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Abstract This paper is a survey on bubbling phenomena occurring in some geometric problems. We present
here a few problems from conformal geometry, gauge theory and contact geometry and we give the main ideas
of the proofs and important results. We focus in particular on the Yamabe type problems and the Weinstein
conjecture, where A. Bahri made a huge contribution by introducing new methods in variational theory.

Mathematics Subject Classification 53A30 · 58E30 · 53D10

1 Introduction

In this survey, we discuss few problems from conformal and contact geometry that share a phenomenon of
lack of compactness. By lack of compactness, we mean the absence of the Palais–Smale condition. These
problems have a variational structure, that is, the solutions that we look for are critical points of a certain
energy functional defined on an adequate Sobolev space. Recall that a C1 functional F : X → R, where X
is a Banach–Finsler manifold, satisfies the Palais–Smale condition or (PS) if F(un) → c and ∇F(un) → 0
imply the existence of a convergent subsequence. This property is fundamental in the theory of calculus of
variations since it allows the construction of a deformation flow between level sets of the functional giving us
a tool to compare their topology. The violation of this condition is usually due to the action of a non-compact
group, in most cases it is the conformal group. This can also be seen as the non-compactness of the embedding
of a certain Sobolev space into an L p space. So, in order to study the variational problem, one needs to first
understand the bubbling phenomena and see the expansion of the energy along a Palais–Smale sequence. In
general, there is a quantization of the energy along the sequence, that is,

F(un) = F(u∞) +
k∑

i=1

F∞(Ui ) + o(1),
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where u∞ is the weak limit of the (PS) sequence and also a critical point of F , F∞ is what we call the functional
at infinity, and the Ui are critical points to the functional F∞. One thing to note from this expansion is that
in addition to the critical point u∞ that we hope to find, there is an interference with other critical points.
However, these are not from the original functional and not even in the space of variations.

Morse theory is a powerful tool in the study of critical points. It largely consists of finding links between the
critical points and the topology of the space of variations. In order to follow a Morse theoretical approach, one
needs some compactness or a compactification procedure. For instance, in the presence of bubbling phenomena,
this becomes more complicated and one needs to include the asymptotes of the functional in order to have
some sort of compactness. But notice that this enlarges the set of possible critical points, making it hard to
differentiate between a genuine critical point and a critical point “at infinity”, that is, an asymptote. Therefore,
one needs to estimate the contribution of critical points at infinity to the change of the topology in order to
possibly achieve a positive existence result.

This survey is broken down into two main parts. The first deals with Yamabe type problems. Indeed, we
start by giving the geometric background that led to the study of such PDEs, and then we give the ideas of the
proof of the Yamabe problem in domains using the method of critical points at infinity. This same procedure
works on manifolds, and it gives a positive answer to the Yamabe conjecture. The same idea also works for
the CR Yamabe problem that will be presented later. Finally, we relax the geometric problem by including
sign-changing solutions and we present different problems that share the same behaviour, and where the lack
of compactness is present.

The second part of this survey deals with contact geometry. In this part the approach of A. Bahri toward
finding a solution to the Weinstein conjecture is presented. We start by setting the tools and presenting the
space of variations, and then we describe the bubbling phenomena that happen in this case. Note that, in this
specific case, the bubbling phenomena are different in nature from the one studied in the first part of the survey.
We then present another kind of difficulty that appears in these kinds of problems, namely the violation of
the Fredholm condition. This difficulty makes a classical Morse theoretical approach non-applicable. We then
conclude by presenting the result of Bahri [15] for the Weinstein conjecture on the three dimensional sphere.

2 Yamabe type problems

2.1 Geometric overview

The origin of the Yamabe problem dates back to 1960, initiated by Yamabe in [68] as a program for finding
an Einstein metric via a min–max procedure. It consists of fixing a conformal class of a metric g, namely [g]
and finding a metric in that class with constant curvature. The problem is in fact variational, that is, in order to
solve the problem one needs to find critical points of the energy functional

E(g′) =
∫

M Rg′dvg′

(
∫

M vg′)
n−2

n

.

An easy computation shows that if g′ = u
4

n−2 g, the curvature transforms as follows:

Lgu = Ruu
n+2
n−2 ,

where Ru is the scalar curvature of the new metric g′ and Lg is a self-adjoint, second-order elliptic operator
called the conformal Laplacian operator defined by

Lgu = −4
n − 1

n − 2
�u + Ru.

Hence the energy functional becomes

E(u) =
∫

M uLgudvg

(
∫

M u
2n

n−2 dvg)
n−2

n

.

For the sake of notation we will write 2∗ = 2n
n−2 and c(n) = n−2

4(n−1) . The critical points of E then satisfy

Lgu =
∫

M uLgudvg∫
M u2∗dvg

u2∗−1. (2.1)
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Hence the new curvature we obtain is Ru =
∫

M uLgudvg∫
M u2∗dvg

which is constant. One of the approaches that was used

in the literature is direct minimization. This approach considers the minimization problem

Y (M, [g]) = inf
u∈H1(M)\{0}

E(u).

The constant Y ([g]) depends only on the conformal class of g and the following theorem was proved.

Theorem 2.1 (Yamabe [68], Trudinger [62], Aubin [7]) If Y (M, [g]) < Y (Sn, [g0]), where g0 is the standard
metric on the sphere, then a minimizer exists for Y (M, [g]) and the Yamabe problem can be solved.

Later on it was proved by Schoen and Yau [64] and Schoen [63], that if Y (M, [g]) = Y (Sn, [g0]) then (M, g)
is conformal to (Sn, g0). For more details regarding their approaches the reader is directed to [42] and [6] and
the references therein.

In our case we are interested in a different approach, one that is more variational. Indeed, since the problem
is variational, one is tempted to use the classical methods, namely, Morse theory. Let us recall first one of the
main ingredients of variational theory, that is, the deformation lemma. For this matter, we start by fixing some
notation. Let X be a Banach–Finsler manifold and f ∈ C1(X,R), we define for a ∈ R

fa = {x ∈ X; f (x) ≤ a}.
Lemma 2.2 (Deformation Lemma) Let X be a Banach–Finsler manifold and f ∈ C1(X,R) and assume that
f satisfies the (PS) condition on the interval [a, b]. If f has no critical values in [a, b], then fa is a deformation
retract of fb.

In summary, the deformation lemma says that if we do not cross a critical value of f , then the topology
of the level set does not change. In fact, if we add the hypothesis that f is Morse, then we have a precise
description of what happens when we cross a critical value.

Lemma 2.3 (Morse Lemma) Let f ∈ C2(X,R) where X again is a Banach–Finsler manifold and assume
that f satisfies the (PS) condition on [a, b]. Without loss of generality we will assume that f has only one
critical point x0 with critical value c ∈ (a, b) such that the Morse index of x0, ix0 = k ∈ N. Then fb is
homotopy equivalent to fa ∪ f Dix0 .

The Morse lemma states that fb has the same topology as fa with a disk of dimension ix0 attached to it.
Taking these two lemmas into account, we have a precise description of the change of the topology in the space
of variations and the critical points of the function defined on them. Note that the Palais–Smale condition is a
major assumption in both of these lemmas.

2.2 The Palais–Smale condition

From the previous section, it is clear that the Palais–Smale condition is a compactness assumption that is,
fundamental in the understanding this variational problem. We will see that this is what makes the problem
that we are dealing with non-trivial. For now, we will focus our study on a model problem on an open bounded
set � ⊂ R

n , that is, we are interested in solving a problem of the form
{−�u = u2∗−1 in �

u = 0 on ∂�
(2.2)

Although there are many choices for the energy functional, they all turn out to be equivalent up to rescaling.
For instance, if we pick the functional Jp defined on H1

0 (�) by

Jp(u) = 1

2

∫

�

|∇u|2dx − 1

p + 1

∫

�

u p+1dx,

where 1 < p ≤ 2∗ − 1. The critical points of Jp satisfy
{−�u = u p in �

u = 0 on ∂�
(2.3)

Notice that when p = 2∗ − 1 then the critical points of Jp are solutions to our problem (2.2). The following
theorem then holds:
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Theorem 2.4 The functional Jp satisfies the (PS ) condition for 1 < p < 2∗ − 1.

