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Resum

Els actuals propietaris de xarxes de transport es centren en oferir serveis mitjançant les

infraestructures que posseeixen i gestionen, mentre els usuaris finals no tenen cap control

sobre aquests serveis. Tradicionalment, aquest ha estat el model de negoci adoptat pels

operadors de xarxa, ja que el cost de construir i mantenir les infraestructures correspo-

nents per tal d’oferir serveis a través d’elles era, i encara és, considerablement elevat. No

obstant això, el tràfic a Internet ha estat creixent de manera ràpida i sostinguda durant

els últims anys i es preveu que continuarà creixent en el futur. A més, l’aparició de nous

serveis i paradigmes estan portant al ĺımit les actuals infraestructures de telecomunica-

cions, especialment les xarxes òptiques de transport. Per tal de superar aquesta situació,

la virtualització de xarxes ha estat considerat com una solució efectiva per les futures

arquitectures de xarxes òptiques. Gràcies a les Xarxes Òptiques Virtuals (VONs), és

possible crear infraestructures lògiques espećıfiques en la seva missió, les quals permeten

satisfer els requisits de les aplicacions que s’executaran a través d’elles, usant i compartint

un substrat f́ısic únic. Tanmateix, l’aplicació de les tècniques de virtualització en el do-

mini òptic encara és subjecte d’investigació, sent el mapeig entre els recursos virtuals i

els recursos f́ısics (també conegut com incrustació de la xarxa virtual) un punt clau que

cal adreçar.

No obstant això, la virtualització en si mateixa no proporciona una solució prou flex-

ible en termes d’utilització d’ample de banda. Per tal de proporcionar un entorn de

virtualització suficientment flexible per tal d’acomodar qualsevol ample de banda amb

suficient granularitat, és necessari que el substrat f́ısic adopti una tecnologia de transport

igualment flexible. Les Xarxes Òptiques Elàstiques (EONs) es presenten com una solució

eficient per a una assignació flexible de l’ample de banda en les xarxes òptiques. A més,

a causa de l’heterogenëıtat i el dinamisme dels perfils de trafic als quals s’enfrontaran les

xarxes virtuals, és altament desitjable proporcionar una infraestructura f́ısica que ajudi

a mantenir baixes les despeses operatives (OPEX) d’aquestes xarxes, sent un paràmetre

molt important el consum d’energia associat a l’operació de les VONs. El tema del con-

sum energètic ha estat, i encara és, subjecte de grans iniciatives de recerca centrades

en desenvolupar noves arquitectures de dispositius o algoritmes d’assignació de recursos

conscients del consum energètic per tal de proporcionar xarxes de transport òptiques més

eficients energèticament que, al seu torn, permetran crear infraestructures virtuals menys

costoses des del punt de vista del consum energètic.

xix



Resum xx

Aquesta tesi està dedicada a l’estudi de la composició i l’assignació de recursos de VONs,

amb l’objectiu de proporcionar un entorn flexible, eficient i optimitzat per a la incrustació

de les VONs al substrat f́ısic real. L’escenari considerat es compon d’una xarxa de trans-

port subjacent, ja sigui una Xarxa Òptica de Commutació de Longitud d’Ona (WSON)

o basada en EON, i múltiples VONs client, les quals s’han de col·locar sobre el substrat

f́ısic. En aquest escenari, un aspecte clau es refereix a com els recursos reals estan asso-

ciats als virtuals, garantint l’äıllament entre VONs i satisfent els recursos demanats (per

exemple, capacitat d’enllaç) per cada una d’elles.

Després d’una introducció a la tesi, el caṕıtol 2 revisa les infraestructures de xarxa òptica

en l’actualitat, concloent en la necessitat d’avançar cap a una infraestructura de xarxa

òptica més dinàmica i eficient per tal de fer front al creixement del tràfic d’Internet i

l’aparició de nous serveis i paradigmes. Tot seguit, es procedeix a resumir l’estat de

l’art dels conceptes i paradigmes que permetran habilitar aquesta arquitectura de xarxa,

bàsicament, VONs, EONs i les infraestructures òptiques de baix consum. A continuació,

els caṕıtols 3, 4 i 5 es centren en proporcionar solucions per optimitzar aspectes espećıfics

d’aquests conceptes amb la finalitat de proveir un marc optimitzat que ajudarà en la

configuració de les futures infraestructures de xarxes òptiques i els seus models de negoci.

Més en detall, el caṕıtol 3 estudia els principals reptes en el problema de la incrustació

de VONs i presenta solucions que permetin una assignació de recursos optimitzada a les

VONs en un substrat f́ısic en funció de les caracteŕıstiques de les VONs i el substrat de

la xarxa. El caṕıtol 4 proposa el concepte de l’Split Spectrum (SS) com una forma de

millorar la utilització de l’espectre en les EONs. Finalment, el caṕıtol 5 es centra en

proporcionar i avaluar solucions arquitectòniques i d’enrutament amb l’objectiu de reduir

el consum d’energia del substrat òptic de tal manera que VONs amb menor OPEX puguin

ser desplegades a través d’ell.

Mencionar que part del treball presentat en aquesta tesi s’ha realitzat en el marc de di-

versos projectes europeus i nacionals: STRONGEST (INFSO-ICT-247674), GEYSERS

(FP7-248657), LIGHTNESS (FP7-318606) i COSIGN (FP7-619572), finançats per la

Comissió Europea, i els projectes ENGINE (TEC2008-02634) i ELASTIC (TEC2011-

27310), finançats pel Ministerio Español de Ciencia e Innovación.



Resumen

Los actuales propietarios de las redes de transporte se centran en ofrecer servicios me-

diante las infraestructuras que poseen y gestionan, mientras que los usuarios finales no

tienen ningún control sobre estos. Tradicionalmente, este ha sido el modelo de nego-

cio adoptado por los operadores de redes, ya que el coste de construir y mantener las

infraestructuras correspondientes por tal de ofrecer servicios mediante ellas era, y aun

es, considerablemente elevado. No obstante, el trafico en Internet ha crecido de manera

rápida y sostenida durante los últimos años y se prevé que continuara con este crec-

imiento en el futuro. Además, la aparición de nuevos servicios y paradigmas, están

llevando al limite las actuales infraestructuras de telecomunicaciones, especialmente las

redes de trasporte óptico. Por tal de superar dicha situación, la virtualización de redes

ha sido considerada como una solución efectiva para las futuras arquitecturas de redes

ópticas. Gracias a las Redes Ópticas Virtuales (VONs), es posible crear infraestructuras

lógicas especificas en su misión, las cuales podrán satisfacer los requisitos de las aplica-

ciones que se ejecutaran a través de ellas, usando y compartiendo un único sustrato f́ısico.

No obstante, la aplicación de las técnicas de virtualización en el dominio óptico aun es

sujeto de investigación, siendo el mapeo entre los recursos virtuales y los f́ısicos (también

conocido como incrustación de la red virtual) un punto clave a solucionar.

No obstante, la virtualización por si misma no ofrece una solución suficientemente flexible

en términos de utilización del ancho de banda. Por tal de proporcionar un entorno de

virtualización suficientemente flexible para acomodar cualquier ancho de banda con sufi-

ciente granularidad, es necesario que el sustrato f́ısico adopte una tecnoloǵıa de transporte

igual de flexible. Las Redes Ópticas Elásticas (EONs) se presentan como una solución efi-

ciente para una asignación flexible del ancho de banda en redes ópticas. Además, debido

a la heterogeneidad y dinamismo de los perfiles de trafico a los cuales se enfrentaran las

redes virtuales, es altamente deseable proporcionar una infraestructura f́ısica que ayuda

a mantener bajos los gastos operativos (OPEX) de estas redes, siendo un parámetro muy

importante el consumo energético asociado a la operación de las VONs. El tema del con-

sumo energético ha sido, y aun es, sujeto de grandes iniciativas de investigación centradas

en desarrollar nuevas arquitecturas de dispositivos o algoritmos de asignación de recursos

conscientes del consumo energético por tal de proporcionar redes de transporte ópticas

mas eficientes energeticamente que, a su vez, permitan crear infraestructuras virtuales

menos costosas des del punto de vista energético.
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Esta tesis se centra en el estudio de la composición y asignación de recursos a las VONs,

con el objetivo de proporcionar un entorno flexible, eficiente y optimizado para la in-

crustación de las VONs en el sustrato f́ısico real. El escenario considerado se compone de

una red de transporte subyacente, ya sea una Red Óptica de Conmutación de Longitud

de Onda (WSON) o EON, y múltiples VONs cliente, las cuales se colocaran encima del

sustrato f́ısico. En este escenario, un aspecto clave se refiere a como los recursos reales

se asocian a los virtuales, garantizando el aislamiento entre VONs y satisfaciendo los

recursos pedidos (por ejemplo, capacidad de enlace) por cada una de ellas.

Después de una introducción a la tesis, el capitulo 2 revisa las infraestructuras de redes

ópticas actuales, concluyendo en la necesidad de avanzar hacia una infraestructura de red

óptica mas dinámica y eficiente por tal de afrontar el crecimiento del trafico en Internet

y la aparición de nuevos servicios y paradigmas. Seguidamente, se procede a resumir

el estado del arte de los conceptos y paradigmas que permitirán habilitar esta arquitec-

tura de red, básicamente, VONs, EONs y las infraestructuras ópticas de bajo consumo

energético. A continuación, los caṕıtulos 3, 4 y 5 se centran en proporcionar soluciones

para optimizar aspectos espećıficos de estos conceptos con la finalidad de proporcionar un

marco optimizado que ayudara en la configuración de las futuras infraestructuras de redes

ópticas y sus modelos de negocio. Concretamente, el capitulo 3 estudia los principales

retos en el problema de la incrustación de VONs y presenta soluciones que permiten una

asignación de recursos optimizada a las VONs en un sustrato f́ısico dependiendo de las

caracteŕısticas de las VONs y del sustrato de red. El capitulo 4 propone el concepto de

Split Spectrum (SS) como una forma de mejorar la utilización del espectro en las EONs.

Finalmente, el capitulo 5 se centra en proporcionar y evaluar soluciones arquitectónicas

y de enrutamiento con el objetivo de reducir el consumo energético del sustrato óptico de

tal manera que VONs con menor OPEX puedan ser desplegadas mediante este sustrato.

Mencionar que parte del trabajo presentado en esta tesis se ha realizado dentro del

marco de varios proyectos europeos y nacionales: STRONGEST (INFSO-ICT-247674),

GEYSERS (FP7-248657), LIGHTNESS (FP7-318606) y COSIGN (FP7-619572), finan-

ciados por la Comisión Europea, y los proyectos ENGINE (TEC2008-02634) y ELASTIC

(TEC2011-27310), financiados por el Ministerio Español de Ciencia e Innovación.



Summary

Current transport network owners are focused on offering services on top of the infras-

tructures they own and manage, while end users have no control over these services.

Traditionally, this has been the business model adopted by the operators, as the cost

of building and maintaining the related infrastructures to provide services over them

was, and still is, considerably high. However, the traffic on Internet has been rapidly and

steadily increasing over the years and will continue to increase in the future. Additionally

new emerging services and paradigms are pushing the limits of existing telecommunica-

tion infrastructures, particularly transport optical networks. To overcome such situation,

network virtualization has been considered as an effective solution for the future opti-

cal networks architectures. Thanks to Virtual Optical Networks (VONs), it is possible

to create mission-specific logic infrastructures, which fulfil the exact requirements of the

applications that will run on top of them, using and sharing a unique physical substrate.

However, the applicability of virtualization techniques to the optical domain is still under

research, being on key point to be addressed the mapping of the virtual resources to the

actual physical ones (also known as virtual network embedding).

However, virtualization per se does not provide a solution flexible enough in terms of

bandwidth utilization. In order to provide a virtualization environment flexible enough

to accommodate any desirable bandwidth with fine granularity, an equally flexible trans-

port technology must be adopted by the physical substrate. Elastic Optical Networks

(EONs) have been presented as an efficient solution for flexible bandwidth allocation in

optical networks. Additionally, due to the heterogeneity and dinamicity of the traffic

patterns that such virtual networks will face, it is highly desirable to provide a physical

infrastructure that will help on keeping the associated operational expenditures (OPEX)

at low levels, being a very important parameter the energy consumption associated to

the operation of the VONs. The energy consumption topic has been, and still is, subject

of big research efforts in developing new device architectures or energy-aware resource

allocation algorithms so as to provide more energy efficient optical transport networks,

which, at their turn, will help on the creation of less costly virtual infrastructures, energy

consumption-wise speaking.

This thesis is devoted to the study of composition and resource allocation of VONs,

aiming to provide a flexible, efficient and optimized environment for the embedding of

the VONs to the actual physical substrate. The considered scenario is composed of an
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underlying transport network, either Wavelength Switched Optical Network (WSON)

or EON-based, and multiple client VONs that have to be allocated on top. In such

scenario, a key aspect relates to how actual resources are associated to the virtual ones,

guaranteeing the isolation among VONs and satisfying the resources requirements (e.g.

link capacity) of every one of them.

After an introduction to the thesis, chapter 2 surveys nowadays optical network infras-

tructures, concluding on the need to move towards a more dynamic and efficient optical

network infrastructure in order to cope with the growth of internet traffic and the advent

of new services and paradigms. With such consideration, it proceeds to summarize the

state of the art of the concepts and paradigms that enable for such network architecture,

namely, VONs, EONs and energy efficient optical infrastructures. Next, chapters 3, 4

and 5 focus on providing solutions to optimize specific aspects of these enabling concepts

so as to provide an optimized framework that will help on shaping the future optical

networks’ infrastructures and business models. More in details, chapter 3 studies the

main challenges on the VON embedding problem and presents solutions that allow for an

optimized resource assignment to VONs in a physical substrate depending on the VONs

characteristics and the specific network substrate. Chapter 4 proposes the Split Spectrum

(SS) approach as a way to improve the spectrum utilization of EONs. Finally, chapter

5 focuses on provide and evaluate routing and architectural solutions in aims to reduce

the energy consumption of the optical substrate so as VONs with lower OPEX can be

deployed on top of it.

It shall be mentioned that part of the work reported in this thesis has been done within the

framework of several European and National projects, namely STRONGEST (INFSO-

ICT-247674), GEYSERS (FP7-248657), LIGHTNESS (FP7-318606) and COSIGN (FP7-

619572), founded by the European Commission, and the projects ENGINE (TEC2008-

02634) and ELASTIC (TEC2011-27310) founded by the Spanish Science Ministry.
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Chapter 1

Introduction

Current transport network owners are focused on offering services on top of the infras-

tructures they own and manage, while end users have no control over these services.

Traditionally, this has been the business model adopted by the operators, as the cost of

building and maintaining the related infrastructures to provide services over them was,

and still is, considerably high. However, the traffic on Internet has been rapidly and

steadily increasing over the years and will continue to increase in the future.

This growing is fostered by the evolution of existing solutions towards higher bandwidths

and the increase of the number of users. Also, new emerging services, such as ultra-high

definition video streaming, 3D Internet or multimedia social networks will gain great

impulse. Furthermore, new paradigms such as cloud computing are gaining strength

in the arena. These new requirements are difficult to accommodate with the existing

rigid telecommunications architecture models. In order to support such applications

and paradigms, cost-efficient, dynamic and mission-specific networks infrastructures are

required. Additionally, due the unpredictable growing of the traffic, new management

policies based on flexible bandwidth allocation become highly interesting in contrast to

the current coarse bandwidth provisioning.

Network virtualization has been considered as an effective solution that will allow trans-

port network owners to not only offer data transport services over their physical infras-

tructures, but also portions of such infrastructures as a service for exploitation by external

service providers, which will manage the rented portion of infrastructure to provide to

their clients the desired resources that fit with their business and applications. Thanks

to Virtual Optical Networks (VONs), it is possible to create mission-specific logic infras-

tructures, which fulfil the exact requirements of the applications that will run on top of

them, using and sharing a unique physical substrate. However, although virtualization

techniques are well studied and mature enough for layer-2/3 networks, their applicability

to the optical domain is still under research, being on key point to be addressed the map-

ping of the virtual resources to the actual physical ones (also known as virtual network

embedding).

1
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However, virtualization per se does not provide a solution flexible enough in terms of

bandwidth utilization, mainly because the attributes of the virtual infrastructure are

tightly related to the underlying physical substrate. Indeed, current transport network

solutions are based on rigid and coarse technologies in terms of bandwidth. In order

to provide a virtualization environment flexible enough to accommodate any desirable

bandwidth with fine granularity, an equally flexible transport technology must be adopted

by the physical substrate. Elastic Optical Networks (EONs) have been presented as an

efficient solution for flexible bandwidth allocation in optical networks. The basic idea

behind is to adopt a flexible spectral grid capable to provide fine granularity either for

low or high data-rate demands, opposed to the fixed-size spectral grid standardized by

the International Telecommunication Union (ITU), solution adopted by the vast majority

of Wavelength Switched Optical Networks (WSONs).

Additionally, due to the heterogeneity and dinamicity of the traffic patterns that such

virtual networks will face, it is highly desirable to provide a physical infrastructure that

will help on keeping the associated operational expenditures (OPEX) at low levels, being

a very important parameter the energy consumption associated to the operation of the

VONs. The energy consumption topic has been, and still is, subject of big research efforts

in developing new device architectures or energy-aware resource allocation algorithms

so as to provide more energy efficient optical transport networks, which, at their turn,

will help on the creation of less costly virtual infrastructures, energy consumption-wise

speaking.

This thesis is devoted to the study of composition and resource allocation of VONs,

aiming to provide a flexible, efficient and optimized environment for the embedding of

the VONs to the actual physical substrate. The considered scenario is composed of an

underlying transport network, either WSON or EON-based, and multiple client VONs

that have to be allocated on top. In such scenario, a key aspect relates to how actual

resources are associated to the virtual ones, guaranteeing the isolation among VONs and

satisfying the resources requirements (e.g. link capacity) of every one of them. To this

end, individual chapters deal with the embedding of the virtual resources and how to

improve the spectrum utilization and the energy efficiency of the underlying physical

substrate. Along this process, the problem under study is stated, followed by a review

of existing work in the literature. Next, contributions addressing the identified issues are

provided and validated. Finally, main achievements in each chapter are highlighted.

1.1 Overview of the thesis

This thesis is structured into a background chapter on dynamic and efficient optical infras-

tructures (chapter 2), one chapter concerning the embedding of virtual optical networks

(chapter 3), one chapter aiming to improve the spectrum utilization in elastic optical
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networks (chapter 4) and one chapter proposing and evaluating multiple solutions for

energy efficient optical networks (chapter 5).

Chapter 2, entitled Towards dynamic and efficient optical network infrastructures, surveys

nowadays optical networks infrastructures, concluding in the necessity to evolve to more

flexible and dynamic architectures in order to cope with the growth of the traffic on

Internet as well as emerging new services and paradigms. In this regard, the concepts

of Infrastructure as a Service (IaaS) and Virtual Networks (VNs) are presented as a

potential solutions for the future optical networks infrastructures. Being VONs one of the

main focuses of this thesis, a dedicated section is devoted on explaining their benefits and

challenges. This leads to conclude that, in order to provide an environment flexible enough

for future optical network architectures, VONs are not enough since their performance

is tightly related to the underlying physical substrate. Hence EONs are presented as a

solution to provide a more efficient physical substrate in terms of spectrum utilization.

Specific sections detailing the evolution from Wavelength Division Multiplexing (WDM)-

based to EON-based optical networks are provided. Finally, some background in regards

of energy efficiency in optical infrastructures is provided, since it is a key factor on the

development of cost effective solutions for future optical networks.

Chapter 3, Virtual optical network embedding, introduces the importance of resource

embedding in VONs. An optimized resource embedding arises of paramount importance

in order to maximize the number of VONs that can be allocated in top of a physical

network substrate, improving the usage of the available physical resources. In this context,

the challenges when embedding a virtual optical network are identified. Next, multiple

mechanisms to optimally embed VONs according to the underlying physical substrate

technology and the characteristics of the VONs and services that will run on top of them

are proposed and thoroughly evaluated.

