)χ−, τ = ξ[ ⊗ vol7 . (5.15)

The tensors Y and Z are generically complex, but, as shown in [8], ξ is real, so there is no

vector component in the imaginary part of X, consistent with the general argument given

at the end of section 2.2. The generalised Lie derivative along the real part of X̃ generates

the R-symmetry, and so must reduce to a conventional Lie derivative along ξ. We indeed

find that the tensor R̃, defined in (2.26), vanishes due to

d(e3∆Y ) = ıξF, (5.16)

d(e6∆Z) = ıξF̃ − e3∆Y ∧ F, (5.17)

where the first is given in [8] and the second can be derived from the Killing spinor

equations.

Recall also that there is also a spinor bilinear three-form satisfying

d
(
e6∆ Im(χ̄c+γ(3)χ−)

)
=

f̃

3m
F. (5.18)

Compared with the expression given in [8], we have reinstated the inverse AdS radius m

(set to m = 2 in [8]), and f̃ (denoted by m in [8]) parametrises the seven-form flux, namely
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F̃ = −f̃ vol7. We see 3m
f̃

e6∆ Im(χ̄c+γ(3)χ−) is a potential for the four-form flux F . Using

this potential in (2.8) and the explicit forms of the bilinears given in [8], we then find that

the full twisted V structure is given by

X = eÃ
[
ξ + iω − 1

2
σ ∧ ω ∧ ω − iσ ⊗

(
1

3!
σ ∧ ω ∧ ω ∧ ω

)]
, (5.19)

where dσ = (3m2/f̃)ω. In particular, the real part is given by

K = ξ − 1

2
σ ∧ ω ∧ ω + ıξÃ. (5.20)

We see that the form of X matches that of the Sasaki-Einstein case (5.7). It was shown in [8]

that σ is a contact structure, even in the case of generic flux, and ξ is the corresponding

Reeb vector. The corresponding contact volume is

1

3!
σ ∧ dσ ∧ dσ ∧ dσ =

(
3m2

f̃

)3

e9∆ vol7 =

(
3m2

f̃

)3

2
√
q(K), (5.21)

where vol7 is the volume of M . Again it is simply a constant times the E7(7)-invariant

volume.

6 Central charges, BPS wrapped branes and volume minimisation

Of the many field theory properties that can be determined from the dual geometry, two of

the most studied are the central charge a or free energy F of the theory and the conformal

dimension of operators that arise from supersymmetric wrapped branes. The key point of

this section is that they are all encoded, in a universal way, by the generalised Reeb vector

K. This also leads to a conjecture as to how the dual description of a-maximisation in

D = 4 and F -maximisation in D = 3 appears.

We have considered three ESE geometries in this paper: AdS5 in type IIB and M-theory

and AdS4 in M-theory. The generic generalised Reeb vector in each case is given by

K =


ξ − σ ∧ ω + ıξC, AdS5 in type IIB,

ξ − e∆Y ′ + e∆Z + ıξA−A ∧ e∆Y ′, AdS5 in M-theory,

ξ − 1
2σ ∧ ω ∧ ω + ıξÃ, AdS4 in M-theory,

(6.1)

where in the last case we are assuming the seven-form flux F̃ is non-trivial and in the first

that five-form flux F is non-trivial. Each K is a generalised Killing vector that generates

the global R-symmetry of the dual field theory. It is a combination of diffeomorphism

(parametrised by ξ) and gauge transformation (parametrised by the p-form components),

under which the transformations of the metric g and gauge potentials vanish, as in (2.22)

and (2.23). For AdS5 in IIB [32, 33] and AdS4 in M-theory [8], the generic geometry admits

a canonical contact structure σ. As we have already noted, it is striking that this structure

is equivalent to specifying the generalised Reeb vector K, where the integrability arises

from requiring that K is generalised Killing.
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For AdS5 solutions the central charge a of the dual field theory is given by [53]

a =
π

8m3G5
, (6.2)

where G5 is the effective five-dimensional Newton’s constant. Using the results of [32]

and [54], one finds that for both the generic type IIB and M-theory background the inverse

of G5 is given by the integral of the E6(6)-invariant volume

G−1
5 ∝

∫
M

e3∆ vol =

∫
M
c(K). (6.3)

As reviewed in appendix B, quantising so we have N units of background flux and fixing

this integer N in the expression for a reverses the dependence on the invariant volume.