This is a simple exercise and it relies mainly on the compactness of the Sobolev embedding H1
0 (�) ↪→

L p(�). In particular, this theorem allows us to use diverse variational approaches such that the Mountain pass
lemma or direct minimization (after a modification of the functional) to prove the existence of a solution to
(2.3). Moreover, one can even use some topological index theorems to prove a multiplicity result if we allow
the solution to change sign. Note however that this Sobolev injection fails to be compact when p = 2∗ − 1.

Now, we define the standard bubble U to be the solution of problem (2.2), when � = R
n , namely

−�U = U 2∗−1 on Rn . (2.4)

The function U can be computed explicitly, and up to a multiplicative constant

U (x) = 1

(1 + |x |2) n−2
2

. (2.5)

Since in this case the problem is invariant under translation and rescaling, we have that

Ux0,λ = λ
n
2∗ U ((· − x0)/λ),

is also a solution to (2.4). An important fact is that the standard bubble U is the unique positive solution to
(2.4) up to translation and rescaling and if we set

Sn = inf
u∈D1,2(Rn)\{0}

∫ |∇u|2dx

(
∫
Rn |u|2∗dx)

2
2∗

,

the best Sobolev constant of the embedding H1
0 (�) ⊂ L2∗

(�), then Sn is achieved by Ũ = c0U , where

c0 = S
1

2∗−1
n . We will also use the projection operator onto H1

0 (�), that is, P : D1,2(Rn) → H1
0 (�) defined

by Pu = v if and only if v ∈ H1
0 (�) satisfies

{−�v = u in �
v = 0 on ∂�

(2.6)

Now one can characterize the Palais–Smale sequences of J2∗−1.

Theorem 2.5 Let (uk)k≥1 be a positive (PS) sequence for J2∗−1. Then there exists a function u∞ ∈ H1
0 (�)

solution to (2.2)and � sequences of points xk
1 , . . . , xk

� ∈ � converging, respectively, to x1, . . . , x� and sequences
of real numbers λk

1, . . . , λ
k
� , such that

(a) ‖uk − u∞ − ∑�
i=1 PUxk

i ,λk
i
‖H1

0
→ 0.

(b) J2∗−1(uk) = I2∗−1(u∞) + �J∞(U ) + o(1).

(c) λk
i d(xk

i , ∂�) → ∞ for 1 ≤ i ≤ � and

(
λk

i

λk
j
+ λk

j

λk
i

+ λk
i λ

k
j |xk

i − xk
j |2

)−1

→ 0, for i = j.

In particular, J2∗−1 does not satisfy the (PS) condition. In fact, in terms of existence of positive solutions
to the problem (2.2), we have the following result that is a direct consequence of the Pohozaev identity.

Theorem 2.6 Assume that the set � is star shaped. Then problem (2.2) has no positive solution. Moreover if
p > 2∗ − 1, the problem (2.3) has no solution.

So surprisingly, the shape of the underlying set has an effect on the existence of solutions and by looking
at this result, one starts doubting the existence of a positive solution.

One can also consider the approach of constructing solutions for the subcritical case p < 2∗ − 1 and then
let p → 2∗ − 1. In [46,47,49,54], it was shown that for similar problems we can exhibit solutions to the
subcritical problem or a perturbation of the subcritical problem, which converge to a sum of bubbles when we
approach the critical exponent.

In [9], A. Bahri introduced the idea of seeing these bubbles as asymptotes for the functional. As shown
in Fig. 1 below, asymptotes can behave like critical points in terms of change in the topology of the level set,
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Fig. 1 Level sets in the presence of symptotes

hence the name critical points at infinity. So if we consider the critical points at infinity as critical points, the
deformation lemma still holds although classical variational analysis will not give us a distinction between
actual critical points and critical points at infinity.

In his work (see [8,9,16,18]), A. Bahri considered a slightly modified functional, namely

J (u) = 1∫
�

u2∗dx
,

on the space of variations �+ = {u ∈ H1
0 (�); u > 0,

∫
�

|∇u|2dx = 1}. It is easy to see that critical points of
J on �+ correspond to positive solutions to (2.2). Now in order to find actual critical points, a more in depth
study of the critical points at infinity and their contribution to the topology of the level sets is needed. The
main theorem regarding the existence of solutions to (2.2) can be stated as follows.

Theorem 2.7 If there exists a positive integer d such that Hd(�,Z2) = 0, then problem (2.2) has a positive
solution.

Here Hd(�,Z2) is the singular homology group of�with coefficients in Z2. Notice that this theorem says
that if the underlying set � has non-trivial topology (for example an annulus or a domain with holes), then one
can find a solution. In what follows we present the main ideas of the proof.

The proof proceeds by contradiction, that is, we assume that there is no positive solution to (2.2). First, we
define the neighbourhoods of critical points at infinity namely

V (k, ε) =
{

u ∈ �+; ∃(x1, . . . , xk) ∈ �k, (λ1, . . . , λk) ∈ ( 1
ε
, +∞)k s.t.

‖u − 1√
k

∑k
i=1 PUxi ,λi ‖H1

0
< ε, λi d(xi , ∂�) > 1

ε
and εi j < ε}

}
, (2.7)

where for x ∈ �, d(x, ∂�) is the distance of x to the boundary and

εi j =
(

λi

λ j
+ λ j

λi
+ λiλ j |xi − x j |

)− n−2
2

, for i = j.

With these newly defined sets, one has that if (uq)q≥0 is a (PS) sequence for J , then there exists εq → 0 and

k ∈ N such that uq ∈ V (k, εk). Moreover, J (uq) → bk = k
2

n−2 S. S is a constant related to the best constant of
the Sobolev embedding and it is irrelevant for now. The proof relies then on the following two propositions.

Proposition 2.8 There exists k0 positive and λ0 > 0 so that for every k > k0 and λ > λ0 we have, for any
x1, . . . , xk ∈ � and α1, . . . , αk ≥ 0 satisfying

∑k
i=1 αi = 1 the following holds:

J

( ∑k
i=1 αi PU(xi ,λ)

|| ∑k
i=1 αi PU(xi ,λ)||

)
< (k)

2
n−2 S
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Proposition 2.9 For every k ∈ N
∗, there exists εk > 0 such that for εk > ε > 0, if u ∈ V (k, ε), the

minimization problem

min

{∣∣∣∣∣

∣∣∣∣∣u −
k∑

i=1

αi PUxi ,λi

∣∣∣∣∣

∣∣∣∣∣ , λi > 0, αi > 0, xi ∈ �

}
,

has a unique solution (α1, . . . , αk, x1, . . . , xk, λ1, . . . , λk), up to permutation.

This proposition gives us a continuous parametrization of V (k, ε) for ε small. And its proof is standard
and similar to the one in Bahri–Coron in [18] or in the book [9]. Now if we define the set

Wp = {u ∈ �+; J (u) < bk+1},
then one has:

Lemma 2.10 For a given k ∈ N
∗ and ε > 0, if the functional J has no critical points, then the pair (Wk, Wk−1)

retracts by deformation to (Wk−1 ∩ Ak, Wk−1) where Ak ⊂ V (k, ε).

The proof of this Lemma mainly relies on the study of the flow

∂u

∂t
= −λ(u)u + λ(u)

n+2
n−2 (−�)−1(u

n+2
n−2 ),

where λ(u) = J (u)
n−2
2 . This flow has very good properties, indeed.

Lemma 2.11 (i) The flow defined above, is well defined for data in H1
0 (�)

(ii) It preserves �+
(iii) It decreases the energy J
(iv) If ∂u

∂t converges to zero in H1
0 (�), then u(t) is a (PS), sequence.

Proof The proof of this lemma is elementary:

(i) This is a differential equation on the Hilbert space H1
0 , and it satisfies the Cauchy–Lipschitz condition

for the existence.
(ii) The flow is positivity preserving. This can be seen by reasoning on the first time the function u(t) hits a

zero, and at that point we see that the derivative must be positive, hence the positive cone is preserved.
Moreover, it preserves the unit ball, that is,

d

dt
||u(t)||2 =

∫

�

∂u

∂t
(−�)u =

∫

�

u(−λ(u)(−�)u + λ(u)
n+2
n−2 u

n+2
n−2 ) = 0.

(iii) It follows by direct computation of d
dt J (u), in fact it is the descending gradient flow of J with respect to

the H1
0 norm that we introduced.