Chapter 4, Improving EONs efficiency: the split spectrum approach, concentrates on

enhancing the performance of EONs as a mean of providing a more efficient physical

network substrate for the embedding of VONs. The particular focus is on the spectrum

utilization of EONs. In order to improve the spectrum utilization of such networks, so

more demands can be allocated, the Split Spectrum Approach (SSA) is proposed. To

achieve the desired spectrum utilization, multiple techniques to perform the resource

assignment in Split Spectrum (SS)-enabled EONs are presented. The benefits of the

proposed solutions are quantified by simulations, comparing them against traditional

resource assignment techniques in EONs. Furthermore, multiple implementations of the

SSA are discussed and evaluated.

Chapter 5 Energy efficiency in transport networks, focuses on solutions for reducing the

energy consumption on core optical networks. Energy efficiency has been widely recog-

nized as an important target for the management of optical networks. As a consequence,

it becomes highly desirable to provide a physical substrate more efficient in this regard
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so less costly VONs can be deployed in top of it. To this end, multiple solutions are pro-

posed. First, an end-to-end energy-aware routing mechanism for multi-domain transport

optical networks is presented. Multiple simulations are done to evaluate the benefits of

the proposal. Next, to further reduce the energy consumption of core optical networks,

the concept of sleep-enabled transport networks is introduced. In order to asses the im-

pact of such network architecture in terms of energy savings and connection blocking a

Markov-based analytical model is developed.

Finally, chapter 6 summarizes this thesis and opens future lines of research.



Chapter 2

Towards dynamic and efficient

optical network infrastructures

This chapter surveys enabling technologies and concepts to dynamic and efficient optical

network infrastructures. To introduce, a glance at current optical network infrastructures

is firstly taken. There, several network evolutionary steps are identified, ranging from first

static optical networks to Automatically Switched Optical Networks (ASONs) defined by

the ITU-T. This leads to conclude on the necessity for more dynamic and efficient optical

network infrastructures to cope with emerging new services and the growth and high

heterogeneity of the traffic on the networks. Aiming to provide a suitable framework for

future optical network infrastructures, the concept of VON is introduced.

To this, the general paradigm of IaaS is surveyed. Although VONs appear as promising

candidates to overcome the limitations of current optical infrastructures, their intrinsic

dependence on the underlying physical network may result in a poor utilization of the

available spectrum. In fact, the vast majority of nowadays optical transport networks

is based on WDM for the purpose of bandwidth provisioning. In such networks, as

the minimum granularity for serving a connection request is a wavelength, it means to

dedicate the whole capacity of a wavelength for the connection, wasting the residual

bandwidth of the wavelength.

Moreover, in order to accommodate very high bit-rate connections (the so called super-

channels), several wavelengths have to be grouped and allocated according to the request.

Since spectrum guard bands are necessary between wavelengths for de-multiplexing pur-

poses, it results in a poor spectrum utilization. For these reasons, it is necessary to provide

more spectrum efficient physical networks in order to fully realize effective VONs. In this

regard, EONs emerge as a very promising candidate thanks to their finer spectrum gran-

ularity. To better understand the benefits of EONs, the evolution from fixed to elastic

optical networks is surveyed, putting special emphasis on the resource allocation process

to the connections.

5
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Besides the spectrum efficiency, another key point in the development of next-generation

optical network infrastructures relates to the energy consumption of the optical layer.

As a matter of fact, with the increase of the traffic in core optical networks, the energy

consumption on the networks is growing and may reach unsustainable levels if not taken

care off. The third section of this chapter summarizes the efforts done during the last

years in order to provide energy efficient optical networks along with the main challenges

in the topic. Finally, last section summarizes main achievements of the chapter.

2.1 Evolution of optical network infrastructures: past

and present

Over the past decade, optical network infrastructures have gone through an extensive and

rapid evolution [Muk00, Alf12]. Figure 2.1 summarizes the evolution of optical networks

through the years, highlighting the main traits of each evolutionary step. First optical

networks were based on static point-to-point optical links connecting optical nodes mainly

present in major cities. Although they provided high transmission capacities thanks

to the emergence of WDM technologies [Hen90], where multiple wavelength channels

were multiplexed into the same fibre link, such networks largely lacked any switching

capability. Moreover, although the transmission between end points of a single fibre

link was optical, the whole end-to-end path was not. In fact, all the traffic incoming

to a node had to undergo an Opto-Electronic (OE) conversion in order to process the

control data and switch the traffic data accordingly. Then, the outgoing traffic had to be

converted again to the optical domain through an Electro-Optical (EO) conversion before

the transmission. For these reasons, an optical transponder (TSP) was needed at each

node for every incoming/outgoing wavelength channel, increasing substantially the cost

and the power consumption of nodal equipment. Furthermore, as the bandwidth solutions

were evolving to higher bit-rates, the electronic processing was starting to become an

important bottleneck in terms of network scalability.

The recognition of this bottleneck imposed by electronic technologies was an important

stimulus for the development of all-optical solutions, where the connection would remain

in the optical domain through the whole end-to-end path connecting source and desti-

nation nodes. To better understand the value of all-optical transmission, let us put an

example. For instance, it may happen that the link connecting two end-points carries

much more traffic than what is just required between those two nodes, with the rest of

the traffic coming from connections between other nodes for which the end-to-end paths

include the end-points of the link. Since such traffic does not terminate on the remote

end-point of the link, it would not be necessary to de-multiplex the associated wavelength

channels but simply bypass such wavelength without any electronic processing involved.

By distinguishing these two types of traffic, it would be possible to only de-multiplex the

wavelengths destined for a particular node while the rest pass transparently through the
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Figure 2.1: Evolution of optical networks.

node, thus reducing the need of electronic processing. As a consequence, the cost and

power consumption of the node’s equipment would be reduced as well as it would improve

the overall scalability of the network.

The key element that enabled such functionality was the Optical Add/Drop Multiplexer

(OADM) [TS06, ZM05]. When deployed into network nodes, OADMs allow for the local

insertion/extraction of certain wavelengths to/from the network, while letting the remain-

ing wavelengths to optically pass through the node. This removes the need to perform

any electronic processing to the bypass traffic that does not end in the node, which in

second generation multipoint optical networks arises as the majority of the total incoming

traffic amount. An added benefit on the adoption of OADMs towards all-optical networks

was that the time required to provision a new connection decreased significantly, as EO

and OE conversion needed to only be done at the endpoints of the connections. Such

technology advancements supposed a rapid development of multipoint optical network

solutions.

As a first step in this direction, the Optical Transport Network (OTN) architecture was

proposed by the ITU-T in [G.872]. The OTN architecture is intended to provide a general

framework for the handling of different client signals while introducing switching, multi-

plexing, management and resilience functionalities directly in the optical layer. Moreover

it introduced the importance of meshed topologies as a mean to provide better optical

resource utilization as well the implementation of multiple resilience schemes. Since in

meshed networks, any node can be connected directly to several other nodes, each node

must not only capture and disseminate its own data, but also serve as hops for other

nodes, that is, it collaborates in data transmission over the network. For this to happen,

any node in the network should be able to capture the traffic terminating at the node

while perform the switching and routing of the wavelength directly as they carry the

high bit rate signals. Optical Cross Connects (OXCs) become the key devices in order to
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Figure 2.2: The ASON architecture.

enable such functionalities [OK98, TZT03]. Similar to OADMs, OXCs allow for a totally

optical commutation of the signals coming from any incoming port to any outgoing port,

thus eliminating costly electronic processing. For these reasons OTNs become very inter-

esting candidates for an efficient transmission of end-to-end connections in WDM-based

networks.

However, in OTNs the connection provisioning and release are still done in a manual fash-

ion from a centralized Network Management System (NMS). Such manual operations can

take very long times (hours or even days), resulting in a network architecture incapable to

react to rapid traffic fluctuations or to provision bandwidth on-demand services to end-

users. To overcome such limitations, a control plane is introduced in OTNs with the aim

to automatically provision and release connections over the physical network, providing

a more dynamic optical network architecture. In this regard, the ASON architecture, as

defined by the ITU-T in [G.8080], arises as the leading architecture for the management

and control of all-optical transport networks.

In order to provide intelligence to the network, the ASON architecture (Figure 2.2) defines

the control plane functional modules and related interfaces, enabling functionalities such

as resource discovery, routing or signalling. To this end, a routing controller module

at each control plane node (called Optical Connection Controller (OCC)) maintains the

current state of all resources in the network. With this information, the computation of

the valid routes between source and destination is done. Next, the OCC module utilizes

these computed routes to disseminate the control information in the network in order to

create, maintain and release the connection. To enable the communication between OCC

modules, the Network-to-Network Interface (NNI) is utilized. In turn, a resource manager

module keeps the state of the local resources. Besides, it is also responsible for configuring

the related optical node through the Connection Controller Interface (CCI). Finally, a
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call controller module is also defined in the OCC, which accepts or rejects connection

requests coming from the end-user domain through the User-to-Network Interface (UNI).

Although the ASON architecture provides many advantages, such as automatic connec-

tion provisioning, thanks to the inclusion of an intelligent control plane, as the traffic

on the networks grow, paired with an increase of network devices, such architecture will

unlikely meet new requirements, particularly in terms of flexibility. Moreover, with the

emergence of new services and paradigms that require the provisioning of both network

and Information Technology (IT) resources and very specific rules so as to guarantee a

proper Quality of Service (QoS), it becomes more and more challenging for a single control

plane technology to handle such heterogeneity on the services that must be controlled

and provisioned through it. Since the control plane is linked to the data plane by an

internal network, handling change is difficult because each change to the physical infras-

tructure requires a corresponding modification to the control plane, such as reconfiguring

the tunable parameters in the routing protocols. New management strategies are needed

because service and infrastructure providers must ensure operational simplicity in plan-

ning, engineering, deployment, and operation of services and networks in order to reduce

associated OPEX while improving network performance. Addressing all of these chal-

lenges with current infrastructures and technology practices could lead to unmanageable

networks for operators aiming to maximize fibre capacity and service reconfigurability.

The emergence of these new services and paradigms would require to provide to the end

user some control over the applications so as to offer a proper Quality of Experience

(QoE). However, with nowadays optical infrastructures it is not possible since they are

completely managed by the operators that own them, with end user having no control

over the infrastructures nor the services and applications that run on top of the physical

infrastructures. A possible way to overcome such limitation would be to decouple the

service and application layer from the physical infrastructure layer and then exposing

to the end user the necessary tools to control the services by proper interaction with

the physical devices. Such functionalities would require sophisticated middleware layers,

enabling the abstraction of the physical substrate for control by the end user.

Furthermore, nowadays service providers base their business in renting physical infras-

tructures to the operators and then offer services on top of them to end users, since

physical infrastructures are very expensive to build and maintain. In this sense, physical

operators are the responsible for the deployment, management and maintenance of the

infrastructures while service providers are relegated to exploit the connectivity and IT

services leased by operators, without any control over them. Such business model makes

it difficult to have adequate prices and control over the whole infrastructure used to pro-

vide services. Furthermore, it becomes impossible to perform any dynamic management

of the rented infrastructures in order to adjust to the traffic patterns or optimize the use

of the resources.
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Figure 2.3: Daily Internet traffic pattern [ARB].

Besides the need of more dynamic management and control of the infrastructures in order

to meet the requirements of new services and applications, another key point that drives

this evolution towards more customizable optical infrastructures arises from the necessity

to optimize the utilization of the physical resources. Nowadays physical infrastructures

are build and planned to support a peak traffic during the daily utilization so as to

guarantee that during high periods of traffic the blocking probability of the connections

remains very low. As the traffic on the networks growth and their capacity starts to be

exhausted, new resources have to be deployed on the network so as to absorb the new

peak traffic [NS03, ZSiL10]. Such upgrade strategy, based on traffic growth models, is

the nowadays common strategy followed by network operators in order to guarantee that

all the traffic flowing through the network can be absorbed, resulting in a proper service

of the connections.

Although such approach on the dimensioning of the infrastructures guarantees that all

traffic through the day will be properly served, it usually results in an overdimensioned

physical infrastructure. To exemplify this, Figure 2.3 depicts the daily Internet traffic

pattern on both Europe and North America, representing for each time of the day the

traffic volume respect to the peak. It can be seen that important differences are found

between peak hours and valley periods in terms of traffic volume: around 50% and 60%

for Europe and North America, respectively. Since networks are usually dimensioned to

support the traffic at peak periods, it means that during the rest of the day, a substantial

amount of resources is not utilized. This translates for both network operators and

services providers into a poor cost efficiency of the infrastructures, since they are only

used at full capacity during short periods of time. In order to improve the utilization

of the infrastructures, network operators could lease their infrastructures to multiple

service providers or deploy on top of them several services at once for a better filling

of the underlying physical infrastructure. As for service providers, a more on-demand
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bandwidth and/or infrastructure provisioning from the operator would allow for better

adjustments on the rented infrastructure so as to fit dynamic traffic patterns, thus saving

costs. Nevertheless, such functionalities are hard to implement with nowadays optical

infrastructure architectures.

For all these reasons, in order to build the future optical network infrastructures, it is

necessary to define new architectures and paradigms that will allow for the co-existence

of vastly heterogeneous services on top of a physical infrastructure, with the possibility

to finely control and manage the infrastructures that will support them. The following

section will detail potential solutions to enable such optical infrastructures.

2.2 Dynamic optical infrastructures

The previous section summarized nowadays optical network architectures and identified

their main drawbacks, being the main one the limited reconfigurability of the network in

order to adapt to highly dynamic traffic patterns and to the heterogeneity of the services

that run on top of the network. To overcome such limitations, more dynamic and efficient

optical network infrastructures have to be designed. A key enabling concept towards

dynamic optical network infrastructures is the concept of IaaS and more specifically the

concept of VN or Virtual Infrastructure (VI). This section is devoted on describing such

concepts, highlighting their benefits and why they are promising candidates for future

dynamic optical networks and infrastructures. To this end, first the concept of IaaS is

described as well as the concept of VIs in general. Next, VONs are introduced as the

mean to realize the IaaS concept in the optical domain.

2.2.1 IaaS: concept and benefits

The aforementioned technical, management and operational complexities, coupled with

the inability to react to very dynamic traffic patterns in an efficient way, may limit

the ability of operators and service providers to support new services for their customers.

Thus, it becomes crucial to be able to deploy and support new services quickly and easily,

with minimum manual intervention, hardware deployment, or complex engineering pro-

cesses. IaaS [NCL13, KFW+14] has been introduced to meet such new management and

operational requirements. The rational behind of IaaS is to offer physical infrastructures

from an operator as a service for exploitation by third party entities, giving the possibility

to fully configure and manage the rented infrastructures as if they were owned by those

external entities. Additionally, IaaS is envisioned as a way to compose highly customiz-

able and very specific infrastructures by merging physical resources from diverse natures,

such as network resources, storage or computational capacities. The key enabling tech-

nology in order to realize this is the virtualization of the physical infrastructures. Thanks
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Figure 2.4: Example of IaaS.

to virtualization, it is possible to slice an underlying physical infrastructure into multiple

virtual elements. Then, by federating and composing such virtual elements it is possible

to create VIs with very specific requirements, both in terms of resource characteristics

and management and control. Thus, such approach allows service providers to create

their underlying service infrastructures by acquiring resources from different providers on

an as-needed basis. Moreover, it allows for physical infrastructure owners for a better

resource usage of their infrastructures, since multiple isolated VIs may coexists on top of

the same physical infrastructure (see Figure 2.4).

As it can be seen, there are many advantages to the IaaS concept and relevant virtualiza-

tion techniques. It mainly brings new business models and a potential optimization of the

physical infrastructure resources transparently to users. The main benefits for operators

and service providers are summarized as follows.

• Better scaling of the management and services. IaaS allows an infrastructure

to start small and scale according the services that are provisioned on top of it in

a rapid and efficient manner, since virtual resources can be requested and decom-

missioned on-demand. Moreover, creating smaller VIs dedicated to specific services

allows a better management of the individual infrastructures when compared to

the case where a big and multi-purpose infrastructure is employed to accommodate

multiple services at once.

• Lower capital and operational costs. Service providers require some network

and IT infrastructures in order to develop their activities. However, physical in-

frastructures are expensive to deploy and maintain. Hence, traditionally service

providers rent some connectivity services to network operators. Nevertheless, this

presents the drawback of not having the opportunity to do management and control

operations as they would do if the infrastructure was owned by them. With IaaS, it
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is possible to rent fully manageable and controllable virtual infrastructures, reduc-

ing the infrastructure costs. Moreover, since most of the infrastructure operation

and control is done by service providers, it allows for a reduction of the operational

costs of the shared infrastructures for the physical infrastructure operator.

• Programmable infrastructures and ease of upgrade. Emerging services re-

quire for a tight integration of all layers up to the application level for an optimized

QoS. This requires the possibility of extending network and infrastructure devices

functionalities. Thanks to IaaS and virtualization, this approach of programmable

virtual infrastructures is possible. Moreover, thanks to the decoupling of the ser-

vices and the infrastructure, it is possible to upgrade the services by modifying the

properties of the virtual elements in a fast and efficient way, without experiencing

disruption of the services.

• Enable new business models. With IaaS, current infrastructure owners can

increase they revenues by offering unused parts of their infrastructure to service

providers with no infrastructures. In this way, new business models can appear,

where specialized infrastructure owners build, deploy and maintain the physical in-

frastructures (network and IT) and specialized service providers control and manage

the virtual partitions of these physical infrastructures in order to offer services to

the end users. This opens new roles on the telecommunication market. Papers

in the literature as [PSV09] and some European projects investigating the subject

of virtualization, such as GEYSERS [TAG+14] have identified the following main

roles regarding the new business model to be adopted in this context: 1) Physical

Infrastructure Provider (PIP), which is the owner of the physical substrate, over

which virtual networks will be provided. The PIP offers parts of its infrastructure

as a service to be exploited by external entities to develop its own business models;

2) Virtual Infrastructure Provider (VIP), which is the client of the PIP. By renting

resources from multiple PIPs, it composes VIs in order to offer them as a service;

3) Virtual Infrastructure Operator (VIO), which is the client of the VIP and the

responsible to offer services to the end-users by managing the VI rented to the VIP.

Through a proper control plane, it can manage the VI depending on its needs; and

4) Consumers, which are the end-users of the services that are offered through the

VIs. Nevertheless, these roles may overlap, such as the VIP also being the VIO.

• Federation and integration of multiple infrastructures. Multiple resources

coming from different administrative domains can be integrated into the same VI,

thus federating disparate resources under the same domain which is managed by a

single service provider. These eliminates inter-domain issues, since the whole infras-

tructure and the resources composing it are under the same administrative domain.

Moreover, it allows for a seamless composition of very heterogeneous resources into

a unique and cohesive VI.
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As it can bee seen, IaaS offers many interesting possibilities, arising as a strong candidate

to enable the future telecommunication infrastructures. In this process, virtualization

becomes the key in order to realize all the promises and enable all the functionalities

of IaaS. When applying virtualization to a physical device, a logical representation of it

is created, which then can be partitioned into several virtual devices offering the same

behaviour as the physical device but logically separated, keeping isolation between mul-

tiple VIs sharing the same physical device. Although each one of the partitions has its

administrative domain, the virtualization creator keeps the ownership and responsibility

for the whole physical device, but not its services management or configuration. The

following sub-section discusses about the virtualization of physical infrastructures.

2.2.1.1 Infrastructure and network virtualization

The concept of virtualization was introduced in the IT realm by IBM in the 1960s

[PPTH72, Gol74]. They introduced the Virtual Machine (VM), as result of introduc-

ing a virtual layer between hardware and software layers. This allowed the abstraction

of portions of an underlying physical resource, so that an end-user could directly inter-

act with a portion of this resource, while perceiving it as a single real resource. As a

result, it was possible to run multiple autonomous and isolated VMs in top of a single

shared physical machine, each one having its own resources and running its own operat-

ing system and applications, which can be different from the ones of the host physical

machine. Additionally, VMs can be dynamically provisioned when and where they are

needed, enhancing the physical resources utilization.

Network virtualization extended this concept from individual nodes or resources to data

communication networks resulting in the advent of the so called Virtual Private Networks

(VPNs). VPNs [KK04] where initially thought as a way to provision logically separated

private networks over a public infrastructure by tunneling data traffic between geograph-

ically distant sites. Depending on the protocols used by the data plane, VPN can be

roughly classified into Level 1 VPNs, Level 2 VPNs, Level 3 VPNs or Higher-layer VPNs.