This leads to a universal expression for the central charge in terms of the generalised Reeb

vector, applicable to both type IIB and M-theory

a−1 ∝
∫
M
c(K), (6.4)

where in type IIB the constant of proportionality scales as N−2 and in M-theory as N−3.

Recall that for type IIB, c(K) is proportional to the contact volume 1
2σ ∧ dσ ∧ dσ.

A similar formula for the free energy of the field theory on a three-sphere can be derived

for generic AdS4 backgrounds following [8]. The real part of the free energy is equal to the

gravitational free energy and is given by

F =
π

2m2G4
, (6.5)

where the four-dimensional Newton’s constant is given by the E7(7)-invariant volume

G−1
4 ∝

∫
M

e2∆ vol7 =

∫
M

2
√
q(K). (6.6)

Fixing the quantised background flux then gives, as in [39],

F−2 ∝
∫
M

√
q(K), (6.7)

where the constant of proportionality scales as N−3. Again,
√
q(K) is proportional to

the contact volume, 1
3!σ ∧ dσ ∧ dσ ∧ dσ. Although we have not considered type IIB AdS4

backgrounds, we expect that the same formula for the free energy holds since q(K) (and

c(K) in the AdS5 case) are U-duality invariants.

Let us now discuss how the properties of chiral operators in the dual SCFT coming

from wrapped branes are encoded by K. For definiteness, we will focus on AdS5 in type

IIB. A probe D3-brane wrapping a supersymmetric three-cycle Σ3 in M5 gives rise to a

BPS particle in AdS5. The particle appears as the excitation of a field that couples to a

chiral primary operator O3, and thus the probe D3-brane corresponds to a BPS operator

in the dual field theory. The (warped) volume of the wrapped D3-brane is then associated

to the conformal dimension of the operator ∆(O3), which in turn is proportional to the
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R-charge. In order for the three-cycle to be supersymmetric, it must be calibrated by a

(generalised) three-form calibration. There are many ways to find this calibration, including

using spinor bilinears of the full ten-dimensional Killing spinors or checking the κ-symmetry

conditions directly.

A similar story applies to probe M2-branes wrapping supersymmetric two-cycles in M6

and probe M5-branes wrapping supersymmetric five-cycles in M7, corresponding to chiral

primary operators in the dual four- and three-dimensional SCFTs. For all three cases,

the relevant calibration form is known and the conformal dimensions of the corresponding

operators are given by

D3-branes in AdS5 [32, 33]: ∆(O3) = −τD3

m

∫
Σ3

σ ∧ ω,

M2-branes in AdS5 [54]: ∆(O2) =
τM2

m

∫
Σ2

e∆Y ′,

M5-branes in AdS4 [8]: ∆(O5) = −τM5

m

∫
Σ5

1

2
σ ∧ ω ∧ ω,

(6.8)

where τ is the tension of the brane wrapping the cycle. From (6.1) we see that the relevant

calibration form appears in the generalised Reeb vector K, implying that the components

of K are the (generalised) calibrations that define supersymmetric cycles. This is not

surprising since K is defined as a bilinear of the Killing spinors and imposing that LK
reduces to Lξ requires the components of K to satisfy equations that resemble generalised

calibration conditions. For backgrounds with non-trivial fluxes, the calibration condition

is equivalent to asking that the energy of the wrapped brane is minimised. This suggests

that the generalised calibration should be given by the twisted K. Notice however that,

for the branes we discussed above, most of the potentials have vanishing pull-back on the

wrapped cycle and hence do not contribute to the conditions (6.8). We leave for future

work a more detailed analysis of how calibrations appear in this language.