(vi) The energy is strictly decreasing along the flow. Hence if ∂u
∂t converges to zero, it defines a (PS) sequence

since it is already the gradient flow of J . ��
Remark 2.12 Notice that the flow that is used here is a non-local flow, but what we gain from it is that the local
existence is guarantied by the classical Cauchy–Lipschitz existence result of ODE, since indeed the flow is an
ODE on a Banach manifold. In the literature there are other flows that were used. Of course, one automatically
thinks about the L2 flow, giving us a heat type equation. There is another flow used in the study of the Yamabe
equation, hence comes the name, Yamabe flow (which is the parallel of the Ricci flow, that is, we evolve the
metric by its scalar curvature). This last flow is mainly a fast diffusion flow. From the last two flows, we gain
regularity coming from the heat kernel, but the problem with these flows is that they can blow up in finite time;
therefore, the study of the convergence at infinity can be a bit tricky.

Now using this flow, under the assumption that there are no critical points, we can deform Wk into Wk−1 as

long as ||− λ(u)u + λ(u)
n+2
n−2 (−�)−1(u

n+2
n−2 )|| is bounded from below by a positive constant and knowing that

this fact is violated by divergent (PS) sequences, (from vi)) using their characterization in Theorem (2.5) we
have that the flow will be in V (k, ε) after a certain time, and that is the region that we call Ak and this finishes
the proof of Lemma (2.10).
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Notice that in Proposition (2.8) the function
∑k

i=1 αi PU(xi ,λ) acts like a convex combination of the points
(x1, . . . , xk) ∈ �k . We consider the set Bk , of formal convex combination of Dirac masses on �, that is,

Bk =
{

k∑

i=1

αiδxi , αi ≥ 0,
p∑

i=1

αi = 1, (x1, . . . , xk) ∈ �p

}
.

Let fk(λ) : Bk �−→ �+ defined by

fk(λ)(

k∑

i=1

αiδxi ) =
∑k

i=1 αi PU(xi ,λ)

||∑k
i=1 αi PU(xi ,λ)||

.

Clearly Wk−1 ⊂ Wk and Bk−1 ⊂ Bk and we have

Lemma 2.13 There exist λ0 > 0 and k0 > 0 such that for λ > λ0 and k > k0, fk(λ) maps Bk into Wk,
moreover fk(λ)∗ : H∗(Bk, Bk−1) �−→ H∗(Wk, Wk−1) is trivial.

Now we are set to find a contradiction by showing that if � has enough topology, the map fk(λ) is not
trivial. By assumption, we have that Hd(�) = 0, therefore due to a result of R. Thom [59], we have the
existence of a d-dimensional manifold and a continuous map h : V → � such that if [V ] ∈ Hd(V ) is the
orientation class of V , we have h∗([V ]) = 0. Considering Sk = {x ∈ V k; there exists i = j ∈ [1, k]} and Tk
an open equivariant neighbourhood (under the action of the symmetric group σk) of Sk in V k , (the existence
of this neighbourhood can be found in [18] Appendix C)

Lemma 2.14 There exists an isomorphism qk : H∗(V k ×σk �k−1, Sk × ∪σk V k × ∂�k−1) �−→
H∗(Bk(V ), Bk−1(V )), where �k is the standard k-simplex. Moreover, this isomorphism is induced by the
natural map between those two topological spaces which is a homeomorphism.

Here, Bk(V ) is defined in the same way as Bk , replacing� by V . So if we take V k = V k/Tk then V k ×σk �k−1
is a kd + k − 1-dimensional manifold with boundary, and as a consequence of the previous lemma we get that

H∗(Bk(V ), Bk−1(V )) ∼= H∗(V k ×σk �k−1, ∂(V k ×σk �k−1)),

hence we take wk ∈ Hkd+d−1(Bk(V ), Bk−1(V )) the inverse image of the orientation class of the manifold
V k ×σk �k−1 with Z2 coefficient.

Lemma 2.15 There exists λ0 > 0 such that for λ > λ0,

fk(λ)∗(wk) = 0.

Notice that with this lemma the theorem is proved since there is a contradiction with Lemma (2.13).

Proof Using the commuting diagram below and the module structure, the proof is reduced to the case k = 1.
So one needs to show that f1(λ)∗(w1) = 0.

H∗(Bk , Bk−1)

H∗(Wk , Wk−1)

�

fk(λ)∗

�
∂

H∗−1(Bk−1, Bk−2)

�

fk−1(λ)∗

H∗−1(Wk−1, Wk−2)�∂

First, since for ε > 0 small enough JS+ε ⊂ V (1, η) where η converges to zero as ε does. Then, it can be
parametrized like V (1, η), hence there exists a continuous map g : JS+ε �−→ � that sends the �-part of the
parametrization and using the flow defined earlier we can construct a retraction r : W1 �−→ JS+ε. Now it is
easy to see that by construction g ◦ r ◦ f1(λ) = id�, therefore f1(λ)∗(w1) = 0, and this finishes the proof.

��
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Combining this result with the non-existence result for solutions in the star-shaped (hence contractible)
case, one is led to think that this result is sharp. That is, that the topology of� is the only constraint on existence
and non-existence of solutions. Unfortunately, this is not the case. Indeed, the geometry of� plays a role in the
existence of solutions as shown in [26] and [36] where the authors construct contractible sets on which they
can solve problem (2.2). In his book [9], A. Bahri pointed out another set that seems to be indicative of the
existence or non-existence of critical points. We now begin introducing this set. We set G the Green’s function
of the operator −� on � with zero boundary condition and H its regular part so that

G(x, y) = 1

|x − y|n−2 − H(x, y).

We define then for (x1, . . . , xk) ∈ �k the matrix M(x1, . . . , xk) = (Mi j )1≤i, j≤k with entries Mi j =
−G(xi , x j ) if i = j and Mii = H(xi , x j ). Since this matrix is real symmetric it is diagonalizable, so
we set ρ(x1, . . . , xk) its smallest eigenvalue. We can then introduce the important set

Ik = {x ∈ �k; ρ(x) ≤ 0}.
If we assume for instance that 0 is a regular value of ρ (which is the case for instance if � is a thin annulus;
see [1]), we have that

Theorem 2.16 [20] Using the notations in the proof above, we have

(i) For ε > 0 small enough, the functional J does not have any critical point in V (k, ε).
(ii) The only critical points at infinity of J correspond to

∑k
i=1 PUxi ,∞ where k ∈ N

∗ and x1, ·, xk satisfy

ρ(x1, . . . , xk) > 0 and ρ′(x1, . . . , xk) = 0.

(iii) There exists k0 ∈ N
∗ such that above bk0 , J does not have any critical point at infinity.

(iv) If moreover we assume that J has no critical points in �+, then

H∗(Wk, Wk−1) = H∗(�k ×σk �k−1, �
k × ∂�k−1 ∪σk Ik × �k−1).

So the set Ik gives us the contribution of a critical point at infinity to (Jbk+ε, Jbk−ε). Based on this A. Bahri
conjectured the following:

Conjecture 2.17 If for k ≥ 2, Ik is not contractible, the problem (2.2) has at least one solution.

2.3 Extension to other situations

The method that we described works perfectly in the case of a compact oriented manifold M , since it already
has a non-trivial orientation class. The reasoning is the same if we replace the operator (−�) by the conformal
Laplacian Lg . Hence, this gives a positive solution to the Yamabe problem; see for instance [8,16]. The same
procedure works for higher order conformal invariants such as the Q-curvature. It also works for the fourth-
order conformally invariant operator Pg called the Paneitz–Branson operator, although an extra condition for
coercivity needs to be added.

The case of CR-manifolds is very similar to the setting in Riemannian geometry. Indeed, given a 2n + 1-
dimensional CR-manifold (M, θ), with volume form dvθ = θ ∧ dθn , we want to study the functional

E(θ ′) =
∫

M Wθ ′dvθ ′

(
∫

M dvθ ′)
n

n+1
,

where Wθ is the Webster curvature relative to the contact form θ , we want to study the functional for all the
contact forms defining the same contact structure as θ , that is, the set [θ ] = { f θ; f > 0}. Similarly to the

scalar curvature case, if we set q = 2n + 2 then the Webster curvature under conformal change θ ′ = u
4

q−2 θ ,

Wu = u− q+2
q−2 Lbu,
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where Lb is a second-order sub-elliptic operator defined by

Lbu = 2q

q − 2
(�bu + Wθu).