At all layers, VPNs pursue the same goal: the provisioning of connectivity services be-

tween far off sites (see Figure 2.5). The network operator owning the physical infrastruc-

ture establishes the connections composing the VPN and provides them together as a

connectivity service to the client. Note that VPNs are completely limited to the delivery

of connectivity services among geographically distributed sites over a data network, be-

ing all the connections established and managed by the network owner. This results in a

client-server relationship, where clients of a VPN can only request more resources for the

point-to-point links among the Provider Edge (PE) devices where their Costumer Edge

(CE) devices are attached.

An evolution of the VPN is the VI or VN paradigm, which results in one step ahead on

the evolutionary path towards the next-generation Internet. Such paradigm pleads for a
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Figure 2.5: Example of VPN.

more disruptive approach, where network owners can offer parts of their infrastructures

as services to external service providers, so that they are completely free to manage

them to offer end-to-end services to final users. It aims at introducing the essentials of

virtualization to not only computers (such as with the case of VMs) but to all devices of

an underlying physical infrastructure. In a few words, VIs are slices (partitions) of the

physical infrastructure, which are offered as a service to the client. In such a paradigm, the

client is not restricted to only use the bandwidth of some connections, but can also interact

with the underlying physical equipment to configure it as if it was of their property. The

main idea consists of creating several co-existing logical infrastructure instances, each one

with its own topology and resources, over a shared physical substrate.

Although virtualization techniques are quite mature for some type of physical devices (e.g.

computers), the application of virtualization to generic devices is still a challenge. A first

challenge comes from the fact that, in order to virtualize a physical device, it is needed

to somehow abstract the relevant properties of the device, which then will be used to

create software representations (virtual devices). Software Defined Infrastructures (SDIs)

[KFW+14] and Software Defined Networks (SDNs) [ONF] offer a framework that allows

for the abstraction of underlying physical infrastructures through proper information

models and then the composition of the abstracted physical devices into complex virtual

objects, thanks to suitable virtualization protocols (e.g. OpenFlow [LKR14]) or software

platforms (e.g. OpenDaylight [Ope]). For example, OpenFlow, which is based on flow

switching, allows for the capability to execute software/user-defined flow-based routing,

control, and management in a controller outside the data path, effectively creating virtual

objects with the desired characteristics.

Besides the abstraction and composition of virtual objects, a VI must also be composed

of a virtual control plane (e.g. [LZT+13], with the purpose of providing the required

independent and full control functionalities (i.e., optical connection provisioning, traffic

engineering, protection/restauration, etc.). As virtual objects are software abstractions

of physical devices, a virtual control plane is the software realization of a more generic

control plane technology (e.g. Generalized Multi-Protocol Label Switching (GMPLS),

OpenFlow), tailored to the specific needs of the VI. Coupled with management and

orchestration modules, the virtual control plane allows for the dynamic management of
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a VI, adjusting the characteristics of the infrastructure to the services that run on top of

it.

2.2.2 Virtual optical networks

Virtualization techniques have been historically employed in Layer2/3 networks (e.g. Eth-

ernet, IP). However, the increasing bandwidth requirements of the applications that run

over the Internet, jointly with the need to offer a transport network more efficient in terms

of energy utilization and resource cost, are the driving reasons for most of the transport

network owners to migrate their electrical backbone infrastructures towards the optical

domain [LGF+06]. For this reason, many efforts are being devoted on bringing virtual-

ization to the optical domain [NEPS11], so as to create VIs and VNs that fully exploit

the benefits of optics in terms of high capacity and energy efficiency.

As in electrical networks, the general framework of SDN is being utilized in order to

compose VONs. By developing the proper extensions to virtualization protocols (e.g.

OpenFlow), it will be possible to slice an optical device into multiple virtual devices

(Figure 2.6.a) or agglutinate multiple physical devices so as to compose an integrated

virtual device that unifies their properties (Figure 2.6.b). However, the virtualization of

optical infrastructures poses several challenges.

For instance, when creating virtual optical elements, the presence of the Physical Layer

Impairments (PLIs) can create several problems, such as the resulting virtual device being

interfered for other virtual devices obtained through the same physical device due to non-

linearities of the optical medium. This comes from the analogical nature of the optical

medium, which difficults separating or composing effectively from physical devices when

compared to the digital nature of electrical networks. This problem is tightly related to

the resource allocation in VONs. The well known Route and Wavelength Assignment

(RWA) problem of optical networks comes in the arena when assigning physical resources

to virtual ones, complicating the whole resource assignment problem. Solutions to this

challenge will be discussed later on during chapter 3.

Other potential challenges that appear when trying to bring virtualization in the optical

domain are:

• Definition of a unified optical transport and switching granularity (i.e., optical flow)

that can be generalized for different optical transport technologies (Optical Circuit

Switching (OCS), Optical Packet Switching (OPS), etc.) and be compatible with

electronic packet switching technology.

• Design and implementation of an abstraction mechanism that can hide the hetero-

geneous optical transport layer technology details and realize the aforementioned

generalized switching entity definition.
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Figure 2.6: Creation of virtual OXC by means of a) slicing a physical device and b)
composing multiple physical devices.

• Cross technology constraints for bandwidth allocation and traffic mapping in net-

works comprising heterogeneous technological domains. This plays an important

role in provider networks where multiple operational units are consumed to maintain

different technology domains.

Despite these challenges, VONs are strong candidates for the realization of future telecom-

munication infrastructures, combining both the flexibility and adaptability of IaaS and

the high bandwidth provision of photonic technologies.

2.3 From fixed to elastic optical networks

Besides the importance of having a flexible enough optical infrastructure to fit the re-

quirements of the services and that can be dynamically tuned to match the variability

of the applications and paradigms that will run on top of them, it is necessary to also

provide an equally flexible network in terms of bandwidth assignment to fully realize the

promises of such flexible optical infrastructures. Nowadays optical networks are based on

Dense Wavelength Division Multiplexing (DWDM) as standardized by the ITU-T, which

may allow up to 100 Gb/s per wavelength channel. Thanks to the various advance-

ments over the past years, DWDM optical networks provide many advantages, such as

cost effectiveness as well as automated provisioning of end-to-end optical connections, i.e.
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Figure 2.7: ITU-T DWDM frequency grid with channel spacing of a) 100 GHz, b) 50
GHz and c) 25 GHz.

lightpaths. However, the employed spectral grid standardized by the ITU-T in [G.694.1]

and its rigid granularity limits to a great extent their bandwidth utilization. Specifically,

current ITU-T DWDM grid is anchored to 193.1 THz and supports various channel spac-

ings, particularly, 25, 50 and 100 GHz (see Figure 2.7). In such a grid, the central optical

frequency of a channel can be determined as 193.1 + n · fcs THz, where fcs represents

the channel spacing and n is an integer representing the grid frequency number. This

central frequency will then be employed to provision the requested bandwidth of a light-

path, allocating half of it to the right and left side of the central frequency, respectively,

along with the necessary guard bands between channels to allow a correct switching of

the signals.

Although decreasing the channel spacing, as depicted in Figure 2.7, allows for a better

spectrum utilization thanks to the guard bands between channels being smaller, such rigid

spectral grid results in a very poor spectrum utilization, specially when accommodating

sub-wavelength connections or when needing to construct very high bit-rate connections

(super-channels). To exemplify these limitations, Figure 2.8 depicts both situations.

Current DWDM networks allocate a full wavelength channel to a lightpath. If the traffic

demand is not enough to fill the entire capacity of the wavelength (sub-wavelength),

it results in the rest of the capacity of the wavelength to be wasted, since it cannot

be utilized by other traffic demands. On the other hand, when needing to allocate a

traffic demand whose capacity is greater than the actual capacity provided by a single

wavelength (super-channel), it is necessary to allocate multiple independent wavelength

to the demand. Since spectral guard bands are necessary between adjacent wavelength

channels for switching purposes, such operation results in significant spectrum overheads.
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Figure 2.8: Spectrum assignment in a DWDM optical network.

Figure 2.9: Spectrum assignment in an EON.

To overcome such limitations, a novel spectrum efficient and scalable optical transport

network was proposed in [JTK+09]. Such architecture, known as EON, allows for the

allocation of an appropriately sized portion of spectrum to fit the requirements of a

connection. To do so, instead of relying to a rigid frequency grid as the one standardized

by the ITU-T for WDM networks, the concept of Frequency Slot (FS) is introduced.

According to this idea, the available spectrum in an optical fibre link is discretized into

smaller spectrum units (e.g. 6.25 GHz) known as FSs. For example, an optical spectrum

of 1, 2 and 5 THz would correspond to 160, 320 and 800 FSs available per fibre link,

respectively.

In this regard, contrary to the rigid bandwidth allocation of DWDM networks, the spec-

trum assigned to a connection in an EON may grow or shrink according to the traffic

volume and the requirements of the connection by allocating enough contiguous FSs. Such

feature allows for a greater efficiency in the spectrum utilization and a better scalability of

the network, either when serving sub-wavelength or super-channel connections, by tightly

tailoring the allocated spectrum to the specific demand requirements (see Figure 2.9).

Such elasticity and flexibility regarding the bandwidth allocation may be achieved thanks

to two important technology advancements. The first one is the optical Orthogonal Fre-

quency Division Multiplexing (OFDM) [ZLMM13]. Thanks to optical OFDM it is possible

to allocate a variable number of low symbol-rate sub-carriers in order to allow the trans-

mission of a connection matching its exact requirements in terms of bandwidth needs.

Moreover, due to their orthogonality properties, adjacent sub-carriers may overlap in the

frequency domain, enabling for a better spectral efficiency. Furthermore, by adjusting the



Chapter 2. Towards dynamic and efficient optical network infrastructures 20

symbol-rate of the OFDM signal, it is possible to overcome the limitation posed by the

PLIs [KTJ10]. The other major technology advancement are Bandwidth Variable Wave-

length Cross Connects (BV-WXCs) and Bandwidth Variable transponders (BV-TSPs)

[NNR+14, KTJ10]. Thanks to BV-TSPs, it is possible to transmit an OFDM modulated

signal from source to destination with the desired bit-rate in order to accommodate a

demand request, while BV-WXCs allow for the cross-connections with the correspond-

ing spectrum in every intermediate node along the end-to-end route, efficiently switching

the connection. All these technologies are the ones that enable the elastic bandwidth

transmission in EONs.

However, although EONs provide significant benefits when compared against traditional

WDM-based optical network, they also pose significant challenges, specially when assign-

ing resources to lightpaths. The following sub-section discusses about the assignment

problem in EONs in what is known as the Route, Spectrum and Modulation Level As-

signment (RSMLA) problem in the literature. To better understand the new challenges

that appear in the RSMLA problem, a brief introduction of the RWA problem in WDM

networks is presented.

2.3.1 Route, spectrum and modulation level assignment

In order to transmit data from one node to another on an optical network, it is necessary

to establish a connection on the optical layer. In WDM networks, such connection, known

as lightpath, can be realized by determining a path in the network between the two nodes

and allocating a free wavelength on all fibre links than span the end-to-end path. One

important point in such process is to guarantee that no two lightpaths that share a

physical link use the same wavelength on that link, otherwise the two connections would

collide in the frequency (wavelength) domain. Additionally, in the absence of wavelength

conversion, it is necessary to provision the same wavelength on all links that span the

end-to-end path, which is known as the wavelength continuity constraint. The problem of

how to assign the path and wavelengths to properly accommodate a lightpath in a WDM

network is known as the RWA problem and has been widely studied in the literature

[OB03, RS95].

The RWA problem can be categorized mainly into: 1) static and 2) dynamic. In the

static case (e.g. [CMV10]), the entire traffic matrix between all network nodes in known

is advance. In such scenario the objective is to serve all the connections among all node

pairs while minimizing the necessary number of resources (e.g. wavelengths per fibre

link) to properly accommodate all lightpaths. Conversely, an alternative goal would be

to set-up the maximum possible of lightapths from a known set given a network with

limited resources. Typically, in order to obtain the optimal solution in the static case,

Integer Linear Programming (ILP) formulations are employed [ZJ00]. However, such

approaches are very time consuming. Alternatively, the RWA problem can be divide into
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two sub-problems: 1) the routing sub-problem and 2) the wavelength assignment sub-

problem. Then, exact methods can be applied to solve the two sub-problems separately

or apply heuristics in order to find fast and near optimal solutions. On the other hand, in

the dynamic scenario, the whole traffic matrix is not known in advance but connections

arrive to the network one by one in a random fashion and are released after some time

[CL05]. In such circumstances, the typical goal is to minimize the blocking probability

of the connections. Due to the dynamic nature of this scenario, ILP-based solutions are

not suitable. Therefore, in dynamic RWA algorithms, the use of heuristic mechanisms is

the common choice.

As was discussed above, EONs introduce a way to discretize the spectrum into smaller

units called FSs. Then, by assigning the necessary number of contiguous FSs to a connec-

tion, it is possible to stablish an end-to-end spectrum path, i.e. lightpath, to satisfy the

exact requirements of the connection. At first, this whole assignment process, may seem

to share some similarities with the aforementioned RWA problem in WDM networks. For

instance, in transparent EONs, the same spectrum portion must be provisioned in all

links along the end-to-end path (spectrum continuity constraint). Moreover, the whole

assignment process must guarantee that two or more lightpaths that share a physical link

are allocated into completely disjoint spectrum portions in that link, in what is known as

the spectrum clashing constraint. However, the fact that lightpaths in EONs have to be

provisioned into contiguous spectrum portions, due to the necessity to transmit several

adjacent OFDM sub-carriers to form the optical channel, makes the whole assignment

process substantially different and more difficult than in WDM networks.

The problem of assigning resources to lightpaths in an EON is known in the literature

as the Route and Spectrum Assignment (RSA) problem [CTV11, KW11]. Similar to the

RWA found in WDM networks, the RSA problem is devoted to find the most appropriate

route and spectrum portion for every optical connection that have to be set-up in the net-

work. The main difference with respect to the RWA problem is that in EONs connections

instead of requesting a number of wavelengths, they request for a contiguous number of

FSs tailored to their needs. This constraint, known as the spectrum contiguity constraint,

makes the RSA problem more difficult to solve and treat than the RWA problem, spe-

cially in scenarios with demands requesting heterogeneous sizes of contiguous spectrum

portions, i.e. number of FSs. In such circumstances, for a demand that requests S FSs,

once a particular FSs has been chosen as the first indexed slot for the demand in a par-

ticular end-to-end path, the following S − 1 FSs have to be assigned to that demand.

However, due to the heterogeneity of the sizes of the demands can happen that there is

not enough room to fit exactly the desired number of contiguous FSs. Such phenomena,

known as spectrum fragmentation, is one of the main challenges when facing the RSA

problem, specially in dynamic scenarios [MFS14]. More details about the problem and

the techniques proposed in the literature to overcome its limitations will be discussed

during Chapter 4.
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Figure 2.10: Example of modulation formats’ spectral widths.

As in the RWA problem, the RSA problem can be solved employing exact ILP formula-

tions, such as the ones presented in [KW11]. However, the mathematical representation

of the spectrum contiguity constraint requires a series of complex constraints that compli-

cate to a great extent the solution of the problem, increasing considerably the execution

times of ILP-based techniques. For this, several heuristic approaches have been proposed

in order to solve more efficiently the RSA problem in EONs. In this regard, like in the

WDM case, the problem is further divided into two sub-problems: 1) routing and 2)

spectrum assignment. For the routing sub-problem, the same techniques that have been

applied in RWA heuristic mechanisms are usually employed. As for the spectrum as-

signment sub-problem, novel assignment heuristics have been proposed in the literature

in order to match the particular challenges of the problem [ZLMM13]. However, such

two-step approaches may lead to poor results. To this end, heuristic mechanisms aiming

to attack jointly the two phases have been proposed (e.g. [WWH+11]).

As a mean to enhance the RSA problem and reflect more accurately the actual resource

assignment that happens in an EON, the RSMLA problem has been presented in the lit-

erature [KWJ11, RTPG13]. Aside from the route and the spectrum portion, the RSMLA

problem also seeks to find the most suitable modulation format to be assigned to the con-

nections in order to reach the destination node. This becomes specially important since

BV-TSPs in EONs are capable to transmit various modulation formats (e.g. SP-BPSK,

PS-QPSK, etc.) depending on the desired bit-rate and the distance between source and

destination. Because different modulation formats may occupy different spectral widths

(see Figure 2.10) and, as a consequence, different number of FSs, the choice of the mod-

ulation format impacts directly in the overall spectrum occupation of the network. For

this reason, in order to ensure that all lightpaths in a EON are properly allocated, the

choice of the modulation format arises of paramount importance. Nevertheless, such se-

lection adds another dimension on the whole assignment aspect, increasing even more the

complexity of the problem.

2.4 Energy efficient optical infrastructures

Energy-efficiency has been widely recognized as an important target in the management of

optical WDM networks. As the traffic on Internet grows, it is forecast that in three years
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Figure 2.11: Overall IP traffic growth forecast [CIS]

from now, the global IP traffic will increase almost twofold (see Figure 2.11). Looking

at today’s optical networks, access networks represent around 70% of the overall power

consumption of telecommunications networks, while core networks represent about 15%

of it. However due to this traffic growth, the power consumption in telecommunications

networks will increase almost threefold by 2017 [HBF+11], with access and core networks

accounting for around 38% and 42% of such power consumption, respectively [LKWG11].

Although WDM-based core optical networks have helped reducing the energy consump-

tion in telecommunications networks by allowing large amounts of traffic to bypass core

routers through optical switching, due to the said forecasts it becomes crucial to reduce

the energy consumption in core networks for the future optical network infrastructures.

Nevertheless, the energy-efficient optical network is a fairly new concept, which have been

investigated during the recent years, becoming a hot topic among the research community

in optical networks. The energy efficiency in optical networks can be addressed roughly in

two levels: components and network [JZZ+14]. At the component level, highly integrated

optical components as well as energy efficient transmission systems as a whole can help

on reducing the energy consumption substantially. On the other hand, energy-efficient

resource assignment mechanisms and green routing algorithms, among other strategies,

are being investigated in order to reduce the energy consumption at the network level.

Due to the network size increase, fostered by the growth of the traffic, it becomes

more and more important to fully exploit the potential of all-optical switching, spe-

cially in core networks, where the power consumption will significantly grow during the

future as commented previously. In core networks, the energy is mostly consumed in

transmission and switching equipment, resulting in huge amounts of energy consumed

[BAH+09, DLEGE12]. However, nowadays optical network infrastructures do not take
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into account the energy efficiency aspect, resulting in very power hungry optical net-

works. For this reason, many research efforts are focused on energy efficient core optical

networks.

A first approach to energy efficient optical core networks consist on the design of green

or energy-aware routing algorithms. Such routing algorithms incorporate the energy

consumption of the network equipment during the routing process so the routes and

wavelengths assigned to the connections will entail the minimum energy consumption

[MAV13, CLVM11a]. As a consequence, energy-aware routing algorithms can save large

amounts of energy when compared to traditional Shortest Path (SP)-based or non-energy-

aware algorithms. A key point on energy-aware routing algorithms is traffic grooming, in

which multiple low bit-rate requests are groomed into a high capacity lightpath. Energy-

aware traffic grooming techniques can reduce substantially the energy consumption of

connections by avoiding to power up additional equipment in the network when serving

a new incoming connection [ZX14]. For a better understanding, Figure 2.12 depicts

an example of energy savings in a core network thanks to traffic grooming. In sub-

figure 2.12.a, two previously established lightpaths from node 1 to 2 (L1) and 4 to 1

(L2), respectively, are supporting each one a connection request from the source to the

destination nodes of the lightpaths (R1 and R2). In sub-figure 2.12.b, a new connection

request from node 4 to 2 has to be established (R3). If a SP-based routing algorithm

is employed to assign resources to the connection, a new lightpath L3 will have to be

established in order to support request R3. To do so, it would be necessary to power-

up new equipment at both source and destination nodes (e.g. TSPs) as well as along

the end-to-end path (e.g. amplifiers), increasing the energy consumption of the network.

However, R3 could be served employing the already established lightpaths L1 and L2

by grooming the request sequentially in these lightpath (sub-figure 2.12.c), avoiding to

power-up extra equipment, thus, reducing the energy consumption in the network.