As we have seen, the generalised Reeb vector K encodes the central charge or free

energy of the dual field theory. For some time, a classic problem in four-dimensional

N = 1 SCFTs was to find the correct U(1) symmetry that gives the R-symmetry as the

theory flows from the UV to the IR. A general procedure for determining this was given

by Intriligator and Wecht [37], namely a-maximisation. For three-dimensional N = 2

theories the analogous procedure consists of maximising the free energy [38, 39]. (Both

cases can also be thought of as minimising the coefficient τRR of the two-point function

of the R-symmetry current [55].) The bulk version of this process is known as volume

minimisation [35, 36], and was originally derived for Sasaki-Einstein backgrounds, but a

version also appears to hold for the case of generic type IIB backgrounds [34]. The idea is

to relax the supersymmetric conditions slightly and show that the resulting supergravity

action depends only on the choice of Reeb vector, ξ. The actual supersymmetric background

then appears after minimising over the possible choices of ξ.

This leads to a natural question: what is the dual of a-maximisation (or F -

maximisation) in our language? Comparing with [34–36] there is a very natural candidate

for relaxing the supersymmetry conditions, namely simply to drop the normalisation condi-
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tions κ2 = c(K) in D = 5 and κ2 = 2
√
q(K) in D = 4, defining a notion of an “exceptional

Sasaki structure”. Following the analogous analysis to that given in appendix A, we find

this requires that the moment map conditions are slightly modified, giving

Definition. An exceptional Sasaki structure is a pair {Jα,K} of H and V structures

satisfying Jα ·K = 0 and the integrability conditions

µα(V ) = λα

∫
M
φ(V ) ∀V ∈ Γ(E), (6.9)

LKK = 0, (6.10)

LKJα = εαβγλβJγ , LK̂Jα = 0, (6.11)

where φ(V ) is given by

φ(V ) =

{
κ2q(V,K,K,K)/q(K), for D = 4

κ2c(V,K,K)/c(K), for D = 5
(6.12)

where tr(JαJβ) = −κ2δαβ and λα are real constants, as in the definition of an ESE struc-

ture. The condition LK̂Jα = 0 is relevant only for D = 4.

An interesting open question is whether in the D = 5 type IIB case this agrees with the

notion of a generalised Sasaki structure defined in [34]. The natural conjecture is then

that, over the space of such structures, the supergravity action restricted to the internal

space M is given by

Ssugra ∝
∫
M

√
q(K), and Ssugra ∝

∫
M
c(K), (6.13)

for D = 4 and D = 5 respectively, and so depends only on the generalised Reeb vector.

Extremising over the space of K then selects the generalised Reeb vector that corresponds

to the actual R-symmetry.

Motivation for this formulation comes from the fact, already noted in section 3.1,

that the supersymmetry conditions for an ESE structure can be interpreted in terms of

gauged D = 4 or D = 5 supergravity with infinite dimensional spaces of hyper- and

vector-multiplets. Various authors have considered the dual of a- and F -maximisation

from the point of view of a conventional dual gauged D = 5 or D = 4 supergravity [56–58],

and showed explicitly that they correspond to extremising over the space of possible R-

symmetries either, in D = 5, the cubic function that determines the real special geometry

of the vector multiplets [56, 57], or, in D = 4, the real function that determines the special

Kähler geometry of the vector multiplets [58]. In our language, this corresponds to varying

K and extremising the integral of either c(K) or
√
q(K), exactly as we conjecture above.

Showing that such a procedure works would provide the dual of a- and F -maximisation

not only for an arbitrary flux background, generalising the Sasaki-Einstein cases in IIB on

AdS5 and M-theory on AdS4, but also for the generic M-theory AdS5 background for

which no notion of volume minimisation exists. It may also provide insight into exactly

what space of solutions one is extremising over in the flux case.
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7 Discussion

In this paper we have given a new geometrical interpretation of generic AdS flux back-

grounds preserving eight supercharges within generalised geometry. These “exceptional

Sasaki-Einstein” (ESE) geometries are the natural string generalisations of Sasaki-Einstein

spaces in five and seven dimensions. They always admit a “generalised Reeb vector” that

generates an isometry of the background corresponding to the R-symmetry of the dual

field theory. In the language of [20], ESE spaces are weak generalised holonomy spaces,

and the cone over such a space has generalised special holonomy. We have included a

number of examples of ESE spaces including conventional Sasaki-Einstein in five and seven

dimensions, as well as the most general AdS5 solutions in M-theory. We also discussed the

structure of the moduli spaces of ESE spaces, pointing out an interesting connection to the

“HK/QK correspondence” [29].