Therefore the problem of prescribing a constant Webster curvature is equivalent to finding critical points of
the functional

E(u) =
∫

M uLbudv

(
∫

M |u|2qq − 2dv)
q−2

q

on the space S1
2(M), the Folland–Stein space, which is the equivalent of the Sobolev space H1(M) in the CR

setting. Positive critical points of E satisfy the Euler–Lagrange equation

Lbu = E(u)u
q+2
q−2 . (2.8)

Therefore, Wu = E(u) which is a constant.
Now if one considers the minimization problem

λ(M, [θ ]) = inf
u∈S12 (M)\{0}

E(u),

we get that the constant λ(M, [θ ]) is a CR invariant, moreover,

Theorem 2.18 [40] Let M be a smooth 2n + 1-dimensional CR manifold with contact form θ . Then

(i) λ(M, [θ ]) ≤ λ(S2n+1, [θ0])
(ii) If λ(M, [θ ]) < λ(S2n+1, [θ0]) then it is achieved by a smooth function and hence the problem of prescribing

constant Webster curvature is solved.

We also have the following theorem.

Theorem 2.19 [41] Suppose M is a compact strictly pseudoconvex (2n + 1)-dimensional CR manifold. If
n ≥ 2 and M is not locally CR equivalent to S2n+1, then λ(M, [θ ]) < λ(S2n+1, [θ0]), and thus, the CR
Yamabe problem can be solved on M.

The case when M is locally conformal to the standard CR sphere and when n = 1 still remains. Again,

the problem in this case is not compact. That is, the embedding S1
2(M) ⊂ L

2q
q−2 is not compact and hence

bubbling occurs when studying (PS) sequences. These bubbles can be identified similarly to the case of the
Yamabe problem and one can apply the same reasoning with careful estimates to show that

Theorem 2.20 [31] Let (M, θ) be an orientable compact real (2n + 1)-dimensional CR manifold, locally CR
equivalent to S2n+1. Then there exists a contact form conformal to θ with constant Webster curvature.

Also for the case n = 1, we have

Theorem 2.21 ([32] Let M be a 3-dimensional compact manifold not locally CR equivalent to S3. Then the
CR Yamabe problem, (i.e. (2.8)) has a solution.

The proof of these results follows closely to what was presented above in the case of the Riemannian
case. One just needs to consider a different bubble, replacing the U that was defined in (2.5). If we use the
coordinates (x, y, t) ∈ R

n × R
n × R = H

n , then the bubble in the Heisenberg group takes the form

Ũ = c0

((1 + |x |2 + |y|2)2 + t2)
q−2
4

,

where c0 is a fixed constant. The other bubbles are obtained from this one using translations and rescaling
in the Heisenberg group this time. That is, if we consider the group law “·” defined for ξ0 = (x0, y0, t0) and
ξ1 = (x1, y1, t1), by

ξ0 · ξ1 = (x0 + x1, y0 + y1, t0 + t1 + (x1y0 − x0y1)),
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then the translation operator is defined by τξ0(ξ) = ξ0 · ξ . One also needs to consider the dilation operator
δλ : Hn → H

n defined by

δλ(ξ0) = (λx0, λy0, λ
2t0).

Now the rest of the bubbles take the form

Ũλ,ξ = λ
2−q
2 Ũ ◦ δ 1

λ
◦ τξ−1 .

Using careful estimates, one can show that the method of critical points at infinity applies.

2.4 Problem in full generality

So far, the discussions above were focused on the geometric problem, namely the solution of the problem
needed to be positive. If we remove this constraint and allow sign-changing solutions, the problem becomes
richer. However, one drawback is that the bubbles in this case cannot be identified explicitly. Actually, there
are multiple situations in which we cannot identify the bubbles explicitly, a few of them are presented below:

2.4.1 The sign-changing Yamabe problem

Now, we consider the same problem,
Lgu = |u|2∗−2u, (2.9)

where again Lg is the conformal Laplacian, but here the sign of the solution is not important. The problem does
not lack difficulty since the embedding H1(M) ⊂ L2∗

(M) is still not compact, moreover we now have to deal
with the fact that the bubbles are not explicit since we only have a classification of the standard bubble in the
positive case. Nevertheless, one can show existence of solutions when there is an infinite group G of isometries
that acts on M without fixed points. In this case, one can use this action to exclude bubbling phenomena by
restricting the space of variations to functions invariant under the group action. The first result in this nature
was proved by Ding [25] for the case of the sphere Sn under the action of the group Gk = O(k)× O(n+1−k),
for k ≥ 2, by looking at Sn as the unit sphere of Rn+1. The theorem states that

Theorem 2.22 [25] The sign-changing Yamabe problem on Sn has infinitely many solutions.

We will give the idea of the proof in general. So we consider the functional

E2(u) = 1

2

∫

M
uLgudx − 1

2∗

∫

M
|u|2∗

dx

Now if (ui )i≥0 is a (PS) sequence of E2, then there exist k ≥ 0 and sequences a j
i −→ a j ∈ M , for 1 ≤ j ≤ k

and a sequence of numbers R j
i converging to zero, a solution u∞ ∈ H1(M) of the problem (2.9) and solutions

u j ∈ H1(Rn) of −�u = |u| 4
n−2 u on Rn , such that up to subsequence, we have

ui = u∞ +
k∑

j=1

ω
j
i + o(1) in H1(M),

where

ω
j
i = (R j

i )−
n−2
2 β j (x)(ρ−1

i, j )∗(u j )

and

ρi, j (x) = expa j (R j
i x).

Here, βk is a non-negative function equals to 1 in B1(a j ) and zero outside B2(a j ). Moreover, we have

E2(ui ) = E2(u∞) +
k∑

j=1

E2(u
j ) + o(1).
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Now, let G be a subgroup of I som(M) that acts on M with no fixed points. We consider the space H1
G(M) of

functions invariant under G, that is,

H1
G(M) = {u ∈ H1(M); u(g · x) = u(x), ∀g ∈ G}.

Also notice that the functional E2 is invariant under G. So if one shows that E2 satisfies (PS) on H1
G(M), the

problem is solved using the min–max variational argument of Ambrozzetti and Rabinowitz [3]. Let us consider
(ui ) a (PS) sequence for E2. Then according to the characterization stated above we have

E2(ui ) = E2(u∞) +
�∑

i=1

ci + o(1),

where ci = E2(ui ), we can show that ci ≥ c > 0. The main point is that the number of bubbles is finite and
that the energy is finite. In particular, if (ui )i≥0 is a (PS) sequence that concentrates on x1, . . . , xk , then ui (g·)
concentrates at g · x1, . . . , g · xk ; but if ui ⊂ H1

G(M), then ui (g·) = ui . Hence ui concentrates at all the orbits
of x1, . . . , x� but the orbits are infinite because G is, therefore the set of concentrations needs to be empty and
hence the (PS) condition holds.

Of course since we are in the Riemannian setting, one can consider any operator that is conformally
invariant. For instance if we set Pk the G J M S operators of even order on a manifold for 1 ≤ k < n and k

even, which are differential with leading term (−�)
k
2 , or on manifolds that appear as the conformal boundary

of Einstein manifolds and in this case they can be defined for k odd and they are pseudo-differential operator
of fractional order k

2 (see [33]), then the problem reads as

Pku = |u|2∗
n−2u, (2.10)

where 2∗
n = 2n

n−k . For instance, for k = 2, we have

P2u = (�g)
2u + divg

(
2

3
Rgg − 2Ricg

)
du,

and on the sphere Sn they are of the form

Pk =
⎧
⎨

⎩

∏ k−2
2

j=0(−�g0 + k(k − j − 1)) if k is even.

(−�g0 + k−2
2 )

1
2
∏ j−3

2
j=0(−�g0 + k(k − j − 1)) if k is odd .

(2.11)

It is important to mention that in the work [24], the authors exhibit a new kind of sign-changing solutions
obtained by the superposition of one large bubble and a large number of negative bubble arranged along a
submanifold of Rn . These solutions are different from the ones obtained in [25] since they are not invariant
under the group O(2) × O(n − 1).