However, although energy-aware routing algorithms may alleviate the growth of the en-

ergy consumption in core optical networks, it is not sufficient to compensate such in-

creasing trends. In light of these, it is necessary to develop other strategies to further

reduce the energy consumption in core transport networks. A second major strategy for

reducing the energy consumption in core optical networks consists on selectively turn-

ing off network elements when they are not carrying traffic (specially during low load

periods) while maintaining the rest of the network powered on to support residual traf-

fic [CLVM11b, JMST13, RMT13]. In this regard, two main approaches are present in

the literature: 1) power off OE devices, namely TSPs and regenerators (REGs); and 2)

power off optical amplifiers in fibre links. For the first approach, as usually networks

have some degree of redundancy, it is possible to completely turn-off nodes when they

are not source or destination of some connection nor they are essential to perform bypass

function. However, such approach would entail a significant control plane burden in order

to manage the dynamic power states of the nodes according to the current traffic on the

network to efficiently save energy during low traffic periods. In a similar manner, the

second approach aims at switching off optical amplifiers on links in the network to save
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Figure 2.12: Example of energy savings thanks to traffic grooming.

energy when there is no traffic on them or it is possible to re-route the traffic flowing

through them.

Although such approaches can save large amount of energy, shutting down elements in

a core optical network may result in some side effects degrading significantly the overall

network performance, e.g. if a network node is turned-off, it may be necessary to re-route

connections to longer end-to-end routes, increasing the end-to-end delay of the connec-

tions, which may be intolerable for some kinds of traffic. Furthermore, it may happen

that it is necessary to power on again node or link equipment in order to support an

incoming connection. In such situation, the time required to boot-up the devices may

affect negatively to the set-up time of the connections, specially for real time traffic. To

overcome such limitation, the concept of sleep-enabled devices has been introduced in

the literature for both node equipment (TSPs and REGs) [MSR+11] and link equipment

[CSC11]. The basic idea behind is that optical devices can be put in a low power con-

sumption mode called sleep or idle and be turned-on in a very short time. In this way,

it is possible to compensate the long boot-up times of completely powered-off devices

and still achieve significant energy consumption reductions. Nevertheless, the impact of
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such sleep-enabled devices in the network performance has to be carefully evaluated and

dimension the network accordingly.

Lastly, a third major approach to energy efficient core optical networks would be to in-

corporate energy efficiency decisions during the network planning and design phase. For

example, in [ZCJ+12] the authors propose both exact and heuristic design approaches

for translucent optical networks considering the problem of REG placement in order to

reduce the energy consumption in such networks. Regeneration in translucent optical

networks plays a very important role towards the overall network performance, as it al-

lows to compensate the degradations in the transmission quality posed by the presence of

PLIs. In such operation, the location of regeneration sites becomes crucial, as resources

to the connections have to be assigned according to the position and availability of the

regeneration sites in order to avoid excessive degradations of the signal that would oth-

erwise render regeneration impossible and to avoid the saturation of the REGs due to

excessive traffic handling.

For this, the problem of REG placement has been studied in the literature (e.g. [MKCV10])

with the objective to provision the necessary number of REGs in the network to efec-

tively handle a given traffic matrix and at the same time reduce the capital expenditures

(CAPEX) associated to the deployment of regeneration sites. With such concept in mind,

the work presented in [ZCJ+12] aims at minimizing the energy associated in the regen-

eration operation by proposing a translucent network infrastructure that uses all-optical

2R (reamplification and reshaping) REGs to partially replace Optical-Electrical-Optical

(O-E-O) 3R (reamplification, reshaping, and retiming) REGs. Utilizing such approach,

authors reported around 60-70% energy savings when compared to traditional schemes

that do not utilize all-optical 2R REGs.

Another example of energy efficient optical network design was presented in [CTN+12],

where authors propose various mathematical models for the design of energy efficient and

cost effective Mixed Line Rate (MLR) optical transport networks. With the increase of

the amounts of traffic and their heterogeneity that core optical networks have to handle,

future optical network will no more require to support a single bit-rate on their line cards,

as in Single Line Rate (SLR) networks, but various bit-rates (e.g. 10/40/100 Gbps) to

efficiently serve all the traffic that will flow through them. Hence, the adoption of MLR-

based solutions and the associated energy-aware techniques becomes highly desirable. In

this regard, authors in [CTN+12] studied the energy savings that a MLR-based network

can achieve when compared to a SLR one when a green network design is considered.

From their results, MLR networks performs better than the SLR networks by reducing

the network wide energy consumption.
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2.5 Chapter summary

This chapter has provided a comprehensive explanation of the evolution of current opti-

cal network infrastructures and its limitations as well as the key points in order to real-

ize the future optical network infrastructures. From legacy static networks to dynamic

ASON-based networks, optical networks have undergone through significant technological

advances, becoming the de-facto choice for long-haul high capacity transport networks

thanks to their cost and power consumption effectiveness as well as the almost unlimited

bandwidth per fibre link when compared to electrical-based networks. However, despite

this numerous advances, traditional WDM optical network infrastructures have reached

their limits when facing the constant growth of the traffic they have to handle due to the

highly dynamic patterns as well as their heterogeneous nature.

In light of this, the IaaS paradigm and more specifically the concept of VONs arise as a

very promising candidate to overcome such limitations. VONs will allow to dynamically

adjust the network characteristics (topology, capacity, etc.) in order to fit the specific

requirements of the services that will run on top of them. Additionally, they become a

very cost effective solution for external operators in order to develop their own business

models without having to deploy expensive physical infrastructures.

While VONs will allow for a more customizable network environment, it is still necessary

to undergo through more advances in terms of bandwidth provisioning to cope with the

explosive growth of future networks. To this end, EONs have been introduced as a poten-

tial solution for short- to mid-term transport optical network in terms of more flexibility

in the spectrum assignment. Nevertheless, despite the new degree of freedom introduced

by EONs, they also pose several challenges, both in terms of hardware development as

well as in terms of resource assignment, that will have to be carefully addressed to fully

realize their promises.

A third major point for future optical network infrastructures relates to the cost associated

with their energy consumption, since the growth of traffic on transport network will

increase several times their associated energy consumption. In view of this, section 2.4 has

reviewed the main advances for energy efficient optical network infrastructures, ranging

from green routing algorithms to energy-efficient network design techniques.

The following chapters will address particular challenges on the three main topics that

constitute the present thesis, namely VONs, EONs and energy efficient optical networks.





Chapter 3

Virtual optical network embedding

This chapter focuses on the VON embedding problem. The efficient embedding of VNs

into the actual physical substrate is a critical phase inside the IaaS paradigm. An efficient

VN embedding allows the PIP to use better its physical resources, maximizing the number

of VNs that can be embedded into it and, as a consequence, the revenues. Additionally,

it is a very important aspect in order to satisfy the requirements of all VNs (e.g. in terms

of link capacity) and provide a correct isolation between the virtual instances so they do

not interfere with each other and can be properly managed by the VIPs leasing them.

For this, the first section presents the concept of VON embedding, hereafter referred as

the Virtual Optical Network Allocation (VONA) problem, and the main challenges that

the optical medium poses when performing the embedding operation. This leads to con-

clude that new embedding techniques have to be defined according to the properties of

the optical substrate and the characteristics of the VNs to be allocated. To this end,

sections 2 and 3 propose various mechanisms to optimally perform the embedding of the

VONs in a static scenario. Specifically, section 2 studies how to optimally tackle the

VONA problem depending on the nature of the connection services (i.e. lightpaths) that

will be provisioned over the VNs. In this sense, it differentiates between opaque and

transparent VONs and provides ILP formulations to optimally embed them in an optical

network substrate. However, as already mentioned during Chapter 2, in order to provide

VONs that are efficient in the use of the available spectrum, an equally efficient network

substrate has to be used. To this end, EONs have been introduced as a very promising

candidate to enable the provisioning of spectrum efficient VONs. Nevertheless, the dif-

ferent nature of EONs when compared to traditional WSONs requires that embedding

algorithms specially tailored to the new characteristics of the physical substrate have to

be defined. To this end, section 3 studies of to efficiently embed VONs when an EON

physical substrate is considered. After having studied how to optimally tackle the VONA

problem in a static scenario, section 4 deals with the allocation of VONs in an online

environment. The main trait of such online scenario is that full knowledge of the VONs

to be embedded in the physical substrate is not possible, since demand requests arrive

29
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at random. Hence, specific algorithms for this kind of scenario have to be proposed to

optimally tackle the VONA problem under such traffic uncertainty conditions.

Moreover, new emerging paradigms, such as Cloud Computing, require that not only VIs

composed of optical resources have to be considered but VIs encompassing both optical

and IT resources (e.g. memory, storage, etc.). In such situation, the goal is not to

only provide connectivity services between geographically distant nodes but also provide

computational and storage capabilities so a greater range of services (e.g. online storage,

video streaming, etc.) can be efficiently provided. To this end, section 5 studies the

challenges that the composition of hybrid VIs, composed of both optical and IT resources,

poses and provides mechanisms to optimally perform the embedding of such VIs into the

physical substrate. Finally, the last section summarize the main achievements of the

presented chapter.

3.1 Concept and challenges

In a virtualized network environment, the problem of how to map the virtual resources to

the physical ones, that is, how to associate a virtual resource to a subset of physical devices

into the network substrate is known as the Virtual Network Embedding (VNE) problem

[CB09, FBB+13]. An optimal VNE plays a capital role in a virtualized network scenario,

allowing to maximize the number of VNs that can be allocated in top of a physical network

substrate or minimize the amount of resources that are needed to satisfy a specific VN

demand set. For these reasons, multiple ILP- or heuristic-based mechanisms have been

proposed in the literature so as to provide optimized ways to perform the VNE (e.g.

[MSK+13, SS14, HWC13]).

Concerning the embedding process, the VNE problem can be sub-divided into two sub-

problems, namely the node and link mapping sub-problems. As its name suggests, the

node mapping sub-problem studies how to map the virtual nodes of a demand into a subset

of physical nodes of the underlying substrate, while the link mapping problem studies

the proper way of mapping the virtual links between virtual nodes into the physical

network. Traditionally, both sub-problems have been addressed separately, such as in

[ZA06]. Firstly, the node mapping is tackled, mapping the virtual nodes as if they where

isolated entities and not considering the implications on the network resources. Once

the node mapping has been done, the link mapping is performed. In this regard, it

provides the necessary path between the already chosen end points (i.e. virtual nodes) so

as to guarantee connectivity between them along with the desired bandwidth. Figure 3.1

depicts an example of the whole embedding process, considering that both sub-problems

are tackled separately. Note, however, that separating the VNE problem into two sub-

problems (node and link mapping) may result into sub-optimal solutions, since the node

mapping is performed without taking into considerations the impact of the virtual node

location into the network resources. Indeed, as the link mapping depends on the decision
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Figure 3.1: Example of VNE in two phases: a) a VN request has to be allocated
in the physical substrate; b) the node mapping is performed; c) the link mapping is

performed according to the decisions made on the previous phase.

made during the node mapping phase, it may happen that the actual link mapping gets

trapped into a local optima in the solution space, hence an overall absolute optimal

solution is not possible to be achieved.

To overcome such limitation, more refined studies propose that both stages should be

attacked simultaneously or in a coordinated way to increase the optimality of the mapping

solution [CRB09, LXMT11]. In this way, a true optimal solution can be achieved since the

node mapping does not trap the link mapping phase into a local optima. Figure 3.2 depicts

an example of a joint node and link VNE. Nevertheless, such joint approach complicates

to a large extent the whole embedding process, becoming an NP-hard problem.

Various aspects of the VNE problem have been studied in the literature. For instance, a

very important aspect relates to the resilience and survivability of the VNs. That is, in

the event of a failure in the physical substrate, all the affected VNs (i.e. all VNs that had

some virtual resource mapped over the physical resource that experienced the failure)

must be remapped or find alternative locations for the affected virtual resources. For

instance, authors in [RB13] presented a fast heuristic mechanism to do the re-routing of

the virtual links in the case of a failure in a physical link, so the bandwidth of the virtual

links can be guaranteed. Also related to this aspect, authors in [JYK13] presented a
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Figure 3.2: Example of joint VNE: a) a VN request has to be allocated in the physical
substrate; b) the joint node and link mapping is performed.

VNE mechanism based on p-cycles in order to guarantee a full protection scheme against

physical failures.

Another widely researched topic regarding the VNE problem relates to the energy ef-

ficiency of the VNs (e.g. [BHD+12, ZSN+12, SZX+14, FBdM13]). Since usually VNs

encompass a geographically distributed area, the composed virtual links may be mapped

to long physical paths. Such long physical paths can result in a high energy consump-

tion since multiple routers (i.e. nodes) are traversed along the end-to-end path between

virtual link end points. For this, in order to reduce the OPEX of the VNs, it becomes of

paramount importance to incorporate energy parameters into the VNE process or design

energy-aware embedding mechanisms so as to compose energy efficient VNs.

However, despite the vast research done regarding the topic of VNE, the majority of

work has focused on Layer 2/3 electrical networks (e.g. IP and Ethernet networks)

due to the maturity of virtualization technologies on this kind of networks. On the

other hand, since virtualization techniques are still in a very early development stage

for optical networks, the VNE problem in optics (the aforementioned VONA problem) is

still under research and huge efforts are devoted into various aspects of the problem (e.g.

[LBDM12, HNS13, VMCM13]).

When focusing on the VONA problem, one major difference respect to the VNE em-

bedding present in electric networks comes from the fact that to provision the virtual

links of the VONs, it is necessary to provision a lightpath between the end nodes, hence

the well-known RWA problem appears on the arena. This makes the embedding prob-

lem much more difficult since it is not only necessary to find a path between the end

points of a virtual link but also, in the absence of regeneration or wavelength conver-

sion, the same wavelength must be provisioned along the virtual link. This is known as
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the wavelength continuity constraint and must be respected when placing VONs into an

all-optical network substrate. Additionally, depending on the kind of connectivity ser-

vices provided over a VON (opaque, translucent or transparent), such RWA may differ

notoriously on the case, complicating further the VONA problem [PPSJ12]. Another

critical point when tackling the VONA process comes from the so called PLI limitations

posed by the physical optical medium. Indeed, PLIs are well-known in the literature so

as a limiting factor on optical networks [SK12, SS09, SSS11], challenging the composi-

tion of transparent services. For this, it is necessary to account for the PLI limitations

when embedding VONs into the physical substrate so as to avoid any service degradation

[PNA+11, PNS13, FDM+12].

Moreover, although algorithms for the VNE problem on electric networks are normally

technology-agnostic, since the composition of the virtual links only requires to provision

a physical path and some bit-rate in the said path, the VONA problem becomes strongly

technology dependent, since the way a lightpath is represented in the embedding algo-

rithm differs substantially depending on the technology employed at the physical layer.

For instance, and following the trend imposed by EONs, it becomes increasingly interest-

ing to provision VONs in network substrates more efficient in the use of the spectrum.

However, in such type of networks the RWA problem present in the VONA problem

becomes replaced by the RSA problem, which is known to be even more hard to solve

than the RWA problem found in traditional WSONs. Indeed, any embedding algorithm

that pursues to allocate VONs in such a EON-based physical substrate must account for

the particularities posed by this type of technology (e.g. [GZWZ13, ZSBP13, GZ14]).

Finally, following the trend imposed by new emerging paradigms such as Cloud Com-

puting or Virtual Data Center (VDC), the composition of hybrid VIs with both optical

and IT resources becomes highly desirable and much efforts are being devoted into the

design of embedding algorithms so as to efficiently addres the VONA problem consider-

ing the co-existence of optical network resources and geographically distributed IT sites

[SS14, ATG11].

With all these discussions, the following sections are devoted to the study of optimally

allocate VONs considering various network technologies and operation scenarios.

3.2 Transparent vs opaque virtual optical networks

As mentioned during the previous section, the VONA problem includes a RWA problem

that can differ depending on the VIP’s needs and the actual characteristics of the VON.

This section will study how the VONA problem changes depending on the nature of the

connectivity services that will be offered over the VON. In this regard, two types of VONs

are considered, namely, transparent VONs and opaque VONs. In a transparent VON,

optically transparent end-to-end services are intended to be provisioned over the VON.

That is, as in a transparent physical network, the connections that are established in the
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VON must remain always in the optical domain, having the same wavelength assigned

in all virtual links that crosses. This requires the allocation of exactly the same set of

wavelengths for every virtual link as otherwise it would not be possible to guarantee the

wavelength continuity for all end-to-end path combinations. On the other hand, in an

opaque VON electronic termination capabilities are physically present at each VON node

and opaque transport services are provided from the VON viewpoint. In such a case,

there is no need to allocate the same set of wavelengths for each virtual link, but can

differ thanks to the O-E-O conversion stages.

With such definitions, this section focuses on providing mechanisms to optimally embed a

VON depending if it requires that end-to-end transparent connectivity services have to be

provisioned over the VON (transparent case) or not (opaque case). The scenario under

evaluation consists on a static scenario, where the demand set is known beforehand,

reflecting the network planning phase. In such situation, the goal is to maximize the

number of VONs that can be embedded in the limited resources available at the physical

optical substrate. To this end, ILP formulations are provided for both VONA problems,

so as to accommodate all or the maximum number of VONs from the demand set given

the limited capacity of the underlying optical network. Note, however that VONs have

to be treated as entities instead of a composition of lightpaths, which makes the VONA

problem differ from the traditional RWA problem with the objective to maximize the

number of lightpaths established. Indeed, a specific demand is accommodated if and

only if all its virtual links and nodes can be mapped over available resources. In this

section, the presented mechanisms focus on the mapping of VONs considering only the

link mapping. That is, it is assumed that the embedding (i.e. location) of the virtual

nodes into the physical substrate it is already done, only the embedding of the virtual

links into physical resources (paths and wavelengths) is required.

Additionally, for the present work, an all-optical network substrate without wavelength

conversion capabilities is assumed. That is, all virtual links must ensure the wavelength

continuity constraint, regardless if transparent or opaques VONs are intended. Moreover,

it is assumed that PLI degradations do not compromise the feasibility of the optical

channels. Very large network scenarios may require the introduction of PLI information

in both transparent and opaque VONA problems in order to ensure the feasibility of

the provisioned VONs. However, this is not considered in this work and left for further

study. Also, note that, in its current form, the presented formulations are still valid for

a wide range of transparent network scenarios. For instance, studies done by authors in

[RM11], where a quite restrictive scenario was considered (i.e., impact of both linear and

non-linear PLIs as well as the co-existence of different bit rates and modulation formats),

reveal that transparent reaches of 3000 and 1600 km are feasible for 10 and 40 Gb/s,

respectively.

After all these discussions, the exact details of both solutions for the transparent and

opaque VONA problems are depicted in the following subsections.



Chapter 3. Virtual optical network embedding 35

3.2.1 Transparent VON embedding

This subsection presents an ILP model of the transparent VONA problem called TVONA ILP.

For this, let the optical network substrate be characterized by a graph Gn = (N,E), where

N denotes the set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the set of physical

links. Let W denote the set of available wavelengths per physical link. Consider D as

the set of VON demands to be allocated over the optical network. Each demand d ∈ D,

is characterized by a graph G′d = (N ′d, E
′
d), N

′
d ⊆ N , E ′d = {(i, j), (j, i) : i, j ∈ N ′d, i 6= j}.

Let Wd denote the number of wavelengths per virtual link desired by demand d ∈ D.

Additionally, let P define the set of paths in the physical network, P e
e′ define the set of

p ∈ P associated with virtual link e′ that traverse edge e ∈ E, and P d
e′ define the set of

p ∈ P associated with virtual link e′ in demand d. The problem variables of TVONA ILP

are:

xp,wd,e′ : binary; 1 if for demand d the virtual link e′ is supported through path p and

wavelength w, 0 otherwise.

ywd : integer; minimum number of times wavelength w is used to serve demand d.

zd: binary; 1 if demand d can be satisfied, 0 otherwise.