A key application of this analysis is, of course, to the AdS/CFT correspondence and

we made some steps in this direction. A particular advantage of the formalism is that

the generalised H and V structures defining the background are associated to hypermul-

tiplet and vector-multiplet degrees of freedom in the corresponding gauged supergravity.

This provides a natural translation between bulk and boundary properties. We showed

for example that the V structure, which is defined by the generalised Reeb vector K,

encodes the contact structure that appears in generic D = 5 IIB and D = 4 M-theory

backgrounds [8, 32, 33]. Furthermore K determines the central charge in D = 5 and free

energy in D = 4 of the dual theory, and is a calibration for BPS wrapped branes giving the

dimension of the dual operators. In the examples with contact structures, this framework

allows one to calculate properties of the field theory using the relation between the contact

volume and the choice of Reeb vector [8, 32, 33]. It would be particularly interesting to see

if one can extend these techniques to the case of D = 5 M-theory backgrounds using the

generalised Reeb vector. The special role of K also led us, following [34], to a conjecture

for generic form volume minimisation [35, 36]. We hope to come back to this point in the

future. In particular, it should be possible to use generalised intrinsic torsion to show that

the supergravity actions are given by the integral of the Ed(d)-invariant volume, as in (6.13).

There are many other directions for future study. An obvious extension is to consider

backgrounds with different amounts of supersymmetry, which will be described by new

geometric structures within generalised geometry. Another is to consider the reduction

of generalised structures. Recall that K is always a generalised Killing vector and that

the cone over an ESE space has generalised special holonomy. In the conventional Sasaki-

Einstein case one can use the Reeb vector to define a symplectic reduction of the Calabi-Yau

cone. Locally, this gives a four-dimensional geometry that is Kähler-Einstein. When one

moves to generalised complex geometry and generic flux solutions, there is an analogous

result using the theory of generalised quotients that the transverse space admits a gener-

alised Hermitian structure [33]. It would be interesting to understand how this carries over

to exceptional generalised geometry by developing a theory of generalised quotients.

Finally, returning to the AdS/CFT correspondence, one can consider the structure of

deformations. For example, in AdS5 backgrounds, deforming the H structure while keeping
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K fixed is equivalent to perturbing by chiral operators in the dual N = 1 SCFT. Requir-

ing the new deformed structures to be integrable then restricts the form of the allowed

deformations to marginal deformations. As we mentioned in the discussion of the moduli

space of structures, one should take into account any extra isometries of the unperturbed

background, as they define additional generalised Killing vectors. The quotient by these

symmetries would then give the set of exactly marginal deformations in the SCFT. As we

will show in a forthcoming paper [59], this gives the supergravity analogue of a well-known

field theory result due to Green et al. [60].
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A Two results on normalisations and the supersymmetry conditions

We first show that the D = 5 normalisation condition κ2 = c(K) is implied by the super-

symmetry conditions for ESE spaces. Consider the set of generalised vectors of the form

V = fK where f is an arbitrary function. Using the standard form of the generalised Lie

derivative given in [17], we have

LfKJα = fLKJα −
[
(df ×ad K), Jα

]
, (A.1)

where ×ad is the projection to the adjoint bundle ×ad : E∗ ⊗E → ad F̃ . Since Jα ·K = 0,

we have tr
(
(df ×ad K)Jα

)
= 0 and hence

εαβγ tr
(
Jβ [df ×ad K,Jγ ]

)
= −εαβγ tr

(
(df ×ad K)[Jβ , Jγ ]

)
= −2κ tr

(
(df ×ad K)Jα

)
= 0.