2.4.2 Morse theory for sign-changing Yamabe

After the study of the Yamabe problem and the understanding of the change of topology that occurs when
crossing the critical values bk , there were more extensions to the work in the sign-changing case. Notice that
nowwe have the existence of solutions inmost cases (compared to the case of the standardYamabe problem).A.
Bahri and S. Chanillo extended the study of the sign-changing Yamabe problem by finding a clear description
of the critical points at infinity (under mild assumptions) and the parametrization of the neighbourhood at
infinity; see [17]. This result was again improved in [19]. Recently, before his departure, A. Bahri wrote a
paper [14], dedicated to the anniversary of J.M. Coron focusing on the study of the sign-changing Yamabe
problem from a Morse theoretical point of view. We will proceed by giving a small idea of the content of this
study.

If one considers a Morse function f on a compact manifold M under the assumption that its descendant
gradient flow is Morse–Smale, then one can construct what we call the Morse homology. Namely, if we let
cri tk be the set of critical points of f with Morse index equal to k, then we can define the chain complex
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Fig. 2 Moduli spaces of flow lines

(C∗( f ), ∂) by taking Ck the vector space generated by the critical points of index k with coefficients in Z2,
that is,

Ck( f ) = spanZ2{x ∈ cri tk} =
⊕

x∈cri tk

Z2 ⊗ x .

The boundary operator ∂ : Ck → Ck−1 is then defined on the generators by

∂xk =
∑

yk−1∈cri tk−1

〈xk, yk−1〉yk−1,

where 〈xk, yk−1〉 is the number of flow lines between xk and xk−1 modulo 2. The main theorem in Morse
theory states that ∂ ◦ ∂ = 0. This leads to the construction of Morse homology which happens to coincide with
the classical singular homology. To understand this relation in general we write it explicitly in the following
way

∂ ◦ ∂xk =
∑

xk−2∈cri tk−2

⎛

⎝
∑

yk−1∈cri tk−1

〈xk, yk−1〉〈yk−1, xk−2〉
⎞

⎠ xk−2 (2.12)

So the equation ∂ ◦ ∂ = 0, is equivalent to
∑

yk−1∈cri tk−1

〈xk, yk−1〉〈yk−1, xk−2〉 = 0.

This means that the individual flow relations between xk and xk−2 are the ones that matter. This is equivalent
to the fact that the moduli space of flow lines between two critical points of difference of index 2 can be
compactified. Hence the reason that the relation ∂ ◦ ∂ is often seen as a compactness relation. This can be
represented by the kite in Fig. 2 below.

In general, if we are in the setting of a functional on a Banach–Finsler manifold satisfying the (PS)
condition, then the same results hold. However, if the (PS) condition does not hold and we are in the presence
of asymptotes and critical points at infinity then the relation is false. But, if we include the critical points at
infinity as critical points, then it is like compactifying the space with additional points. The boundary operator
then takes the form of

∂xk =
∑

yk−1∈cri tk−1

〈xk, yk−1〉yk−1 +
∑

y∞
k−1∈cri t∞k−1

〈xk, y∞
k−1〉y∞

k−1

Therefore, we can write ∂ as the sum of the classical boundary operator between genuine critical points and
a boundary operator at infinity counting the flow lines linking a genuine critical point and a critical point at
infinity (see Fig. 3), that is,

∂ = ∂0 + ∂∞.

Now notice that one has ∂ ◦ ∂ = 0 but what about ∂0 ◦ ∂0 and ∂∞ ◦ ∂∞?
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Fig. 3 Kite with asymptotes

In the paper [14], Bahri states many observations about the sign-changing Yamabe problem on S3 and on
an open set � ∈ R

n . By a study of the different configurations that critical points at infinity can have and by
constructing another flow at infinity, he gives some conditions for the relation ∂∞ ◦∂∞ = 0 to hold. Now if one
assumes that the conditions are satisfied in a given situation, then one could define a homology H∗(∂∞). But
it remains open to compute or identify this homology and study its significance. In [14], the reader can find a
series of open problems and conjectures about this homology, and how to make sense of it and its existence.

2.4.3 The sign-changing CR Yamabe problem

Similar to the previous section, we will consider the CR-Yamabe type problem with no restriction on the sign
of the solution, that is,

Lbu = |u| 4
q−2 u (2.13)

The same result holds for the CR case.

Theorem 2.23 [48] Let (M, θ) be a K -contact manifold. Then the problem (2.13) has infinitely many sign-
changing solutions. In particular, the CR Yamabe problem on the standard sphere S2n+1 has infinitely many
sign-changing solutions.

The proof idea of the proof is similar to that of the Riemannian case, but here we consider the space of S1
2(M)

functions that are invariant under the flow of ξ , the Reeb vector field (in the sphere this flow generates the
Hopf-fibration). The fact that the functions are invariant under the action of ξ , and M is K -contact implies that
the sublaplacian commutes with the action of ξ and thus the sublaplacian is equal then to the laplacian. But the
critical exponent for the sublaplacian 2q

q−2 is less than the critical exponent for the laplacian 2(q−1)
q−3 . Hence we

are in the setting of the subcritical Yamabe type problem and therefore we have infinitely many solutions. This
result was extended to find other kinds of families of solutions on the sphere in [55], by use of the action of
groups like the one used in [25]. These groups now need to preserve the CR structure. The question of whether
one can construct solutions similar to the work [24] in the CR setting, still remains open.

2.4.4 The spinorial Yamabe problem

In this case (M, g, �) is a compact spin manifold with spin structure �. We define the Dirac operator D :
C∞(�M) → C∞(�M) locally by

Du =
n∑

i=1

ei · ∇ei u
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This operator also satisfies a conformal invariance property and one is interested in solving the problem

Du = |u| 4
n−1 u (2.14)

For the details regarding spin structures and the construction of the Dirac operator, the reader is referred to
[30]. Notice that in this case the equation is not scalar, which adds to its difficulty. The problem in this case is

variational and the solutions to this problem correspond to the critical points of the functional E : H
1
2 (�M) →

R defined by

E(u) = 1

2

∫

M
〈Du, u〉dx − n − 1

2n

∫

M
|u| 2n

n−1 dx

In contrast with the previous two problems, an extra difficulty appears, namely that the functional is strongly
indefinite. That is, the linearized operator has infinitely many positive eigenvalues and infinitely many negative

eigenvalues. Moreover, because of the non-compactness of the embedding H
1
2 (�M) → L

2n
n−1 (�M) the

problem is again critical and bubbling occurs. In fact, even dealing with the sub-critical problem is challenging,
that is, if we consider the problem

Du = |u|p−2u, (2.15)

where 2 ≤ p < 2n
n−1 , the existence of solutions is not a trivial matter. Different methods were applied to find

such solutions.

Theorem 2.24 [38,43] Let (M, g, �) be a compact spin manifold. Then the problem (2.15) has infinitely many
solutions.

The proof in [38] relies on a version of the min–max theorem adapted to strongly indefinite functionals, this
method is similar in nature to the one introduced by P. Rabinowitz in [58] to find periodic orbits of Hamiltonian
systems. We will discuss this part in depth in the second part of the survey. Another proof was provided in
[43] using a topological method where we construct a Floer-type homology relative to the problem. After
computing this homology we deduce the existence of infinitely many solutions. In a preprint that we received
through private communications, T. Isobe also developed a Floer homology theory for the problem, fromwhich
one can extract existence and multiplicity results.

Now let us go back to the critical problem, that is, p = 2n
n−1 . As we mentioned before, in this case bubbling

may occur. Indeed, in his work [39], Isobe proved the following result regarding the (PS) sequences of E .

Theorem 2.25 (Isobe) Let ui be a (PS) sequence for the functional E then there exist k ≥ 0 and sequences

a j
i −→ a j ∈ M, for 1 ≤ j ≤ k and a sequence of numbers R j

i converging to zero, a solution u∞ ∈ H
1
2 (M)

of problem (2.14) and solutions u j ∈ H
1
2 (Rn) of Du = |u| 2

n−1 u on R
n, such that up to subsequence, we have

ui = u∞ +
k∑

j=1

ω
j
i + o(1) in H

1
2 (�M),

where

ω
j
i = (R j

i )−
n−1
2 β j (x)(ρ−1

i, j )∗(u j )

and

ρi, j (x) = expa j (R j
i x).

Here, βk is a non-negative function equals to 1 in B1(a j ) and zero outside B2(a j ). Moreover, we have

E(ui ) = E(u∞) +
k∑

j=0

E(u j ) + o(1).

Hence, if we can find an adequate group action and show that this action is compatible with the spin
structure then we can get an existence and multiplicity result similar to [25,48,55]. In [44], we prove that this
is the case by working on Sn and using the isometry groups O(k) × O(n + 1 − k).