Objective function (3.1) aims at maximizing the number of VONs to be allocated in the

underlying optical network. Constraints (3.2) are the wavelength clashing constraints,

which avoid that two virtual links are supported over the same wavelength in the same

physical link. Constraints (3.3) ensure that at most Wd different (p, w) will be assigned

to every virtual link belonging to demand d. Constraints (3.4) discriminate if wavelength

w ∈ W is being used by all virtual links in demand d. Constraints (3.5) discriminate

whether demand d is supported over the requested number of wavelengths Wd.

max
∑
d∈D

zd, s.t. (3.1)

∑
d∈D

∑
e′∈E′d

∑
p∈P e

e′

xp,wd,e′ ≤ 1,∀e ∈ E,w ∈W (3.2)

∑
p∈P d

e′

∑
w∈W

xp,wd,e′ ≤Wd, ∀d ∈ D, e′ ∈ E′d (3.3)

ywd ≤
∑
p∈P d

e′

xp,wd,e′ , ∀d ∈ D, e
′ ∈ E′d, w ∈W (3.4)

zd ≤
∑
w∈W

ywd /Wd,∀d ∈ D (3.5)
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Phase 1: Preprocessing
Eliminate d ∈ D with nodes with degree greater than physical ones
BestSol = ∅
for i = 0 to i = MaxIterations and Obj(Sol) 6= |D| do

Sol = ∅; Candidate list C = ∅
Phase 2: Solution construction
C ← ∪xp,wd,e′∀d ∈ D, e′ ∈ E′

d, p ∈ P d
e′ , w ∈W

Assign cost equal to physical hops ∀c ∈ C
Ud = ∅ wavelengths already allocated to d,∀d ∈ D
while C 6= ∅ do

costmin ← min cost from C
RCL← {c ∈ C|cost(c) = costmin}
Select an element c from the RCL at random
Sol← Sol ∪ {c}
if |Ud| 6= Wd then

Ud ← Ud∪ {wavelength associated to c}
Erase from C c and candidates causing wavelength clash
if num wavelengths of e′ in Sol = Wd then

Erase from C all candidates of e′

if |Ud| = Wd then
Erase from C candidates of d with w not in Wd

for all c ∈ C do
if some elements of d are in Sol then

cost(c) = num hops
else

cost(c) = num hops × multiplicative factor

if Obj(Sol) 6= |D| then
Phase 3: Solution improvement
Temporally extract partially satisfied demands dp
for less constructed dp to more constructed do

Find combination of (p, w) that satisfies dp
if found then

Sol← Sol ∪ {dp}

if Obj(Sol) > Obj(BestSol) then
BestSol← Sol

Table 3.1: TVONA GRASP heuristic pseudo-code

As will be shown in subsection 3.2.3, the execution time of the TVONA ILP model grows

substantially up as the number of VONs in D increases. In view of this, a heuristic

for the transparent VONA problem based on the Greedy Randomized Adaptive Search

Procedures (GRASP) meta-heuristic [RR11] is presented in the following, which ensures

practical execution times even when the number of VONs in D is large. The pseudo-code

of this heuristic, called TVONA GRASP, is depicted in Table 3.1.

After some preprocessing, TVONA GRASP builds a feasible solution in phase 2, con-

sidering the same constraints as the model. The purpose of the multiplicative factor is

to assign higher costs to variables associated with demands not under construction, thus
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favoring those demands with elements already in the solution (i.e., the probability to

build full demands increases). During the evaluation of the algorithm, this factor has

been fixed to 4, which has resulted in the best accuracy in the scenarios under study.

Nonetheless, its configuration is left to the transport network owner’s discretion. Phase

3 tries to improve this solution by local search in the solution space around the solution

from phase 2. After each iteration, if a solution with a better objective value than the

overall best solution found so far is found, this solution becomes the new best solution.

At the end of the process, the best solution is returned.

3.2.2 Opaque VON embedding

This subsection presents an ILP formulation of the opaque VONA problem called OVONA ILP.

In OVONA ILP, variables ywd , unnecessary here, are suppressed along with constraints

(3.4). The rest of the formulation is almost identical to the TVONA ILP formulation.

Objective function (3.6) aims at maximizing the number of VONs to be allocated in the

underlying optical network. Constraints (3.7) are the wavelength clashing constraints,

which avoid that two virtual links are supported over the same wavelength in the same

physical link. Constraints (3.8) ensure that at most Wd different (p, w) will be assigned

to every virtual link belonging to demand d. Constraints (3.5) are slightly modified to

fit the characteristics of such an opaque scenario, now transformed into constraints (3.9),

whose purpose is to discriminate whether demand d is fully served or not.

max
∑
d∈D

zd, s.t. (3.6)

∑
d∈D

∑
e′∈E′d

∑
p∈P e

e′

xp,wd,e′ ≤ 1,∀e ∈ E,w ∈W (3.7)

∑
p∈P d

e′

∑
w∈W

xp,wd,e′ ≤Wd, ∀d ∈ D, e′ ∈ E′d (3.8)

zd ≤
∑
p∈P d

e′

∑
w∈W

xp,wd,e′/Wd,∀d ∈ D, e′ ∈ E′d (3.9)

The removal of variables ywd and constraints (3.4), ensuring that each virtual link e′ ∈ E ′d
uses the exact same subset of wavelengths in TVONA ILP, lightens OVONA ILP when

compared to its transparent counterpart. This makes OVONA ILP solvable to optimality

within a reasonable time span, as will be illustrated in the following section. Hence, no

heuristic approach has been considered as necessary to solve the opaque VONA problem.
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3.2.3 Simulation results

As mentioned in subsection 3.2.1, the TVONA ILP model becomes impracticable for

large D sizes, which motivated the proposal of the TVONA GRASP heuristic, as a way

to obtain results close to optimality but in a much shorter time. In order to highlight

the accuracy of TVONA GRASP, as well as its running times compared to the exact

TVONA ILP model, a series of simulations have been executed both of them on the 16-

Node EON core network topology as presented in Appendix A with 8 wavelengths per

physical link. In particular, |D| equal to 10, 20 and 30 has been considered, assuming

that each demand requests 1 wavelength, that is, Wd = 1,∀d ∈ D.

The generation of the demand sets for all experiments throughout this subsection follows a

2-step process. Firstly, 3 or 4 physical network nodes (with equiprobability) are randomly

selected as virtual nodes for each demand. In this way, reasonable medium-sized VONs

are obtained when compared to the underlying physical network size. Next, the selected

virtual nodes are then randomly connected using the Erdős-Rényi algorithm [CMP+10],

here slightly modified to prevent the generation of non-connected graphs. The parameter

p has been set to 0.5 in the algorithm, which leads to the generation of any connectivity

matrix with equiprobability.

For the TVONA GRASP heuristic, some limitations have been imposed to restrict its

execution time while still producing good results: 1) the MaxIterations field is set to

125; 2) the number of paths associated to the virtual links of the demands is limited to 30

paths per virtual link; 3) the number of combinations to check during phase 3 is limited

to 106. Table 3.2 compares the performances of TVONA ILP and TVONA GRASP in

terms of execution time and number of successfully allocated demands. The presented

results have been averaged over 25 executions, randomly generating a new set of demands

at the beginning of each execution. The experiments have been launched on Intel Core

Duo at 3 GHz PCs with 4 GB RAM memory.

As seen, the execution times of TVONA GRASP stay largely below the ones of TVONA ILP.

This reduction is especially important as the number of offered demands increases (e.g., a

four orders of magnitude reduction is achieved for |D| = 30). Moreover, TVONA GRASP

still provides accurate results, showing relative errors between 0.46% and 6.98% in the

worst case. Note, however, that such errors represent one more demand blocked in aver-

age barely. As stated before, the execution times of OVONA ILP are much lower than

those of TVONA ILP. Indeed, additional experiments to the ones presented in Table 3.2

showed us average execution times of OVONA ILP around 14.2 s, 116.1 s and 131.2 s for

|D| = 10, |D| = 20 and |D| = 30, respectively.

Aiming to quantify the benefits of the proposed contributions for efficient VON allocation,

simpler allocation approaches have been used as benchmarks. To this end, a SP strategy

which serves the demands in D on a one-by-one basis, mapping their virtual links to

the shortest physical path that connects both endpoints, has been considered. On these
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Table 3.2: TVONA ILP vs TVONA GRASP

TVONA ILP TVONA GRASP

Time (s.) Result Time (s.) Result % Error

|D| = 10 1533.52 8.68 366.49 8.64 0.46

|D| = 20 1.64 · 106 14.48 601.67 13.96 3.59

|D| = 30 2.38 · 106 17.76 612.5 16.52 6.98

physical paths, a First Fit (FF) wavelength selection is performed. Note, however, that

in the transparent case, the wavelength selection in the virtual link firstly allocated for a

demand constrains those selections in the remainder ones.

Figure 3.3.a shows the number of allocated demands as a function of the demand set size in

both transparent and opaque VON scenarios. Due to the impracticality of TVONA ILP

for large D sizes, TVONA GRASP has been used in the transparent case. The presented

results have been averaged over 100 executions with newly generated demand sets per

execution, which provides us with statistically relevant results. Again, Wd = 1,∀d ∈ D.

As observed, both OVONA ILP and TVONA GRASP outperform their shortest-path-

based counterparts, showing more pronounced improvements as the number of offered

demands increases. In the transparent case, for example, while a 12.8% improvement

is achieved for |D| = 10, this one raises up to around 30% for |D| = 30. Even more

pronounced improvements are observed in the opaque case, ranging from 9.3% for |D| =
10 to 42.8% for |D| = 30. This is due to the fact that more flexibility is given to the VON

allocation in the opaque case, as different sets of wavelengths can be used to allocate each

VON virtual link.

So far, it has been shown that TVONA ILP is strongly affected by D size. To complete

the study, it has been analyzed how TVONA ILP and OVONA ILP execution times scale

as Wd increases. To this goal, |D| = 10 have been set and 100 executions of both models

have been launched, with newly generated demand sets per execution. Interestingly,

the obtained results reveal that neither TVONA ILP nor OVONA ILP show noticeable

scalability issues in this regard. For example, while the execution times of TVONA ILP

remain around 1530 s for Wd = 1, they even decrease down to 52.6 s and 43 s for Wd

equal to 6 and 12, respectively. In the case of OVONA ILP, execution times remain in the

same order of magnitude for all Wd values (e.g., 14.2 s, 42.3 s and 31.7 s for Wd equal to

1, 6 and 12, respectively). Figure 3.3.b shows the number of VONs finally allocated in all

experimented scenarios. As expected, both models present similar behavior in this sense,

due to the resource scarcity in the optical network substrate as each VON requests more

and more resources. A noteworthy point in the graph appears when Wd changes from

8 to 9. Indeed, having 8 wavelengths per physical link, virtual links must unavoidably

be mapped over multiple physical paths between the virtual link endpoints, which limits

to a large extent the number of VONs that can be allocated over the optical network

substrate.
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a) b)

Figure 3.3: Simulation results: a) Average number of allocated demands as a function
of the offered demands set size; b) Average number of allocated demands as a function

of the number of wavelengths/demand.

3.3 VON embedding in EONs

The previous section analyzed the implications on the VON embedding process depending

on the nature of the connectivity services that are intended to be offered on top of them.

To this end, the transparent and opaque VONA cases have been studied and mechanisms

to optimally embed the VONs in such scenarios have been provided. On the other hand,

another aspect that arises of paramount importance when tackling the VONA problem

relates to the technology used by the underlying physical network substrate. Precisely, the

whole embedding process depends strongly on the characteristics of the physical substrate

when mapping the virtual resources to physical ones. For these, embedding mechanisms

specially tailored for the current technology used in the physical network are needed.

Additionally, different physical technologies may impact on the number of VONs that

can be correctly allocated on top of the physical substrate. For example, if a more

efficient physical technology in terms of spectrum usage is employed, the number of

VONs that can be allocated would be superior when compared to another technology

where the spectrum utilization is worse. Moreover, as already mentioned during Chapter

2 an efficient physical substrate is of capital importance in order to realize VONs flexible

enough to accommodate efficiently the services intended to be allocated on top of them.

To this end, two alternatives enabling optical transport technologies have been considered

as cases of study for determining the impact of the underlying optical network substrate

technology on the number of VONs that can be allocated on top: 1) wavelength switching

following the fixed-size spectrum grid defined by the ITU, where the minimum granularity

for allocating a connection is a full wavelength [G.694.1]; and 2) spectrum switching,
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following a flexible spectrum grid as proposed in the EON architecture [JTK+09]. In

such a case, demands request a portion of spectrum, equivalent to a number of FS. In

order to optimally perform the embedding of the VONs in for both said technologies, ILP

formulations are provided with the goal to maximize the number of VONs that can be

allocated given a demand set and the available resources at the physical substrate.

With this, let the optical network substrate be characterized by a graph Gn = (N,E),

where N denotes the set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the set of

physical links. Consider D as the set of VON demands to be allocated over the optical

network. Each demand d ∈ D, is characterized by a graph G′d = (N ′d, E
′
d), N

′
d ⊆ N ,

E ′d = {(i, j), (j, i) : i, j ∈ N ′d, i 6= j}. Also, let P define the set of paths in the physical

network, P e
e′ define the set of p ∈ P associated with virtual link e′ that traverse edge

e ∈ E, and P d
e′ define the set of p ∈ P associated with virtual link e′ in demand d.

As in section 3.2, the VONA problem under study consists in accommodating all or

the maximum number of VONs from D, considering that a specific demand d ∈ D is

accommodated if and only if all its virtual links in E ′d can be mapped over available

resources. Note that also in this case the node mapping is assumed to be already done

(i.e. the correspondence between virtual and physical nodes is know beforehand) and

only the link mapping is performed.

Additionally, opaque transport services are assumed to be provisioned over the VONs,

assuming that every node in the VON has electronic termination capabilities, hence it is

not necessary to provision the same spectrum (wavelength or FSs) in every virtual link.

Moreover, an all-optical network substrate without wavelength/spectrum conversion ca-

pabilities is assumed, so that every virtual link of the VON must ensure the wavelength-

/spectrum continuity constraint. Finally, it is assumed that in the wavelength switching

case, all wavelength requested by a virtual link must be routed over the same physical

path. Such assumption is to avoid delay problems when sending data through different

wavelength in the same link that would require to perform some reordering at the end of

the virtual link so as to compensate the differential delay among the paths.

With such assumptions, the following subsections present the proposed ILP formulations

for both scenarios under study.

3.3.1 Fixed-grid VON embedding

This subsection presents an ILP model of the fixed-size grid VONA problem, hereafter

referred as Fixed-VONA. For this, let W denote the set of available wavelengths per

physical link and Wd denote the number of wavelengths per virtual link desired by demand

d ∈ D. The presented formulation is based on the ILP formulation for the opaque VONA

problem discussed during subsection 3.2.2, here slightly modified to fit the requirements

of the problem under study. The problem variables of Fixed-VONA are:
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xp,wd,e′ : binary; 1 if for demand d the virtual link e′ is supported through path p and

wavelength w, 0 otherwise.

ypd,e′ : binary; 1 if in demand d all the wavelengths requested by virtual link e′ use the

same path p, 0 otherwise.

zd: binary; 1 if demand d can be satisfied, 0 otherwise.

The ILP formulation is stated below:

max
∑
d∈D

αdzd, s.t. (3.10)

∑
d∈D

∑
e′∈E′d

∑
p∈P e

e′

xp,wd,e′ ≤ 1,∀e ∈ E,w ∈W (3.11)

∑
p∈P d

e′

∑
w∈W

xp,wd,e′ ≤Wd, ∀d ∈ D, e′ ∈ E′d (3.12)

ypd,e′ ≤
1

Wd

∑
w∈W

xp,wd,e′ , ∀d ∈ D, e
′ ∈ E′d, p ∈ P de′ (3.13)

zd ≤
1

|E′d|
∑
e′∈E′d

∑
p∈P d

e′

ypd,e′ ,∀d ∈ D (3.14)

Objective function (3.10) aims at maximizing the number of VONs to be allocated in the

underlying optical network, where factors αd are pondering factors used to put more or less

weight in specific demands according to the network operator policies. Constraints (3.11)

are the wavelength clashing constraints, avoiding that two virtual links are supported

over the same wavelength in the same physical link. Constraints (3.12) ensure that at

most Wd different wavelengths are assigned to every virtual link belonging to demand

d. Constraints (3.13) ensure that every wavelength requested by virtual link e′ is routed

through the same path. Such constraints are adopted to avoid packet reordering problems

that might appear at destination when sending data over different paths with different

physical lengths and, thus, different end-to-end delays. Constraints (3.14) discriminate

whether demand d is satisfied or not.

3.3.2 Flex-grid VON embedding

As explained during Chapter 2, EONs allow to efficiently serve low data-rate sub-wavelength

transmissions and ultra-high capacity super-wavelength transmissions onto the available

network spectral resources, but poses new challenges compared to the classical RWA

problem applicable to WSONs. Instead of wavelengths, a contiguous spectrum portion

has to be allocated in flexible optical networks. Moreover, given a lack of spectrum con-

version capabilities in the network, the assigned spectrum portion must show a continuity
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between the remote endpoints of the incoming connection requests (i.e., VON neighbour-

ing nodes in this work). Both constraints, namely, spectrum contiguity and continuity

constraints, must be ensured by the RSA algorithm in the network. Since the VONA

problem includes a RWA problem, it is necessary to adapt the formulation proposed in the

previous subsection so as to fit the needs of the RSA problem present when embedding

VONs in top of an EON.

In most works related to RSA, such as in [WCP11, KW11], it is assumed that the usable

bandwidth of an optical fiber can be discretized into multiple FSs and so, the bandwidth

requested by a demand can be converted into a number of FSs. Specifically, the authors

in [KW11] proposed an ILP formulation for EONs targeting at the minimization of the

number of FSs that must be provisioned per fiber link in order to serve the entire set of

demands offered to the network. In contrast to this, the presented formulation in this

subsection also depart, as in Fixed-VONA, from a capacitated optical network substrate,

with a number of FSs per link instead of wavelengths, where it aims at maximizing

the number of VONs that can be allocated. Hence, the ILP model for the flexible grid

problem, called Flex-VONA, becomes a modification of the formulation presented in

[KW11]. The definitions for the paths sets already presented are the same here. Besides,

we define F = {f1, f2, ..., f|F |} as the ordered set of available FSs per physical link and Fd
as the number of FSs per virtual link desired by demand d ∈ D. With this, the problem

variables of Flex-VONA are:

xp,fd,e′ : binary; 1 if FS f in path p is selected to be the lowest indexed slot assigned to

virtual link e′ in demand d, 0 otherwise.

yp,fd,e′ : binary; 1 if FS f in path p is assigned to virtual link e′ in demand d, 0 otherwise.

zd: binary; 1 if demand d can be satisfied, 0 otherwise.

The ILP formulation is stated below:

max
∑
d∈D

αdzd, s.t. (3.15)

∑
p∈P d

e′

∑
f∈F

xp,fd,e′ ≤ 1,∀d ∈ D, e′ ∈ E′d (3.16)

xp,fid,e′ ≤ y
p,fj
d,e′ , ∀d ∈ D, e′ ∈ E′d, p ∈ P de′ ,

fi, fj ∈ F, i = 1, ..., |F | − Fd + 1,

j = i, ..., i+ Fd − 1

(3.17)

xp,fid,e′ = 0, ∀d ∈ D, e′ ∈ E′d, p ∈ P de′ ,
fi ∈ F, i = |F | − Fd + 2, ..., |F |

(3.18)

∑
d∈D

∑
e′∈E′d

∑
p∈P e

e′

yp,fd,e′ ≤ 1, ∀e ∈ E, f ∈ F (3.19)
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∑
p∈P d

e′

∑
f∈F

yp,fd,e′ ≤ Fd, ∀d ∈ D, e
′ ∈ E′d (3.20)

zd ≤
1

|E′d|
∑
e′∈E′d

∑
p∈P d

e′

∑
f∈F

xp,fd,e′ ,∀d ∈ D (3.21)

Objective function (3.15) seeks to maximize the number of VONs to be allocated in the

underlying optical network. Factors αd have the same role as before. Constraints (3.16)

serve the purpose of selecting for every virtual link e′ ∈ E ′d a unique path from the

candidate paths set and a FS to be the lowest indexed slot assigned to the virtual link.