(A.2)

Thus

µα(fK) = −1

2
εαβγ

∫
M
f tr(JβLKJγ) = λα

∫
M
fκ2, (A.3)

where we have used the supersymmetry condition LKJα = εαβγλβJγ . But we also have

γ(fK) =

∫
M
c(fK,K,K) =

∫
M
fc(K). (A.4)

Hence the moment map conditions (2.13) imply that∫
M
fκ2 =

∫
M
fc(K), for all f (A.5)
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which implies the normalisation condition κ2 = c(K). The analogous calculation in D = 4

shows that the normalisation condition κ2 = 2
√
q(K) is similarly a consequence of the

integrability conditions.

Focussing again on D = 5, for definiteness we set λ1,2 = 0. We now show that for the

action of GDiffK , that is those generalised diffeomorphisms that preserve K, the moment

map conditions µ+(V ) = 0 are implied by the fixed-point conditions LKJα = εαβγλβJγ ,

which read

LKJ± = ±iλ3J±, LKJ3 = 0. (A.6)

Acting on the first condition with LV we have

iλ3LV J+ = LV (LKJ+) = LLVKJ+ + LK(LV J+) = LK(LV J+), (A.7)

since we have LVK = 0 for elements of the Lie algebra gdiffK . Substituting into the µ+

moment maps we have

µ+(V ) := −i

∫
M

tr(J3LV J+)

= −λ−1
3

∫
M

tr(J3LKLV J+) = λ−1
3

∫
M

tr
(
(LKJ3)(LV J+)

)
= 0,

(A.8)

where we have used the second condition in (A.6).

B Flux quantisation, central charges and free energy

We briefly review the derivation of the central charge from [32] and [54]. The central charge

a is given in terms of the effective five-dimensional Newton’s constant as [53]

a =
π

8m3G5
, (B.1)

where G5 in type IIB is given by

G−1
5,IIB =

32π2

(2π`s)8g2
s

∫
M

e3∆′ vol5 =
32π2

(2π`s)8g2
s

∫
M
c(K), (B.2)

while for M-theory it is given by

G−1
5,M =

32π2

(2π`11)9

∫
M

e3∆ vol6 =
32π2

(2π`11)9

∫
M
c(K). (B.3)

The corresponding flux quantisation conditions are

N =
1

(2π`s)4gs

∫
M

dC ∈ Z type IIB,

NΣ =
1

(2π`11)3

∫
Σ

dA ∈ Z M-theory,

(B.4)

where Σ is any four-cycle in M . From the five-dimensional part of Einstein’s equations

we note that dC and dA must both scale as the inverse AdS radius m. Defining the

dimensionless volumes

V5 = m5

∫
M

e3∆′ vol5, V6 = m6

∫
M

e3∆ vol6, (B.5)
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we expect the scaling dependence

N ∼ 1

m4`4sgs
V5, NΣ ∼

1

m3`311

V
2/3

6 . (B.6)

More generally, as in [32] and [54], one can solve explicitly for dC and dA in terms of the

structure and find exact expressions for the flux quantisation. We also have

aIIB ∼
1

m8`8sg
2
s

V5, aIIB ∼
1

m9`911

V6. (B.7)

Solving for m then gives

aIIB ∼
N2

V5
, aM ∼

N3
Σ

V6
, (B.8)

and hence a−1 scales as
∫
M c(K) in both cases.

For M-theory AdS4 backgrounds, we follow [8]. The free energy of the field theory is

given by [61]

F =
π

2m2G4
, (B.9)

where the effective four-dimensional Newton’s constant is

G−1
4,M =

32π2

(2π`11)9

∫
M

e2∆ vol7 =
32π2

(2π`11)9

∫
M

2
√
q(K). (B.10)

The flux quantisation condition gives

N =
1

(2π`11)6

∫
M

dÃ ∈ Z. (B.11)

Via the same scaling arguments as above, defining the dimensionless volume

V7 = m7

∫
M

e2∆ vol7, (B.12)

we find (the exact relations are given in [8])

N ∼ 1

m6`611

V7, F ∼ 1

m9`911

V7, (B.13)

so that solving for m gives, as in [39],

F ∼ N3/2

V
1/2

7

, (B.14)

and hence F−2 scales as
∫
M

√
q(K).
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