Theorem 2.26 [44] There exists infinitely many solutions to the spinorial Yamabe problem (2.14) on the sphere
Sn.
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2.4.5 The Yang–Mills equation

Consider a compact smooth Riemannian manifold (M, g). Let G be a compact Lie group (we will stick to
the cases G = S1 or SU (2)), and (P, π) a principal G-bundle over M . The gauge group, G, consists of maps
u : P → G that are equivariant, that is,

u(pg) = g−1u(p)g, for all p ∈ P, g ∈ G.

If g is the Lie algebra of G, we can define a connection on P as a g-equivariant 1-form with fixed values in
the vertical direction of T P . That is, A ∈ �1(P, g) such that

Apg(vg) = g−1Ap(v)g, for all v ∈ Tp P, g ∈ G,

and

Ap(pξ) = ξ, for all ξ ∈ g, p ∈ P.

We will denote by A(P) the space of smooth connections on P . Each connection gives rise to a covariant
derivative in the following way: if gP = P ×Ad g, then for A ∈ A(P) we associate the covariant derivative
∇A : �(gP → �(T ∗M ⊗ gP), defined by

∇As = ds + [A, s],
where the symbol � here is used to denote smooth sections. Then, the gauge group acts on A(P) in the
following way: if u ∈ G(P) and A ∈ A(P), then

u∗ A = u−1Au + u−1du.

This covariant derivative can be extended as an exterior derivative dA : �k
Ad(P, g) → �k+1

Ad )(P, g) as follows

dAs = ds + [A ∧ s],
where here�k

Ad(P, g) is the spaceof horizontal, equivariant k-forms and [·∧·] is defined for A, B ∈ �1
Ad)(P, g)

by

[A ∧ B](X, Y ) = [A(X), B(Y )] − [A(Y ), B(X)]
for all X, Y ∈ Tp P . In contrast with the usual exterior derivative, d2

A may not vanish and we can define FA the
curvature 2-form of A by

dAdAs = [FA ∧ s].
This leads to the formula

FA = d A + 1

2
[A ∧ A] ∈ �2

Ad(P, g).

The main properties of the curvature are:

Proposition 2.27 The curvature form FA satisfies

(i) F· is G(P) equivariant, i.e. for all A ∈ A(P), and for all u ∈ G(P),

Fu∗ A = uFA.

(ii) FA satisfies the Bianchi identity, that is,

dA FA = 0.
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The main objective here is to study the spaceA(P)/G(P). One way of studying its topology for instance is to
consider an invariant Morse functional on A(P) and study its critical points. One such functional is what we
call the Yang–Mills functional defined by

Y (A) = 1

2

∫

M
|FA|2dx .

Then, the right space to work with isA1
2(P) the space of Sobolev connections that are in L2 and have their first

differential in L2. It is the analogue of the space H1 for connections. Notice that since FA contains a quadratic
term, we need the connections to be at least in L4 in order to have Y (A) well defined. Using the Sobolev
embedding, we have that if the dimension of M is less or equal than 4, then the functional is well defined
on the space A1

2(P). Critical points of this functional are called Yang–Mills connections and they satisfy the
equation

d∗
A FA = 0.

This equation combined with the Bianchi identity shows that the curvature of a Yang–Mills connection satisfies
an elliptic equation of the form {

dA FA = 0,
d∗

A FA = 0 (2.16)

For more details on the construction of the space of connections and properties of the curvature, we refer
the reader to [27,66].

As in the previous sections, the property that we investigate first is the (PS) condition and for this we have
the following result.

Theorem 2.28 [65]Let (Ak)k≥0 be a sequence of connections inA1
2(P) such that Y (Ak) is uniformly bounded,

then there exists a subsequence that we denote again by (Ak)k≥0 and a sequence of gauge transformations
(uk)k≥0 in G2

2(P) such that (u∗
k Ak)k≥0 weakly converges in A1

2(P).

This theorem allows us to show that Y satisfies the (PS) condition if dim(M) < 4, and this is again because
of the compactness of the Sobolev embedding in L4. For the proof of such theorem we refer to [66]. This fact
was used in [4], in the case of Riemann surfaces to study the gauge group and hence the structure of vector
bundles over M . In dimension 4, the situation starts to get complicated, since the embedding of the Sobolev
space in L4 is continuous but not compact. In fact, one has the following theorem.

Theorem 2.29 [60,61] Let P → M be a principal G-bundle with characteristic classes (k, η) and (Ak) a PS
sequence for Y then there exists

(1) a set B = {x1, . . . , x p} ⊂ M,
(2) a principal G-bundle P0 → M with Pontryagin number k0 and characteristic class η,
(3) a connection A∞ ∈ A(P0), solution to the Yang–Mills equation,
(4) a sequence of p-pairs (Pi , Ai )1≤i≤p such that Pi → S4 is a principal G-bundle with Pontryagin number

ki and Ai ∈ A(Pi ) is a solution to the Yang–Mills equation on S4 and a sequence of gauge transformations
(uk)k≥0 so that u∗

k Ak converges to A∞ in A1
2,loc(P|M\B) and k0 + ∑p

i=1 ki = k and

Y (Ak) = Y (A∞) +
p∑

i=1

Y (Ai ) + o(1).

Based on this theorem, we have a characterization of the bubbling phenomena equivalent to the one of the
sign-changing Yamabe problem. In fact, studying just the minima of the functional Y , is very similar to the
original Yamabe problem. The minima of Y are called ASD connections (anti-self dual) or instantons. This
study as in the case of the Yamabe, is intimately tied to topological properties of the manifold M and this
led K. Donaldson [27,28] to define a new invariant for 4-manifolds. One may notice that in the case of ASD
connections, bubbling occurs only with ASD connections on S4. After the stereographic projection on R4 one
has this formula for the basic instantons

B1 = −x2i − x3j − x4k

ε2 + |x |2
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B2 = x1i − x4j + x3k

ε2 + |x |2
B3 = x4i + x1j − x2k

ε2 + |x |2
B4 = −x3i + x2j + x1k

ε2 + |x |2 ,

where (i, j, k) is the standard basis of su(2). Notice that the decay and the form of these instantons is similar to
the standard bubble of the Yamabe problem. In fact, this decay or behaviour has nothing to do with the problem
itself, but rather it is coming from the conformal invariance and the stereo-graphic projection between S4 and
R
4 which is a conformal transformation. In the general case, C.H. Taubes [61], gave a very explicit description

of the change of topology when we cross a critical level of a critical point at infinity. However, we will omit
the details of this statement due to its technical nature.

3 Contact geometry

Although this section differs from the previous one, it still resides in the variational realm. We start by giving
the general setting of the problem. Let M be a 3-dimensional compact manifold and α a contact form on M .
That is, α ∧ dα is a volume form on M . Such a pair (M, α) is called a contact manifold. Now, for a given
contact manifold there is a vector field tightly related to it. This vector field ξ is called the Reeb vector field
and it is uniquely characterized by

{
α(ξ) = 1
dα(ξ, ·) = 0

Now, the problem is to find periodic orbits of ξ . This problem is known as the Weinstein conjecture. We
will start first by describing the origin of the problem. So we consider the standard example in C

2 with the
coordinate system z = (z1, z2) and let H be a function that has at most quadratic growth at infinity.We propose
then to solve the problem: ⎧

⎨

⎩

ż1 = Hz2
ż2 = −Hz1
z(0) = z(1).

(3.1)

That is, finding a function z : [0, 1] −→ C
2 satisfying the previous equation.

A compact way of writing this problem is to use the complex structure J , so that solutions of (3.1) satisfy
ż = J∇H . This problem is variational, that is, solutions of are critical points of the functional F defined by

F(z) =
∫ 1

0
J z′ · z −

∫ 1

0
H(z(t))dt.

The natural space of variations here is H
1
2
per ([0, 1],C2). It is important to notice that the functional is

strongly indefinite. Let us try to write this problem in a formal way. That is, we consider the standard symplectic
structure of C2 = R

4 defined by ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 and given a Hamiltonian H , one can define the
Hamiltonian vector field X H by

iX H w0 = dH.

It can be easily checked that the flow of X H corresponds to solutions of (3.1). If we set the map ϕH
t as the

1-parameter group of X H then we have that

H(ϕH
t (x)) = H(x)

for all x , hence the level sets of H are invariant under the flow of X H . From this property, one can ask the
following question: given a hypersurface S = H−1(1) does it contain a Hamiltonian periodic orbit?