Constraints (3.17) are the contiguous FS assignment constraints. If slot fi is selected as

the lowest indexed slot for virtual link e′, the consecutive Fd− 1 slots should be assigned

to this virtual link. Constraints (3.18) ensure that any FS selection option will have

enough space in the frequency spectrum, if chosen. Constraints (3.19) are the spectrum

clashing constraints, avoiding that two virtual links are supported over the same FS in the

same physical link. Constraints (3.20) ensure that at most Fd different FSs are assigned

to every virtual link of demand d. Constraints (3.21) discriminate whether demand d is

satisfied or not.

3.3.3 Simulation results

To analyze the impact of the underlying physical technology used by the substrate net-

work on the number of VONs that can be allocated, a series of simulations have been

executed using both Fixed-VONA and Flex-VONA formulations. The simulations have

been executed on the 16-Node EON core network topology as presented in Appendix A,

assuming that every physical link has a usable bandwidth of 400 GHz. In the fixed-size

grid scenario, following a grid with a 50 GHz channel spacing, it results in 8 wavelengths

per link; in the flexible grid scenario, considering a FS width of 6.25 GHz, it results in

64 FS per link. In particular, |D| sizes from 5 to 25, in steps of 5, have been considered,

assuming for both models that all factors αd = 1, that is, regardless of its size or the

spectral resources demanded, all VONs are treated equally. Moreover, the number of

candidate paths per virtual link has been fixed to the first 6 shortest paths using the

distance in hops as the metric, so as to avoid excessive execution times for the models.

Although the presented results may not match the optimal ones in some occasions, the

presented formulations are still valid and the absolute optimal could be obtained if the

whole set of candidate paths per virtual link is considered.

The generation of the demand sets for all experiments throughout this section follows a

3-step process. Firstly, 3 or 4 physical network nodes (with equiprobability) are randomly

selected as virtual nodes for each demand. In this way, reasonable medium-sized VONs

are obtained when compared to the underlying physical network size. Next, the selected

virtual nodes are then randomly connected using the Erdős-Rényi algorithm, here slightly

modified to prevent the generation of non connected graphs (any connected connectivity
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Table 3.3: Complexity comparison of the models

Fixed-VONA Flex-VONA

Variables Constraints Time (s.) Variables Constraints Time (s.)

|D| = 5 840 289 0.272 13440 53760 2.37

|D| = 15 2520 499 3.28 40320 161280 1.25 · 104

|D| = 25 4200 709 18.03 67200 268800 7.29 · 104

matrix is generated with equiprobability). Finally, the bandwidth requested by the de-

mand in GHz is selected from the set {25, 50, 100} with probabilities of 0.4, 0.4 and 0.2,

respectively. In the fixed-size grid scenario such bandwidth requests are translated to 1, 1

and 2 wavelengths. In the flexible grid scenario they are equivalent to 4, 8 and 16 FSs. It

is assumed that any guard band needed by the physical equipment to perform correctly

the switching between demands is included in the bandwidth requested by them.

From the assumptions above, one can conclude that the complexity of both models

is closely related to the size of the set of candidate paths for the virtual links. In

more detail, in the Fixed-VONA model, the number of decision variables is in the or-

der of O(|D||Ē ′d||P̄ d
e′ ||W |) and the number of constraints is in the order of O(|E||W | +

|D||Ē ′d||P̄ d
e′ |), being |Ē ′d| the average number of virtual links per demand, and |P̄ d

e′| the

average number of candidate paths per virtual link. It can be seen that the main contri-

butions to the complexity of Fixed-VONA are the wavelength clashing constraints (3.11)

and the unique path constraints (3.13). In the Flex-VONA model, the number of deci-

sion variables is in the order of O(2|D||Ē ′d||P̄ d
e′ ||F |) and the number of constraints is in

the order of O(|D||Ē ′d||P̄ d
e′||F ||F̄d|), being |F̄d| the average number of FSs requested by

the demands. Therefore, the main contribution to the complexity of Flex-VONA is the

large number of FSs in some network scenarios, resulting in a huge number of contiguity

constraints (3.17).

To exemplify the complexity of both formulations, Table 3.3 displays the value of these

expressions for the scenario considered in the executions plus the average execution time

of both models. The results shown throughout this section have been averaged over 100

executions, randomly generating a new set of demands at the beginning of each execution.

The experiments have been launched on Intel Core2 Quad at 2.66 GHz PCs with 4 GB

RAM memory. The optimization software used for all executions is IBM ILOG CPLEX

Optimizer v.12.2.

Table 3.3 shows that the complexity of Flex-VONA, in terms of number of variables

and constraints, is substantially greater than the one of Fixed-VONA. This comes from

the fact that the number of FSs in the flexible grid scenario is substantially larger than

the number of wavelengths in the fixed-size grid scenario. Besides this, the spectrum

contiguity constraints adds a considerable complexity to the problem. Focusing on the

execution times of Flex-VONA, they notoriously increase with the size of D. Hence,
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Figure 3.4: Blocking probability as a function of the size of the demand set.

an heuristic for the flexible grid scenario might be necessary when dealing with large

scenarios as the the execution of the exact ILP formulation becomes impractical. The

study and development of an heuristic for the flexible grid scenario is left for future work.

As for the results obtained through the executions of both models, Figure 3.4 shows

the Blocking Probability (BP) of the demands as a function of the size of the demand

set. It can be observed that the flexible grid scenario provides a lower BP figure (i.e.

allocates a larger number of VONs) than the fixed-size grid scenario, being the difference

more notorious as |D| increases (e.g., a difference in BP of around 1.1% for |D| = 10 is

observed while a difference of around 8% is observed for |D| = 20).

This capacity of being able of allocating a larger number of VONs in the flexible grid

scenario is due the fact that its granularity is more finner than the fixed-grid scenario’s

granularity, making it possible to adjust more to the bandwidth needs of the demands.

Focusing on the traffic profile considered for the experiments, for the demands requesting

25 GHz, the flexible grid scenario allocates exactly 25 GHz of spectrum to these demands,

while in the fixed-size grid scenario, due its coarser granularity, it allocates 50 GHz of

spectrum to these demands, adding an overhead of 100%. The capacity of the flexible

grid scenario to allocate more VONs than the fixed-size grid could be potentially greater

for traffic profiles where the disparity between the requested bandwidth by the demands

and the channel spacing in the fixed-size grid scenario is big, either for sub-wavelength

or super-wavelength traffic demands.

3.4 Online VON embedding

The previous sections studied various aspects of the VONA problem in a static, also called

offline, scenario. That is, given a demand set, the objective is to optimally embed the

VONs in the demand set considering that demands are permanent, with very long services
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times, and the goal is to maximize the number of requests that can be allocated into the

physical substrate given the limited resources of it. On the other hand, in an online

(dynamic) scenario, demands are not known in advance but they arrive dynamically

at the network. Such limited knowledge makes the previously presented mechanisms

unsuitable for their use in a dynamic scenario, since they require full knowledge of the

demand set in order to provide an optimal solution. Moreover, since VON requests arrive

dynamically at the network one by one, it is not possible to provide an overall optimal

solution since the available information only concerns about the request to be served and

the status of the network, but any information regarding future demands is unknown.

Additionally, a critical point in a dynamic scenario is the service time of the demands;

it is required to serve the demands as soon as they arrive, with reasonable delays, so the

techniques employed in a static scenario are not suitable due to its high execution times.

For all these reasons, it is necessary to develop suitable techniques in order to efficiently

allocate VON requests in a dynamic scenario.

Looking at the literature regarding the problem of VNE in dynamic scenarios, a common

strategy is to try to embed the VNs in a way that will favor the embedding of future

demands [GZWZ13, XYWD13, MSK+13]. Since knowledge about the demands to come

is not possible, a way to realize such approach consists on balancing the use of the

network resources (e.g. [MSK+13]). In this way, the chance that future VN requests

find enough free resources increase and, as a consequence, the acceptance ratio of the

requests. Note, however, that an excessive load balancing may spread too much the

VN requests in the network, so simultaneous saturation of some parts of the network

may happen. Additionally, as demands are served on the fly, sub-optimal solution when

embedding a VN request are found. This leads to a very inefficient use of the physical

resources. In order to obtain a better resource usage of the physical resources, bulk

connection provisioning has been proposed in the literature [ACMW12, KPV+09]. In

bulk connection provisioning, connections are served in batches after a desired batch size

has been reached or a timeout has expired in contrast with a per-connection provisioning,

where demands are served one by one when they arrive. With such approach it is possible

to increase the efficiency of the use of network resources in a dynamic network scenario.

With such discussion, this section focuses on the dynamic scenario in the context of VONs.

In this regard, it is assumed that VON demands arrive following a dynamic traffic profile

at a physical substrate network with limited resources. The aim in such scenario, as it has

been said before, is to embed the VONs in a manner that will favour the embedding of

future incoming demands. To this end, an ILP formulation whose goal is to balance the

load of the underlying physical resources is presented, with the addition that demands

may be served in batches to increase the optimality of the mapping solution provided by

the ILP formulation as commented before. In this sense, the objective of the presented

formulation is dual: maximize the number of successfully embedded VONs inside the

batch while at the same time balance the load of the physical resources. Opaque VONs

are assumed throughout this section. Additionally, the solution presented focuses on the

link mapping sub-problem. That is, it is assumed that the node mapping is already given.
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Let the optical network substrate be characterized by a graph Gn = (N,E), where N

denotes the set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the set of physical links.

Consider D as the batch of VON demands to be allocated over the optical network. Each

demand d ∈ D, is characterized by a graph G′d = (N ′d, E
′
d), where N ′d denotes the set

of virtual nodes and E ′d = {(i, j), (j, i) : i, j ∈ N ′d, i 6= j} the set of virtual links. Let

W denote the set of available wavelengths per physical link and Wd denote the number

of wavelengths per virtual link desired by demand d ∈ D. Moreover, let P define the

set of paths in the physical network, P d
e′ ⊆ P the set of candidate paths for virtual link

e′ in demand d and P e
e′ ⊆ P the set of candidate paths for virtual link e′ that traverse

physical link e ∈ E. Additionally, let Rp denote the residual bandwidth of physical

path p, being the residual bandwidth the number of wavelength with continuity between

source and destination of the path. Such parameter will be used to balance the mapping

of virtual links in the physical substrate. The strategy followed in this regard is to favor

physical paths that have higher values of Rp when embedding the VONs. In this way,

the saturation of the physical links is avoided, hence balancing the load in the network.

Finally, let W u
p define the set of wavelength that are already in use in path p. It is also

assumed that physical nodes have no limitations in the number of TSPs that are using.

With such definitions, the problem variables are:

xp,wd,e′ : binary; 1 if virtual link e′ in demand d is mapped over physical path p and wave-

length w, 0 otherwise.

ypd,e′ : binary; 1 if virtual link e′ in demand d is exclusively mapped over physical path p,

0 otherwise.

zd: binary; 1 if demand d is successfully mapped, 0 otherwise.

The ILP formulation is stated below:

max α
1

|D|
∑
d∈D

zd + β
1

|D|
1

|W |
∑
d∈D

1

|E′d|
∑
e′∈E′d

1

|P de′ |
∑
p∈P d

e′

Rp
∑
w∈W

xp,wd,e′ , s.t. (3.22)

∑
p∈P d

e′

∑
w∈W

xp,wd,e′ ≤Wd, ∀d ∈ D, e′ ∈ E′d (3.23)

∑
d∈D

∑
e′∈E′d

∑
p∈P e

e′

xp,wd,e′ ≤ 1, ∀d ∈ D, e ∈ E,w ∈W (3.24)

xp,wd,e′ = 0,∀d ∈ D, e′ ∈ E′d, p ∈ P de′ , w ∈W p
u (3.25)

ypd,e′ ≤
1

|Wd|
∑
w∈W

xp,wd,e′ ,∀d ∈ D, e
′ ∈ E′d, p ∈ P de′ (3.26)
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zd ≤
1

|E′d|
∑
e′∈E′d

∑
p∈P d

e′

ypd,e′ ,∀d ∈ D (3.27)

Objective function (3.22) aims at maximizing the number of successfully served demands

inside the batch while balancing the load in the physical network by choosing the less

congested paths. The factors α and β are pondering factors that serve to put more or

less weight to the terms. Constraints (3.23) ensure that at most Wd wavelength will be

provisioned for every virtual link in demand d. Constraints (3.24) are the wavelength

clashing constraints. Constraints (3.25) avoid using pairs (p, w) to map the demand

that are already in use by previous allocated demands. Constraints (3.26) ensure that

all wavelengths requested by a virtual link are mapped over the same path; this is to

avoid delay problems at destination. Finally, constraints (3.27) discriminate if demand d

is successfully served.

3.4.1 Simulation results

In order to test the presented formulation, some simulations have been performed. They

have been run over the 16-Node EON core network topology assuming 40 wavelengths

per physical link. For the results, it is assumed that VON requests arrive at the network

following a Poisson traffic profile with exponentially distributed mean Holding Times

(HTs). Hence, different load scenarios are obtained modifying the demands’ mean Inter-

arrival Times (IATs) accordingly (load = HT/IAT). It is assumed that 105 random VON

requests arrive at the network. Each VON request is generated following a 3 step process:

firstly, 3 or 4 physical network nodes (with equiprobability) are randomly selected as

virtual nodes for each demand. Next, the selected virtual nodes are then randomly

connected with equiprobability and preventing the generation of non-connected graphs.

Finally, the parameter Wd is set to {1, 2} with probabilities equal to 80 and 20%, respec-

tively. Moreover, the size of the candidate path set per virtual link is limited to 10, since

in an online scenario the critical point is to obtain a good trade-off between execution

time and optimality of the solution found. Also, different sizes of the batch have been

considered in order to analyze the impact of this factor on the BP and execution time of

the model. In this regard, a batch is constructed putting in a queue the demands until

the desired size is reached. Note, however, that any timeout for which the batch would

be automatically processed if it has not reach the desired size after a set period of time is

not considered. The inclusion of such timeout and the implications on the performance

of the proposed mechanism are left for future work.

Figure 3.5.a depicts the BP as a function of the network load for different batch sizes

while Figure 3.5.b displays the execution time of the model. Simulations are run in i5

with four cores at 3.3 GHz PCs with 4 GB of ram memory and using IBM Cplex v12.2 as

optimization software. For these results we have considered α = 1 and β = 0.5, that is,
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Figure 3.5: Simulation results: a) blocking probability and b) average model execution
time as a function of the load.

the number of VONs that are successfully embedded inside the batch is prioritized over

balancing the load of the physical paths in the network.

From the depicted results, it can be observed that using bigger batches does not present

a clear advantage in front of smaller batches. Focusing in the BP, for a load equal to 40

the difference between a batch of size 1 and 10 is about 0.35 % while this difference rises

up to 1.3 % for a load equal to 50. On the other hand, for a batch equal to 1, the model

execution times remains in the order of few milliseconds while for a batch equal to 10 this

time ranges from about 5 to 3 seconds. In view of this, due the little improving in BP

that offers the use of bigger batches compared to smaller batches, it may not justify the

extra amount of time needed to construct the batch and execute the model, so smaller

batches or even serve the demands one by one would be the preferred option.

3.5 Optical and IT virtual infrastructure composi-

tion

Up to now, the previous sections in this chapter have dealt with the VONA considering

that the intended VONs were meant to only provide connectivity services in a geograph-

ically distributed, so the target was to compose VONs considering only the allocation of

lightpaths (pairs of path and wavelengths). However, as mentioned during section 3.1,

new emerging paradigms such as Cloud Computing require not only the provisioning of

VNs encompassing exclusively connectivity services (such as the VONs presented so far)

but also some IT capacities (e.g., storage, computational capacity, etc.) in some selected

nodes in the VN so combined services composed of connectivity services plus IT capacities

can be provisioned over the VN. In this regard, it becomes of capital importance to de-

velop techniques that efficiently account for the particularities of both realms (optics and

IT) so as to optimally compose VIs that combine both optical transport services among

a geographically distributed area and IT capacities in some selected nodes. To this end,

the current section presents an ILP-based heuristic in order to optimally accommodate
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VI demands into a physical network substrate composed by a transport transparent opti-

cal network connecting geographically distributed IT sites, such as Data Centers (DCs),

where IT resources are present.

The intended scenario under study relates to the situation where a new infrastructure

provider, willing to deliver both IT and network resources as a service, is interested in

planning the amount of IT and optical resources that must be deployed to serve an already

known set of VI demands. In other words, the VI embeddings (virtual-physical node and

link mappings) that minimize the amount of IT and optical resources in the substrate

are targeted. Note that, departing from the previous sections, where the node mapping

was assumed to be already done and only the node mapping was performed, the current

section peruses a joint node plus link mapping of the VIs, giving the freedom to select the

best physical location of the virtual nodes so as to obtain a more optimized embedding

of the VIs. As it will be shown later, such joint optimization becomes a very challenging

task, since the freedom existent in the virtual-physical node mapping (a virtual node

can, in principle, be mapped to any physical node in the substrate network) makes the

problem of embedding a VI on a physical network substrate to be NP-hard [CRB09].

This has been one of the motivations behind the proposal of the heuristic depicted below.

With such scenario in mind, let the optical network substrate be represented by a graph

Gn = (N,E), where N denotes the set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the

set of physical links. Each physical link is equipped with a set of wavelengths represented

by W . In this regard, it is assumed an all-optical network, without regeneration or

wavelength conversion capabilities. Hence, all virtual links of the demands must ensure

the wavelength continuity constraint between their end points. Moreover, it is assumed

that all wavelength requested by a particular virtual link in a specific VI request must

be routed through the same physical path. This is done to avoid reordering problems

associated to the differential delay that would happen if the wavelengths where routed

through different paths. With this, the electronic buffers at the end points of the virtual

links are kept at a minimum size, reducing the overall network cost. Additionally, it is

assumed that IT sites are connected to the core transport network through a network

with sufficient capacity. This is equivalent to having some nodes in the optical network

substrate graph with IT resources associated to them. Thus, NIT ⊆ N defines the set of

nodes with IT resources. The considered IT resources per node are CPU frequency (in

GHz), storage capacity (in GB), memory capacity (in GB) and number of CPU cores.

Moreover, let D denote the set of demands to be accommodated on the physical substrate.

Each demand d ∈ D is characterized by a graph G′d = (N ′d, E
′
d), N

′
d ⊆ NIT , E ′d =

{(i, j), (j, i) : i, j ∈ N ′d, i 6= j}, where each of the virtual nodes n′ ∈ N ′d requests for a

certain amount of IT resources. Let F d
n′ (CPU frequency), Sdn′ (storage), Md

n′ (memory)

and Cd
n′ (cores) define the particular IT resources requested by virtual node n′ ∈ N ′d, and

F d
max, S

d
max, M

d
max and Cd

max define the maximum amount of IT resources requested by

some virtual node in demand d ∈ D. It is assumed that two virtual nodes belonging

to the same VI request cannot be mapped to the same physical node. This is done for
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Inputs: D, Gn, W , α, βF , βS , βM , βC
Output: Sol

Phase 1: Pre-processing
Sol← ∅ Calculate Costd for every demand d ∈ D
Order demands in D in descending order according to Costd
for n = 1 to |D| do

Phase 2: ILP solving
Sol← Sol

⋃
output from ILP for demand dn

Actualize substrate state according to model output

Return Sol

Table 3.4: DOVIP mechanism pseudo-code.

reliability issues, guaranteeing that if a physical node hosting virtual nodes from various

demands fails, the whole VIs will not be affected but only the virtual nodes mapped over

tha particular physical resource. Additionally, Wd denotes the number of wavelengths

per virtual link requested by demand d ∈ D. The pseudo-code of the proposed heuristic,

called Deterministic Ordering Virtual Infrastructure Planner (DOVIP), is displayed in

Table 3.4.

Firstly, demands are ordered in descending order according to the expression depicted in

(3.28), where m(·) denotes the maximum function among all demands d ∈ D. In this way,

the heuristic initially tries to fit the biggest demands, which may be more complicated

to allocate, and then the smaller demands, more easily allocable. Factors α, βF , βS, βM
and βC are used to put more or less weight to the terms of the expression. Once the

demands are ordered, the heuristic iteratively executes for each demand an ILP model

whose goal is to jointly minimize the number of wavelengths per physical link and, at the

same time, the amount of IT resources in the more congested node n ∈ NIT once the

current demand is served. After each model execution, the state of the physical substrate

is updated before starting with the next iteration.