This question can be answered in the affirmative provided that the surface S is convex (or star shaped).
This was the famous work of P. Rabinowitz in [58]. He used a type of min–max argument on sets with a given
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S1 action after introducing an approximation for the space of variations. Then, after estimating the critical
values of the approximated problem, he showed that they are bounded independently of the approximation.
Since (PS) holds in this case, then we have convergence when removing the approximation.

Later, this method was formulated differently in terms of a homology type construction and generalized
to a setting of other symplectic manifolds having special kinds of contact hypersurfaces. This construction is
called the Rabinowitz–Floer homology (see [2,21–23]). This method was then further extended to problems
unrelated to symplectic or contact geometry. For instance, the case of the non-linear Dirac equation stated
above in [43] and then to more general problems in [49,51].

This result initiated the Weinstein conjecture in full generality for contact manifolds. One of the very
interesting results in answering this question was

Theorem 3.1 [37] If (M, α) is an overtwisted contact structure, then ξ has at least one contractible periodic
orbit.

The approach of H. Hofer used the construction of a family of pseudo-holomorphic curves with boundaries on
the overtwisted disk. Then, using monotonicity of this boundary one sees that the family will blow-up which,
after rescaling, yields the existence of a periodic orbit of the Reeb vector field.

The variational problem can be formulated in full generality as follows. Let J : H1(S1, M) → R defined
by

J (x) =
∫ 1

0
αx(t)(ẋ(t))dt.

One can easily see that critical points of this functional are periodic orbits of ξ . But there are many issues with
this setting. In fact, the functional does not satisfy the (PS) condition on H1, this is because it only controls one
component of ẋ , that is, the one along ξ . The other issue is that the functional is strongly indefinite, therefore
each critical point has an infinite Morse index and co-index. Hence, even if we can handle the bubbling or the
non-compactness coming from the violation of (PS), we still cannot describe the change of the topology when
crossing a critical set. Actually, the topology of the level sets does not change in this case. The idea introduced
by A. Bahri in his work, [10–12,19], was to first remove one of these difficulties, namely changing the space
of variations to make the functional J a definite functional with finite Morse index at the critical points. Under
a convexity assumption one can reduce the difficulty of the problem by restricting the functional to a smaller
space of variations.

Definition 3.2 We say that the contact form α admits a Legendre transform induced by v, or is v-convex, if :

(a) there exists a C1 never vanishing vector field v in the kernel of α.
(b) the 1-form β(·) = ivdα = dα(v, ·), is a contact form with the same orientation as α.

This v-convexity condition is satisfied in many cases. For example, it is satisfied by the standard contact
structure on the sphere, the first overtwisted contact structure of Gonzalo–Varela [35], all the tight contact
forms of the torus. There are other cases when this holds, some others can be found in [43,44]. The substitute
space of variation is now defined by

Cβ = {
x ∈ Lβ;αx (ẋ) = c > 0

}
,

where c is a non-prescribed constant. Then the following holds :

Theorem 3.3 The space Cβ − M is a Hilbert manifold and its tangent space at a loop x, such that ẋ = aξ +bv,
is given by the set of vectors Z = λξ + μv + η[ξ, v] such that:

{
λ̇ = bη − ∫ 1

0 bη

η̇ = μbη + aμ − λb,
(3.2)

where μ = dα(v, [v, [ξ, v]]).
In addition to this structural property of the space of variations, we have

Theorem 3.4 [11] The critical points of J restricted to Cβ are the periodic orbits of ξ and these critical points
have finite Morse index. Moreover, the difference between the Morse indices of the periodic orbits are the same
whether J is restricted to Cβ or the free loop space �(S1, M) = H1(S1, M).
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The main benefit of working in this space is that the critical points and the asymptotes of the functional are well
understood. So one can start a Morse theoretical approach if we can settle the compactness issue. However,
the natural question that comes first is understanding the topology of Cβ since if it has rich topology and the
functional J satisfies (PS), then we can deduce right away that there is a periodic orbit of ξ and even deduce
a multiplicity result. In [52], we prove under some assumptions on α that Cβ does indeed have rich topology.
In order to state the precise result, let us introduce the following rotation condition.

Definition 3.5 We say that ker α turns well along v, if, starting from any x0 in M , the rotation of ker α along
the v-orbit in a transported frame exceeding π .

This condition has a dynamical characterization, (see [34]) and using this characterization one can show that

Lemma 3.6 If one of the following conditions is satisfied:

(i) |μ| < 2

(i i) there exists a map u on M such thatμ = uv

then α turns well along v. Moreover, if μ = 0 then α is tight.

With this in mind we have the following result.

Theorem 3.7 [52] Let (M, α) be a contact closed manifold such that α is v-convex and it terns well along v,
then the injection

Cβ ↪→ �(S1, M)

is an S1-equivariant homotopy equivalence.

This result shows in particular that Cβ and �(S1, M) have the same topology. The proof of this result
consists of three steps. First, since β is a contact form, then Lβ the space of Legendrian curves of β have the
same topology as �(S1, M). The second step is to construct a deformation � : [0, 1] → Lβ via flow of a
vector field, so that �(0) = idLβ

and �(1)(·) ∈ C+
β , where the intermediate space C+

β is defined by

C+
β = {

x ∈ Lβ; α(ẋ) ≥ 0
}
.

The last step then consists of deforming curves in C+
β to curves in Cβ again via the flow of a vector field. This

last step consists of removing Dirac masses along v of different multiplicity.
Now by looking at the functional on Cβ , it can be seen that J is insensitive to pieces of orbits along v.

Therefore, one should expect that if we construct a deformation flow the limiting set should contain curves
having back and forth runs along v. First, let us find the necessary expressions in order to construct a decreasing
deformation. Let Z = λξ +μv +ηw, where w is the Reeb vector field of β and x ∈ Cβ such that ẋ = aξ + bv
then we have

Z · a = −
∫ 1

0
bη (3.3)

and

Z · b =
˙λb + η̇

a
+ aητ − bημξ , (3.4)

where τ is defined by [ξ, [ξ, v]] = −τv and μ as above. In fact, the flow along any vector field is determined
by the data of b. So most of the evolution, will be studied on b. Now by looking at (3.3), we see that the natural
decreasing flow here is given by taking η = b. This choice will give us a heat type equation in (3.4). The flow
chosen this way has good geometric properties, such as decreasing the number of zeros of b and decreasing
the linking between curves (see [10,12]). However, the problem here is its limiting behaviour. Indeed, in the
case of blow-up the flow will converge to the expected behaviour curve, that is, b will be a summation of Dirac
δ functions and a term which is absolutely continuous. That is,

b(t) ⇀

n∑

i=1

biδti + φ0.
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The term φ0 is not well understood and it is not something that is expected during the evolution of the flow.
Therefore, in [10], another flow was introduced. Its construction is very technical and delicate, and it is studied
extensively in [67]. We can define the set of asymptotes

�k = {x ∈ C+
β s.t. x is made of k pieces of ξ and k pieces of v}.

Notice that �1 is the set of periodic orbits of ξ and an example of a curve in �5 is presented in Fig. (4) below.
Now we can state

Theorem 3.8 [10] There exists a flow � defined by a vector field Z on TCβ such that

(i) J is decreasing along the flow. That is,

d

ds
J (�s(x)) ≤ 0

(ii) if b(s, t) blows-up on a finite time T then

b(s, t) ⇀

n∑

k=1

ciδti

(iii) The limiting curve in this case belongs to the stratified set
⋃

k≥1 �k .

The sets �k are the equivalent of the sets V (k, ε) in the case of the Yamabe problem. So now one has a
characterization of when the (PS) condition is violated. Of course a study of the flow at infinity is required to
understand the properties of the functional around the critical points at infinity. In order to properly define the
critical points at infinity, we need to introduce a few definitions. First let us call φ the transport map along the
orbits of v and ψ the transport map along the orbits of ξ .

Definition 3.9 Two points x0 and x1 = φt0(x0) along an orbit of v are said to be conjugate, if the transport of
the vector ξ from x0 is a multiple of ξ at x1, that is,

Dφt0(ξx0) = θξx1, θ ∈ R.

A piece of an orbit of ξ between two points x0 and x1 is said to be characteristic, if the contact plane makes
exactly kπ rotations from x0 to x1.