Costd = α
|E′d|Wd

m(E′d|)m(Wd)
+ (1− α)(βF

F dmax
m(F dmax)

+ βS
Sdmax

m(Sdmax)
+

+ βM
Md
max

m(Md
max)

+ βC
Cdmax

m(Cdmax)
)
|N ′d|

m(|N ′d|)
, ∀d ∈ D

(3.28)

The details of the ILP model executed at each iteration of the DOVIP heuristic are

discussed below. To this, let F n
u , Snu , Mn

u and Cn
u define the amount of IT resources that

are already in use in node n ∈ NIT ; F u
max, S

u
max, M

u
max and Cu

max the maximum amount

of IT resources that are already in use for some node n ∈ NIT ; and W e
u define the set of

wavelengths that are already in use in physical link e ∈ E. Additionally, let δ+(n) and

δ−(n) define the set of outgoing and incoming edges from/to n ∈ N respectively. Finally,

let a(e′) and b(e′) denote the source and destination of virtual edge e′ ∈ E ′d. The decision

variables of the model are:
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xnn′ : binary; 1 if virtual node n′ is mapped over physical node n, 0 otherwise.

ye,we′ : binary; 1 if virtual link e′ is mapped over physical link e and wavelength w, 0

otherwise.

tw: binary; 1 if wavelength w is used in any physical link, 0 otherwise.

Fn, Sn, Mn, Cn: integers; IT capacities in node n ∈ NIT .

Smax, Mmax, Cmax: integers; maximum values among Sn, Mn and Cn.

The ILP formulation is:

min α
1

|W |
∑
w∈W

tw + (1− α)(
1

F umax|NIT |
βF

∑
n∈NIT

Fn + βS
Smax

Sumax + Sdmax
+

+ βM
Mmax

Mu
max +Md

max

+ βC
Cmax

Cumax + Cdmax
), s.t.

(3.29)

F dn′x
n
n′ ≤ Fn, ∀n′ ∈ N ′d, n ∈ NIT (3.30)

Fnu ≤ Fn,∀n ∈ NIT (3.31)

Sn = Snu +
∑
n′∈N ′d

Sdn′x
n
n′ ,∀n′ ∈ N ′d, n ∈ NIT (3.32)

Sn ≤ Smax,∀n ∈ NIT (3.33)

Mn = Mn
u +

∑
n′∈N ′d

Md
n′x

n
n′ ,∀n′ ∈ N ′d, n ∈ NIT (3.34)

Mn ≤Mmax,∀n ∈ NIT (3.35)

Cn = Cnu +
∑
n′∈N ′d

Cdn′x
n
n′ ,∀n′ ∈ N ′d, n ∈ NIT (3.36)

Cn ≤ Cmax,∀n ∈ NIT (3.37)

ye,we′ ≤ tw,∀e
′ ∈ E′d, e ∈ E,w ∈W (3.38)
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1 ≤ tw, ∀e ∈ E,w ∈W e
u (3.39)

ye,we′ = 0, ∀e′ ∈ E′d, e ∈ E,w ∈W e
u (3.40)

∑
n∈NIT

xnn′ = 1,∀n′ ∈ N ′d (3.41)

∑
n′∈N ′d

xnn′ ≤ 1,∀n ∈ NIT (3.42)

xnn′ = 0,∀n′ ∈ N ′d, n 6∈ NIT (3.43)

∑
e′∈E′d

(y
ei,j ,w
e′ + y

ej,i,w
e′ ) ≤ 1,∀e ∈ E,w ∈W, i 6= j (3.44)

∑
e∈δ+(n)

∑
w∈W

ye,we′ −
∑

e∈δ−(n)

∑
w∈W

ye,we′ = Wd(x
n
a(e′) − x

n
b(e′)), ∀e

′ ∈ E′d, n ∈ N (3.45)

− xnb(e′) ≤
∑

e∈δ+(n)

ye,we′ −
∑

e∈δ−(n)

ye,we′ ≤ x
n
a(e′), ∀e

′ ∈ E′d, n ∈ N,w ∈W (3.46)

ye,we′ ≤ 1− xnb(e′),∀e
′ ∈ E′d, n ∈ N, e ∈ δ+(n), w ∈W (3.47)

ye,we′ ≤ 1− xna(e′), ∀e
′ ∈ E′d, n ∈ N, e ∈ δ−(n), w ∈W (3.48)

Wdy
e,w
e′ ≤

∑
w∈W

ye,we′ ,∀e
′ ∈ E′d, e ∈ E,w ∈W (3.49)

The ILP objective function is depicted in (3.29). Constraints (3.30), (3.31), (3.32), (3.34)

and (3.36) serve to give value to the IT resource variables, taking into account the current

state of the physical resources and those resources requested by the demand. Constraints

(3.33), (3.35) and (3.37) are the constraints that enable the minimization of the IT re-

sources in the most congested IT node. Constraints (3.38) account for the wavelengths

that are being used to serve the demand, while constraints (3.39) account for the wave-

lengths that are already in use due to previous allocations. Constraints (3.40) avoid the

use of pairs (e, w) that are already in use when allocating the demand. Constraints

(3.41) ensure that all virtual nodes n′ ∈ N ′d are being mapped over a unique physical
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node, while constraints (3.42) ensure that a physical node n ∈ NIT does not support

more than one virtual node per demand. Constraints (3.43) avoid using physical nodes

n 6∈ NIT for mapping virtual nodes. Constraints (3.44) are the wavelength clashing con-

straints, implicitly accounting for the true bidirectional nature of the demands through

considering both directions of physical arc (i, j), (j, i), although unidirectional demands

were defined; in this way, the complexity of the model is reduced and, hence, its exe-

cution time. Constraints (3.45) ensure that all virtual links e′ ∈ E ′d are provided with

the required number of wavelengths. Constraints (3.46) are the flow conservation and

wavelength continuity constraints. Constraints (3.47) and (3.48) serve to avoid loops at

the remote endpoints of a virtual link; in the source remote endpoint, traffic can only flow

outside the node, while in the destination remote endpoint, traffic can only enter at the

node. Finally, constraints (3.49) ensure that for a virtual link, all requested wavelengths

follow the same route; this is done to avoid delays.

It is worth to mention that, while the proposed formulation only takes a single VI demand

as input, placing it optimally according to the current substrate state and the character-

istics of the VI itself, the feasibility of an offline ILP planning model that takes the entire

demand set D, and tries to place all demands over the underlying physical substrate in an

optimal way was alternatively evaluated. Nevertheless, the experienced execution times

where extremely long, even for small demand set sizes. For example, for |D| = 5, exe-

cution times in the order of 106 seconds were registered. This became a key motivation

behind DOVIP heuristic as a way to solve the addressed problem in a reasonable time.

3.5.1 Simulation results

In order to illustrate the performance of the DOVIP heuristic, a series of executions for

various sizes of the demand set D and values of the factor α have been carried out; factors

βF , βS, βM and βC are fixed to 0.25. Results throughout this section have been averaged

over 20 random generations of the demand sets, being executed in an Intel Core i5 PC

with 4 cores at 3.3 GHz and 4 GB of RAM PCs, running CPLEX v.12.2.

The DT network topology (see Appendix A) is used as the physical substrate network,

assuming that IT resources are present in Berlin, Munchen, Stuttgart, Dusseldorf, Ham-

burg and Hannover (Figure 3.6). Demands in the set are generated randomly, considering

3 or 4 nodes per demand and connecting them with probability 0.5, preventing the gen-

eration of non-connected graphs. It is assumed Wd = 1 for all demands. As for the IT

resources requested by virtual nodes of the demands, these are chosen with equiprobabil-

ity between 1.0-2.2 with steps of 0.2 for the CPU frequency, 10-30 with steps of 5 for the

storage capacity, 2-8 with steps of 2 for the memory capacity and 1-4 with steps of 1 for

the number of CPU cores.

Table 3.5 displays the average values for the physical substrate resources that take a role in

objective function (3.29), along with the average execution time. Results for various values
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Figure 3.6: DT network topology scenario used for the simulations; red nodes depict
IT sites.

Table 3.5: DOVIP performance comparison

α = 1 α = 0.75 α = 0.5 α = 0.25 α = 0

|D| = 10

Sum(tw) 5.55 5.8 5.9 6.65 14.65

Sum(Fn) 12.43 12.12 12.1 12.06 11.95

Smax 180 137.25 132 129.75 128.75

Mmax 43.7 30.8 30.5 30.1 29.9

Cmax 21.85 15.4 15.25 15.05 14.95

Time (s.) 11.74 66.44 79.43 61.94 48.57

|D| = 15

Sum(tw) 7.9 8.5 8.95 9.95 19.8

Sum(Fn) 12.8 12.63 12.53 12.46 12.4

Smax 262.5 192.5 191.5 188 185.75

Mmax 68 47.1 46.5 45.2 45

Cmax 34 23.55 23.25 22.7 22.5

Time (s.) 25.87 150.49 150.76 138.4 86.24

|D| = 20

Sum(tw) 10.2 11.2 11.2 12.1 20

Sum(Fn) 12.83 12.61 12.56 12.55 12.29

Smax 351.5 255 250.5 248.25 245.5

Mmax 87.4 61.3 61.1 60.1 59.7

Cmax 43.7 30.65 30.55 30.05 29.85

Time (s.) 31.31 146.65 161.8 158.5 99.35
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of |D| and α have been obtained. Note that α = 1 and α = 0 identify extreme situations,

only focusing on the minimization of optical resources or IT resources, respectively. It

can be appreciated that α = 0.5 working point offers a fair trade-off between the amount

of network and IT resources needed for any of the considered |D| sizes. It uses much

less optical resources than α = 0 (around a 50% less) and less IT resources than α = 1

(around a 2% less for the CPU frequency and a 30% less for the rest of IT resources),

while it only uses around a 2% more IT resources than α = 0 and a 10% more optical

resources than α = 1. In this sense, it can be appreciated that the joint optimization of

optical and IT resources results in a good trade-off between the two parts.

3.6 Chapter summary

The advent of VNs has helped to shape the future Internet and new network architectures

and business models so as to cope with the increasing traffic on Internet and the emerging

of new services and paradigms. Such services and paradigms require mission-specific net-

works, tailored to its exact needs, so as to perform an optimized management and control

of the services that will run on top of them. One critical aspect on the design of such VNs

refers to how the virtual resources are mapped into physical resources of the substrate

network. Such problem is known as the Virtual Network Embedding problem, and has

been extensively studied for electrical networks (Layer 2/3) in the literature. However,

although the VN paradigm has recently been adopted on the optical network field and

massive research is being done on VONs, the lack of maturity of the virtualization tech-

niques on this field requires that specific algorithms, accounting for the particularities and

challenges posed by the optical medium, have to be developed to perform an optimized

embedding of the VONs into the physical network substrate.

With such goal in mind, the presented chapter has studied various aspects of the VNE in

optical substrate networks and proposed various mechanisms in this regard. Firstly, the

VNE problem has been introduced, along with the main literature regarding the topic,

so as to contextualize the sections to come. This has lead to the proposal of various

mechanisms to optimally embed VONs depending on the services intended to be offered

on top of them, the technology employed by the physical substrate and the dynamicity

of the network scenario.

Specifically, section 2 has focused on developing mechanisms to optimally allocate VONs

in top of a physical substrate focusing on the nature of the connectivity services that will

run on top of them. To this end, opaque and transparent VONs have been defined, with

transparent VONs offering fully transparent end-to-end connections along its topology

while opaque VONs not. The proposed mechanisms for each kind of VON have been

benchmarked with simpler embedding mechanism, highlighting the superior performance

that can be obtained when optimally allocating a VON demand set.



Chapter 3. Virtual optical network embedding 58

However, despite the flexibility that VONs offer in regards of the management of the

virtual resources and the optimized resource allocation that can be achieved with the

proper embedding mechanisms, the performance of the VONs (e.g. in terms of use of

the spectrum) is highly tied to the underlying physical technology. To achieve a better

resource utilization and more flexibility on the VON level, equally efficient and flexible

network substrates have to be considered. A promising candidate to realize this are EONs,

thanks to their finner spectrum granularity that allows to efficiently serve high and low

bit-rate demands, achieving the desired flexibility in terms of spectrum provisioning at

the VON level. However, due to the different physical technology employed by EONs,

it is necessary to develop embedding mechanisms that account for the particularities of

this new network substrate. To this end, section 3 has provided ILP mechanisms to

optimally embed VONs into an EON-based physical substrate. The performance study

of the proposed mechanisms has reveled that, indeed, EONs provide a much more efficient

network substrate when compared to traditional wavelength switched networks, allowing

to allocate a higher number of VON requests into the network substrate.

After these studies, section 4 has focused on the development of embedding techniques

into more dynamic network scenarios, where a full knowledge of the demand set in not

possible. In such a dynamic scenario, VON requests arrive one by one at random to the

physical network substrate and have to be allocated according to the actual state of the

network and the characteristics of the request. In order to enhance the performance of the

whole embedding process, a load distribution-based mechanism have been employed, so

as to facilitate the embedding of future VON requests. Additionally, a bulk provisioning

of the VONs have also been considered so as to obtain more optimum embeddings and a

better resource usage of the physical substrate.

To finalize the studies regarding the VON embedding problem, section 6 has extended

the scenario under study to also consider the presence of IT resources in some selected

nodes in the optical network substrate, so VI requests combining both IT capacities

and optical transport services can be composed. Such hybrid substrate requires that

specific optimization methods accounting for the particularities of both realms have to

be developed. To this end, an ILP-based heuristic has been proposed with the goal to

minimize the amount of resources (IT and optical) that have to be provisioned into the

physical substrate so as to correctly allocate a known VI request set. In this regard, it

has been shown that a joint optimization of both IT and optical resources results in a

good trade-off when compared against scenarios that only focus on the optimization of

one type of resources, either IT or optical ones.
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Improving EONs efficiency: the split

spectrum approach

This chapter focuses on improving the efficiency of EONs in terms of spectrum utilization.

An efficient spectrum utilization plays an important role when serving connections in

EONs, due to the fact that the random arrival and departure process of connections in this

kind of networks tends to fragment the available spectrum over the time. In such situation,

it becomes challenging to serve connections, specially connections requiring large bit-

rates, as the chances to find a sufficient number of contiguous FSs to accommodate them

decreases. Hence, it becomes highly desirable to provide mechanisms to mitigate such

effect and improve the allocation of demands.

To begin, first section presents the spectrum fragmentation problem in EONs and its

main consequences on the performance of such networks. Additionally, it surveys the

work present in the literature that deal with such problem by means of de-fragmentation

techniques. The second section presents the SSA as an alternative method to overcome

the spectrum fragmentation problem in EONs and its enabling technologies. This leads

to the proposal of various mechanisms to efficiently perform the resource assignment of

incoming connections in a SS-enabled EON in section three and four. Specifically, section

three introduces the problem of route and spectrum assignment in SS-enabled EONs and

proposes various solutions to tackle the problem. Next, in section four, the problem is

extended to also consider the assignment of the most suitable modulation format to the

connections depending on the desired bit-rate and the network characteristics and status.

To this end, a novel assignment mechanism is proposed and thoroughly evaluated. The

last section summarizes the achievements of the presented chapter.

59



Chapter 4. Improving EONs efficiency: the split spectrum approach 60

4.1 The spectrum fragmentation problem

Although EONs present large benefits when compared to traditional WDM optical net-

works, they also pose important challenges, being the main one the so called spectrum

fragmentation effect [WM12], which can greatly affect the performance (e.g., the Bit-

rate Blocking Ratio (BBR)) of such networks. This effect refers to the fact that, due to

the random arrival and departure process of the demands over the network, the avail-

able spectral resources (the FSs) become highly fragmented, forming spectral gaps (i.e.,

bunches of free contiguous FSs) of heterogeneous sizes scattered along the spectrum, thus

making more complex the allocation of future demands. This happens because in EONs,

demands, instead of a full wavelength, request for a contiguous spectrum portion tai-

lored to their own needs. Hence, their chances to find a contiguous spectrum portion

decrease, potentially leading to blocking situations. Figure 4.1 illustrates this situation.

In Figure 4.1.a, a certain number of connections, with different bandwidth requirements,

is established over a given network link. After some time, in Figure 4.1.b, one of these

connections is released, thus freeing a portion of the spectrum in that link. Finally, in

Figure 4.1.c, a new high data-rate connection request arrives at the network and should

be allocated on the link under study. Even though the total spectrum available on that

link would be enough to allocate the new connection, such spectrum is fragmented into

smaller portions than the contiguous spectrum requested by the incoming connection,

which eventually causes its blocking.

To mitigate the spectrum fragmentation effects in EONs, spectrum defragmentation

strategies have been proposed in the literature [WM12, ZYP+13, PJJW11, KHSI11,

YWG+12], which may be performed preventively when a demand is allocated (e.g. [WM12])

or reactively when blocking occurs (e.g. [YWG+12]). Essentially, the rationale behind

these strategies is to properly rearrange active connections in the network, so as to free

as much contiguous spectrum as possible to be used by future connection requests. In

this regard, the techniques can be classified as techniques that re-route the existing con-

nections (disruptive techniques), or techniques that only rearrange the utilized spectrum

without changing connections’ routes (hitless techniques). In the latter case, the estab-

lished connections are not disrupted when performing the spectrum defragmentation.

Note, however, that disruptions of active traffic caused by a reallocations is not admis-

sible for certain classes of service, being hitless spectrum defragmentation of paramount

importance in such a context. For these reason, make-before-break strategies are nor-

mally adopted in defragmentation mechanisms: before tearing down a lightpath, the new

associated lightpath resulting from the defragmentation mechanisms is first created, so

the traffic does not experience any disruption. However, this operation presents some

drawbacks: note that to create the new ligthpath before tearing down the old one re-

quires to allocate at a given time twice the resources needed to serve that ligthpath.

This could lead to not having the sufficient resources to perform the make-before-break

operation and, consequently, the traffic could experience some disruptions. Moreover, if
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Figure 4.1: Example of spectrum fragmentation in a dynamic EON scenario.

there are enough spectral resources to perform this operation, during the time where both

lighpaths, new and old, are present, it could happen that a possible incoming demand

can not be served due the lack of spectral resources. Also, defragmentation techniques

add an extra complexity to the control plane in order to perform and manage all the

re-allocations properly.

On the other hand, equipping the nodes with spectrum conversion capabilities [BMS+14]

would allow to reduce the blocking of some demands through using not necessarily the

same spectrum in all the links in the path from source to destination node. However,

spectrum conversion devices are expensive and introduce some delay in the demands (due

the conversion) that may not be admissible for certain classes of service. For all these

reasons, it is necessary to propose alternative approaches to overcome the limitations

posed by the spectrum fragmentation effect. To this end, the SSA is introduced in the

following section.

4.2 Split spectrum-enabled EONs

Running away from the spectrum defragmentation or spectrum conversion the SSA has

been recently proposed and is arising as a promising way to further increase the effi-

ciency of EONs, mitigating the effect of the spectrum fragmentation and lowering the

BBR [XPDY12, JTS+12, CJG13, PPSC14]. The main rationale behind the SSA lays on

dividing a high bit-rate demand into a set of lower bit-rate sub-demands if a blocking

situation arises, making the resulting sub-demands more easily allocable in the available

FSs. This approach can basically be triggered in two kind of situations: 1) when there

are not enough contiguous FSs to serve the demand due to the spectrum fragmentation

effect or 2) when the modulation format used to transmit the desired bit-rate becomes

infeasible due to transmission impairments that limit the transmission reach. In both

cases, the demand can be split to better take advantage of the spectral gaps. Moreover,
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Figure 4.2: Example of a SS-enabled EON.

more robust modulation formats can be used, since the resulting sub-demands are trans-

mitted at lower bit-rate. Figure 4.2 depicts a situation where the SSA is employed to

overcome a potential blocking situation due to the lack of enough contiguous FSs. In

Figure 4.2.a, a high bit-rate connection arrives to a network link. Due to the spectrum

fragmentation effect, although there are enough spectral resources (i.e. FS) to serve the

connection, they are scattered in non-contiguous spectral gaps, so the connection cannot

be served in a contiguous way. To overcome this, in Figure 4.2.b the original demand is

split into smaller sub-demands. Since the sub-demands require less contiguous FSs, they

can be allocated in the available spectral resources, as seen in Figure 4.2.c, thus, solving

a potential blocking situation.