Now we are able to define the different critical points at infinity.

Definition 3.10 A curve x ∈ �k is said to be

(i) a false critical point at infinity if all the v pieces of the curve are between conjugate points.
(ii) a true critical point at infinity if the ξ pieces of the curve are characteristic.

This distinction of the critical points at infinity is made mainly because of their nature. For instance in the
case of true critical points at infinity, each characteristic piece behaves as a separate critical point with its own
index for the variational problem. In fact it can play the role of a superposition of multiple critical points which
makes the problem even harder to study. These properties were investigated in [11] and [19]. The problem that
remains is the stability of the homology if it does exist. In fact one can compute the homology in certain cases,
but proving its stability along a perturbation of the contact structure is a real challenge. As in the case of the
sign-changing Yamabe problem, we can write the boundary operator as ∂ = ∂0 + ∂∞ then one needs to show
that

∂∞ ◦ ∂0 = ∂0 ◦ ∂∞ = 0. (3.5)

In that case ∂0 will define a homology own its own. The problem is that relation (3.5) can be violated under
deformation of the contact structure. In [53], we studied this contact homology in the case of the torus with
all its contact structure. First, we recall the existence of the following sequence of tight contact structures on
T 3 defined by

αn = cos(nz)dx + sin(nz)dy, n ∈ N,

then we have
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Fig. 4 Curve in �5

Theorem 3.11 (MV8) Let g be a homotopy class of the two-dimensional torus T 2. Then for every n ∈ N, we
have

Hk(αn, g) =
{
Z ⊕ . . . ⊕ Z n times, if k = 0, 1
0, if k > 1 (3.6)

Moreover, in the same work, we exhibit more structures between the different homologies for the contact
structures

Theorem 3.12 Let p and k be positive integers. Then there exists a morphism

f∗ : H∗(αkp, g) −→ H∗(αp, g).

Moreover, this homomorphism corresponds to an equivariant homology reduction under the action of the
group Zk , that is,

H∗(αp, g) = HZk∗ (αkp, g).

This can be explained by the following commuting diagram

H∗(αpq , g) H∗−1(αpq , g)

H∗(αp, g) H∗−1(αp, g)

H∗(αq , g) H∗−1(αq , g)

H∗(α1, g) H∗−1(α1, g)

∂pq

f q∗

f p∗ f p
∗−1

f q
∗−1

∂p

f p∗
∂q

f ∗
q

∂

f q
∗−1

f p
∗−1
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This result is then extended to S1 torus bundles defined as follow. Given a matrix A ∈ SL2(Z), we define
the space

YA = T 2 × R/(x, y, z) = (A(x, y), z + 2π).

We know that these spaces contain infinitely many contact structures. The construction of such structures starts
by taking a strictly increasing function h and considering the contact form αh on R3 defined by

αh = cos(h(z))dx + sin(h(z))dy.

This contact homology is locally stable. That is, it is well defined and stable under small perturbations although
the situation becomes more complicated if we consider big perturbations.

3.1 Fredholm condition

The main issue causing this instability, is no longer the lack of compactness, but instead it is another condition
that is, fundamental in the study of Morse theory and Morse relations. It is the Fredholm condition. That is the
linearized operator is Fredholm. This allows the use of the implicit function theorem and hence the gluing of
orbits and the construction of the homology. In our case, this violation is causedmainly by the translations along
v. This space of invariance is large enough that it violates the Fredholm assumption. In order to understand this
violation, let us take an explicit problem consisting of the wave equation on an interval with periodic boundary
conditions: {

utt − uxx = f
u(0) = u(1) (3.7)

If we set T the operator defined by T u = utt − uxx then we can decompose the space L2 for example as,

L2 = H+ ⊕ H0 ⊕ H−,

where H+ (resp. H−) corresponds to the space spanned by the eigenfunctions with positive (resp. negative)
eigenvalues and H0 its kernel. Then, one can verify that H0 contains the set

H =
{

h(t − x); h ∈ C∞
per [0, 1]

}

Hence it is infinite dimensional. This is the reason that some non-linear problems involving the wave equation
require extra assumptions on the non-linearity, such as convexity or monotonicity to overcome this violation.
In our case, if we are given a critical point x of J , and we modify it a bit to a curve xε by inserting a small
back and forth run along v, then if we expand the functional J at xε we find

J (xε) = J (x) + ε(1 − αφ(−s)(Dϕ(s)(ξ)) + o(ε),

where φ is the transport map along v introduced above. Hence, if αϕ(−s)(Dϕ(s)(ξ) > 1 we have an extra
decreasing direction. A special study for this violation was done for the specific case of the exotic contact
forms of Gonzalo–Varela on S3 (see [35]), defined by

αn = −
(
cos

(π

4
+ nπ(x23 + x24 )

)
(x2dx1 − x1dx2) + sin

(π

4
+ nπ(x23 + x24 )

)
(x4dx3 − x3dx4)

)
.

The Fredholm violation was first studied by A. Bahri in [13] for the first exotic contact form α1 of J.
Gonzalo and F. Varela, which is v-convex, as was proved in the work of V. Martino [56]. In another work
[45], we prove that this also holds for the exotic form α3 even though it is not v-convex, and in fact after a
deeper study of the dynamics of v one can show that all the exotic forms αn violate the Fredholm condition.
The study in this case is explicit and computational and it involves identifying some characteristic surfaces (
their number grows with respect to n), and then study the transport equations along v and its rotation between
these surfaces. In the same work, we also find the critical points and their Morse indices and we show that for
symmetry reasons they come as circles of periodic orbits as is the case of the standard sphere.

As we pointed out, the contact form α3 is not v-convex, at least for the vector field v that comes as a natural
extension of the vector field introduced in [56]. That means that at a certain time the form β, changes its
orientation from positively oriented to negatively oriented. In the case where it is negatively oriented, we have
thatα3 andβ are rotating in opposite directions. Itwas conjectured byA.Bahri that ifwe setP = −dα(v, [ξ, v])
then there exists a foliation (a distribution that does not rotate) transverse to ξ , in the region P < 0. In the
paper [45], we partially answer this conjecture
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Theorem 3.13 [45] There exist δ > 0 and small and a function F defined on the set [P ≤ δ] such that
d F(v) = 0 and d F(ξ) > 0 for every x ∈ [P < δ].

3.2 Existence result for the first contact form

The main issue that was pointed out in [15], is the point to circle Morse relation. That is, if we start from an S1

set of periodic orbits and then we deform the contact form then, due to the Fredholm violation, this action can
be lost during the deformation reaching a single periodic orbit. That is one point with no S1 action to a circle
of periodic orbits. To avoid this complexity, A. Bahri used a powerful topological tool, that is, the Fadell and
Rabinowitz index [29]. This index can be defined as follows.

Definition 3.14 Let X be a topological space with an effective action of S1. For every closed set A ⊂ X
invariant under the action of S1, we define iS1(A) by

iS1(A) = inf{k ≥ 1; there exists an equivariant map f : A → S2k−1},
and iS1(∅) = 0.

Nowclearly if one takes X = S∞ then iS1(S2n−1) = n and iS1(X) = ∞. This definition is an alternative one
to the Fadell–Rabinowitz index defined, and goes as follows: given a set K such that S1 acts on K in an effective
way. The action of S1 on S∞ × K is free, hence we have a principal S1-bundle qK : S∞ × K → (S∞ × K )/S1

and a classifying map f : (S∞ × K )/S1 → CP∞, such that if p : S∞ × K → S∞ is the natural projection
and q : S∞ → CP∞ is the standard principal S1-bundle, we have f ◦ qK = q ◦ p. Then the index is defined
by

iS1(K ) = max{k ∈ N; f ∗(α) = 0},
where α is the generator of the rational cohomology group H1(CP∞,Q) = Q. Basically, the index is a way
of counting the cohomology generators of a space X transversally to the S1 action.

Using some estimates on two subsets of ∪k≥1�k , Bahri proved the following result in [15].

Theorem 3.15 [15] Consider a contact form α on S3 and assume that the Reeb vector field ξ has no periodic
orbits of index 1. Then the functional J has at least one periodic orbit of index 2k − 1 for k possibly large.

In the same work, he conjectured many results regarding the Fadell–Rabinowitz index of certain sets and
also on the nature of the orbits of index one provided they exist.
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