Once the original demand is split, the resulting sub-demands, hereafter referred as parts,

have to be routed and spectral resources assigned to them, signaled and managed. This

operation could be driven from the network control plane (e.g., based on GMPLS [FB06]),

which could trigger the split of the incoming signal in the source node of the demand into

multiple parts, to be transmitted to the destination over separated lightpaths. The recon-

struction of the original signal would be therefore performed on reception, by electrically

multiplexing those incoming sub-signals belonging to the same demand. In this process,

the role of the control plane would be of key importance to manage the signaling and

maintenance of the lightpath bundle [RFC3717] supporting a particular traffic demand

which, in turn, would require an adequate configuration of the signal splitting and mul-

tiplexing operations at the source and destination nodes, respectively.

Concerning the routing process, the different parts can be either routed over the same

physical path (single path approach) or over multiple physical paths (multipath ap-

proach). The first one provides the advantage of simplifying the signaling and routing

process, as only one route has to be signaled and established. Additionally, the differential

delay among the parts is kept very low, making the hardware needed at the destination

node (electronic buffers) for the reconstruction of the original demand less complex. On

the contrary, in the multipath approach, the different parts can be routed over different

physical paths. Although this second approach may achieve better performance in terms
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of BBR, the routing process is more complex since a routing instance must be triggered

for each part. Furthermore, the size of the electronic buffers at the destination node must

be large enough to mitigate the propagation delay differences between the parts.

Concerning the enabling technologies that make the SSA possible, there are basically

two implementations regarding TSP architecture and utilization, namely, the BV-TSP-

based and the Multi-Flow TSP (MF-TSP)-based. In the BV-TSP-based implementation

[PPS12], once the demand has gone through the splitting process, the resulting parts

are transmitted using independent BV-TSPs. That is, as many BV-TSPs as parts into

which the demand has been split are employed, as shown in Figure 4.3.a. To do so,

the mechanism takes advantage of the BV-TSPs at the nodes that are not in use when

splitting the demand. In this implementation the number of parts into which a demand

is split takes a capital role in the overall performance of SSA, since too many parts can

rapidly exhaust available TSPs at nodes and lead to blocking due to the lack of them. For

this reason, any allocation mechanism employing such an implementation has to carefully

take into account this issue. On the other hand, this implementation does not impose

additional hardware complexity with the sole SSA purpose, as basically relies on the

hardware already deployed in the network, keeping the CAPEX within reasonable limits.

As for the MF-TSP-based implementation, as its name suggests, it employs MF-TSPs

to transmit the split demand [XPDY12, JTS+12]. A MF-TSP is capable of transmitting

and receiving multiple elastic optical channels (flows), operating at independent bit-rates,

that can be routed independently. Therefore, SSA can be realized employing a unique

MF-TSPs to transmit all the parts resulting from the split procedure. A simplified prac-

tical architecture of a MF-TSP, as proposed in [XPDY12], is depicted in Figure 4.3.b.

Essentially, it would consist of an array of tunable lasers and blocks of modulators to

support different types of modulation formats and bit-rates, terminated with an optical

combiner at the transmitter side, while an optical splitter followed by an array of de-

tectors is placed at the receiver side. The advantage that the MF-TSP implementation

presents in front of the BV-TSP one, is that it only employs a TSP per demand, being

split or not, so the potential lack of TSPs is not as pronounced in this scenario. On the

other hand, the complexity and hardware requirements of this type of TSPs are higher,

which may lead to higher overall network CAPEX.

For all of these, the SSA has triggered the interest of standardization organisms [HPS+13,

SRML12] and the research community [XPDY12, TFB11, LZG+13, ZLZA13, PPS12]. For

example, the Internet Engineering Task Force (IETF) is currently working on extending

control plane architectures and protocols of fixed-grid optical networks to be able to also

control and manage elastic optical networks. In this framework, the SSA is also being

considered to be one of the choices for establishing a connection in flex-grid networks.

However, the standardization proposals in this regard are at their very early stage (e.g.,

[HPS+13]).
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a) b)

Figure 4.3: SSA enabling technologies: a) Example of BV-TSP-based SSA imple-
mentation; b) Architecture of a MF-TSP.

On the other hand, much effort has been already done to evaluate SSA as a solution to

increase the performance of elastic optical networks. For instance, authors in [PPS12]

proposed a simple algorithm for splitting in a SS-enabled elastic optical network de-

mands that face blocking situations due to the spectrum fragmentation effect. The au-

thors demonstrated that substantial improvements in terms of blocking can be achieved.

Nonetheless, the authors only considered the single-path routing approach and did not

tackle the choice of the best modulation format according to the demands needs.

Besides, authors in [LZG+13, ZLZA13] investigated the multi-path routing approach in

SS-enabled optical networks, proposing multiple algorithms to intelligently split the de-

mands, and showed that the multi-path routing approach, or even a hybrid single/multi-

path approach, can lead to further gains in terms of blocking when compared to the

single-path approach. Although authors in [ZLZA13] introduced the selection of the

modulation format according to the specific bit-rate of the demands and the transmission

reach of the modulation formats, they did not tackle the optimal selection of neither the

route, spectrum portion nor the modulation format to serve a demand.

Similar work has been done by authors in [XPDY12, TFB11], where multiple algorithms

are proposed to choose the route, spectrum and modulation format of demands in a SS

environment. Additionally, authors in [XPDY12] introduced the concept of MF-TSP as

a way to realize the SSA in elastic optical networks. However, none of these works is

devoted to finding the optimal solution to the RSMLA problem in SS-enabled networks.

Authors in [CJG13] proposed an ILP-based mechanism to tackle the optimal route and

spectrum assignment under multi-path SSA considering the differential delay issue. They

showed that a correct dimensioning of the electronic buffers at the receiver end can

compensate such delay and provide a better performance in terms of blocking than the

single-path approach. Despite providing a mechanism capable of finding the optimal

resources assignment, authors did not consider the selection of the modulation format,

restricting the assignment to only selection of paths and FSs.
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With all this said, it becomes of capital importance to provide mechanisms to optimally

assign resources (paths, FSs and modulation formats) to a demand in a SS-enabled op-

tical network for a dynamic scenario, considering both single and multi-path routing

approaches as well as BV-TSPs or MF-TSPs. To this end, the rest of the chapter works

progressively from the simplest case towards more complex scenarios in order to provide a

mechanism that optimally assigns resources utilizing the SSA in EONs, considering both

the aforementioned TSP implementations (BV-TSP and MF-TSP) and routing strategies

(single and multipath).

4.3 Route and Spectrum Assignment (RSA) in SS-

enabled EONs

The previous subsection introduced the SSA as a very interesting way to enhance the

efficiency of EONs along with potential technologies to realize such approach. With such

discussion, it is now turn to propose mechanisms to properly assign network and spectrum

resources to incoming connections in a SS-enabled EON. To this end, this section begins

targeting the RSA problem present in EONs as introduced during subsection 2.3.1, now

adapted to the particularities and new challenges that the SSA poses. Next, it introduces

a basic mechanism to tackle this problem in a dynamic scenario where connections arrive

and depart at random, which later on is enhanced with additional considerations so as to

provide a more optimized mechanism for the resource assignment.

Before introducing the proposed mechanisms, let us provide a more insight view about

the differences between the RSA problem in traditional EONs and SS-enabled EONs.

Without loss of generality, let us assume that the bit-rate of a connection can be trans-

lated to a specific bandwidth (i.e. spectrum portion) given the modulation format used

to successfully reach the destination node. Ideally, and defining B as the requested band-

width (in GHz) of a connection and Fw as the spectral width (in GHz) of a single FS,

the requested bandwidth of a connection could be translated to a number of FSs equal to

the ceiling of the division between B and Fw. However, BV-WXCs require guard bands

between demands to properly perform the switching of the demands [AMZ+11]. Defin-

ing G as the guard band size (in GHz), the actual number of FSs needed to allocate a

demand, denoted as S, can be calculated as:

S =

⌈
B +G

Fw

⌉
(4.1)

Guard band requirements increase the initial value of S, fact that difficults even more the

allocation of demands in a traditional EON, since the spectrum contiguity constraint must

be respected. On the other hand, although in a SS-enabled EON the spectrum contiguity

constraint can be relaxed due to the possibility of serving a demand in multiple parts,
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such guard band requirements have to also be respected for every one of the parts. In fact,

the number of necessary FSs to allocate a demand divided into H parts in a SS-enabled

EON can be calculated as:

S =
H∑
i=1

⌈
Bi +G

Fw

⌉
(4.2)

where Bi is the amount of B allocated in the ith part, that is, B =
H∑
i=1

Bi. It can be seen

that the guard band requirements imposed by BV-WXCs may notoriously increase the

value of S if the demand is divided into many parts. Moreover, there may be limitations on

the number of parts into which a demand can be divided depending on the implementation

of the SSA (BV-TSP or MF-TSP). Additionally, although the SSA tries to exploit the

available spectral gaps to serve a demand and overcome blocking situations due to the

lack of enough contiguous FSs, in a transparent EON, where connections remain always

in the optical domain, all the individual parts into a demand is split must satisfy the

spectrum contiguity constraint along the end-to-end path. All this particularities have to

be carefully taken into account for any RSA mechanism that peruses to operate in a SS

environment.

With all of this said, the following subsection introduces a first approach to efficiently

perform the RSA in a SS-enabled EON.

4.3.1 First approach to SS-enabled RSA

The first approach to SS-enabled RSA is intended to operate in a dynamic environment,

where connection requests between geographically distributed nodes arrive and depart

at random in a core transport network without spectrum conversion capabilities, that

is, end-to-end transparent lightpaths are established. Additionally, as a first step into

the problem, it is only considered the BV-TSP implementation of the SSA, where every

split part is served employing an independent BV-TSP. The proposal of mechanisms to

properly operate in a MF-TSP implementation will be done later on this chapter.

The proposed mechanism tries to take advantage of the available fragmented spectral re-

sources, when a connection blocking situation may arise due the lack of enough contiguous

FSs to serve its entire bandwidth requirements. With this in mind, the foundation of the

mechanism is the following. If a traffic demand can not be served because the number

of requested FSs exceeds the size of any available spectral gap in the candidate paths

between the source and destination nodes, it may still be possible to accommodate it by

splitting the demand into multiple independent lower data-rate signals, and allocate them

into multiple non adjacent spectral gaps, assuming that enough spectral resources exist

in any of those candidate paths. To enable such splitting operation, the mechanism takes
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Figure 4.4: SS-enabled RSA algorithm.

advantage of those idle BV-TSP at the source and destination nodes of a high data-rate

connection, so every split part will be served employing an independent BV-TSP. That is,

the establishment of multiple lightpaths for a single demand implies that a BV-TSP at the

source and destination must be allocated to each one of them. Hence, a trade-off exists

between the number of parts into which a demand is split, which facilitates the allocation

of a high data-rate demand over a highly fragmented network spectrum, and the cost (in

terms of TSPs) required to allocate the split demand on the network: assigning multiple

TSPs to a single demand could strongly impact on the blocking of subsequent requests

due to the unavailability of TSPs to allocate them on the network. For this reason, it is

desirable to keep the number of split parts as low as possible so as to avoid blocking of

demands due to the exhaustion of BV-TSPs. An additional argument to minimize the

number of split parts required to allocate an incoming demand is the spectrum overhead

that the guard bands needed by BV-WXCs introduce, as guard bands must be left to

each part allocated on the network. Taking this into account, the flowchart in Figure 4.4

discloses the proposed mechanism’s operation.

For an incoming demand, the mechanism firstly checks if there is any BV-TSP available

in both source and destination nodes as otherwise it would not be possible to establish the



Chapter 4. Improving EONs efficiency: the split spectrum approach 68

demand due to the lack of BV-TSPs. Once this verification is performed, the mechanism

calculates the first K shortest paths (e.g., in terms of number of hops) from source to

destination. Next, it calculates the minimum number of FSs needed for accommodating

the demand using the formula introduced in (4.1). That is, the value of S in the case

that no splitting is performed.

The next step consists in obtaining the spectral gaps for each of the K candidate paths.

Specifically, a spectral gap is a contiguous number of FSs available from the source to

the destination node, that is, in absence of spectrum converters in the network, the con-

tinuity of the FSs must be ensured along the end-to-end candidate path. Right after

obtaining them, the mechanism sorts the available spectral gaps for every candidate path

in descending order, starting from the one with the largest number of contiguous FSs

to the one with the lowest number of them. The average complexity of an appropriate

sorting algorithm stays commonly in O(nlogn), being n the number of elements to sort.

Under this assumption, the average total complexity of the aforementioned operation in

the presented algorithm will be O(Knlogn), being K the number of candidate paths com-

puted previously and n the number of spectral gaps in the paths, making the mechanism

perfectly scalable if the number of candidate paths or FSs per fiber increases.

Once the spectral gaps in every candidate path are found and sorted, the mechanism

checks if the demand can be allocated in any of the candidate paths starting as is, like

in a usual RSA mechanism without splitting. Being the algorithm unsuccessful, it splits

the demand in two parts (i.e., lightpaths) and checks if it can be allocated. Note that

the bandwidth of each part is initially unspecified and will depend on the width of the

available spectrum gaps on any candidate path. Being still unsuccessful, the algorithm

repeats this operation by increasing the number of demand fragments by one each time,

until maxfarg allowed is reached. This field allows controlling the amount of splitting

done to the demands, that will impact on the BV-TSPs usage and the overhead of guard

bands, by putting an upper limit of allowed parts per demand that can be adjusted

depending on the bandwidth requested by the demand. This value is left to the network

operator discretion.

The process of checking if a demand can be accommodated in a determined number of

parts in any of the candidate paths entails multiple phases. First, the mechanism checks

if both source and destination nodes have enough available BV-TSPs to serve the demand

into the desired number of fragments. Although at the beginning of the mechanism a

TSP availability check was performed, at this point it is necessary to check it again as,

even though both source and destination nodes have some free TSPs, it could be that

one or neither of them have the sufficient available TSPs to serve the demand into the

determined number of parts. If this happens, the demand is directly blocked. Otherwise,

the mechanism verifies if the candidate path has, at least, a number of available FSs equal

to the number of FSs determined through the formula in (4.1). This is done to ensure

that the candidate path has a minimum capacity to potentially serve the demand. If the

path does not have this minimum capacity, the next candidate path is explored.
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The following stage of the mechanism involves how the bandwidth of the demand is

accommodated into the spectral gaps of the candidate path without exceeding the number

of allowed parts in the current iteration. From the sorted list of spectral gaps of the

candidate path, the mechanism selects the first i gaps, being i the number of allowed

parts in the current iteration, and tries to fit the bandwidth of the demand in those gaps.

Because spectral gaps are sorted in descending order, the chances of fitting the entire

demand bandwidth into the first i gaps increases, thus reducing the demand blocking

probability. The distribution of the bandwidth of the demand into the i gaps goes as

follows: if the size of the first gap is greater or equal than the number of FSs needed

to accommodate the demand, all the bandwidth of the demand is accommodated in this

gap, filling only a number of FSs as determined from (4.1). Conversely, if the size of the

first gap is smaller, only part of the useful bandwidth of the demand is accommodated

into the gap. Such an amount is determined through the following formula:

Amount of useful bandwidth accommodated = Size of the gap in FSs× Fw −G (4.3)

The accommodated bandwidth is subtracted from the requested bandwidth by the de-

mand. The remaining bandwidth is accommodated in the next i − 1 gaps in a similar

manner: if the size of the next gap is greater or equal than the number of needed FSs

determined through (4.1), where the remaining unallocated bandwidth of the demand is

considered, all the FSs are accommodated into this gap. Otherwise, the bandwidth that

can be fit into the gap is calculated using formula (4.3) and subtracted from the remain-

ing bandwidth. If using these i gaps the remaining bandwidth becomes 0, it means that

the demand is successfully accommodated in the path using i different parts. Contrarily,

the mechanism proceeds to the next iteration. Once all the candidate paths are explored

using all the allowed values of parts, if it is not possible to accommodate the demand, it is

finally blocked. Note that if a demand has to be split into multiple parts, the mechanism

routes every of these parts through the same physical path. This is to avoid any delay

between the parts that would difficult reordering the related data at the reception node,

thus adding extra complexity to the control plane and the nodes to perform correctly this

operation.

4.3.1.1 Simulation results

Aiming to quantify the benefits of the proposed mechanism, simulation studies over the

DT network topology, composed of 14 nodes and 23 bidirectional links have been carried

out. The exact topological details are depicted in subsection A.2. Additionally, a total

usable bandwidth of 1 THz divided into FSs with a spectrum width of 6.25 GHz, which

results in 160 FSs per fiber link has been assumed. Moreover, in all simulations it has

been considered that nodes are equipped with 13 BV-TSPs per node, a value that allows

a full-meshed virtual connectivity between nodes, and a value of G = 10 GHz.
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a) b)

Figure 4.5: Simulation results: a) average blocked bandwidth as a function of the
offered load; b) blocking probability per category as a function of the offered load.

Simulation results have been extracted through the generation of 4 · 105 bidirectional

demand requests per execution. Such requests arrive to the network following a Poisson

process. Moreover, demand HTs are exponentially distributed with mean 600 s. Different

loads are thus generated by modifying the demand IATs accordingly (load = HT/IAT).

Bandwidth requirements of the demands in GHz are uniformly chosen among {32, 64, 96,

118}. Besides, the algorithm maxfrag allowed field is set to {1, 2, 3, 4}, depending on

the bandwidth requirements of the demands. Particularly, 1 fragment is allowed for the

demands requesting a bandwidth of 32 GHz (i.e., fragmentation is not allowed for low

data-rate demands), while 2, 3, and 4 fragments are allowed to the demands requesting

64, 96 and 118 GHz, respectively.

With comparison purposes, the performance of the proposed mechanism has been bench-

marked against a traditional RSA mechanism, where the spectrum contiguity constraint

must be ensured to all incoming demand requests. Particularly, a light-weight FF slot

allocation strategy has been considered in this mechanism. In both mechanisms, K =

3 candidate paths for each demand are taken into consideration, using the distance in

hops as the metric. Figure 4.5.a shows the average blocked bandwidth as a function of

the offered load. The blocked bandwidth refers to the useful bandwidth of demands that

are blocked, without the bandwidth allocated due to the guard bands. From the results,

it can be observed that the proposed mechanism yields significant improvements when

compared against the traditional RSA mechanism. These benefits become more remark-

able as the offered load to the network increases, which arises as a consequence of the

high spectrum fragmentation preventing high data-rate demand requests to be allocated

contiguously over the spectral resources. For example, the average blocked bandwidth

differences stay around 0.8% for an offered load equal to 20, whereas they increase up to

2.6% for an offered load equal to 40.
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a) b)

Figure 4.6: Simulation results: a) average TSP utilization per node as a function of
the offered load; b) average blocked bandwidth as a function of the size of the guard

band.

In order to analyze the causes of such a behavior in more detail, Figure 4.5.b depicts the

BP of the offered demand requests, based on their bandwidth requirements. Looking at

the obtained results, a drastically reduced BP can be appreciated for the high data-rate

demands when the proposed mechanism is employed. Indeed, thanks to the fragmentation

of such demands into multiple lower data-rate ones, available spectral gaps can still be

employed to allocate them. Focusing on the 118 GHz demands, for instance, the BP

that they experience can be reduced from 2.02% to 0.56% for an offered load equal to 20.

Even more pronounced differences can be identified for higher loads, such as a reduction

from 7.61% to 3.33% when a load equal to 30 is offered to the network. It is interesting

to note as well, that such a BP reduction for high data-rate demands does not entail

a pernicious performance degradation of the low data-rate demands. From the figure,

the only low data-rate demands experiencing slightly increased BP are those requesting

32 GHz. However, the performance deterioration is only remarkable in highly loaded

scenarios, which would probably lay out of the network load operating range.

Heretofore, the obtained results highlight that the proposed mechanism succeeds in im-

proving the BP figures in EONs, being high data-rate demands those experiencing the

highest benefits. However, little attention has been paid to the real effects of the ad-

ditional BV-TSPs used at the source and destination nodes to enable the SSA. To give

insight into this effect, Figure 4.6.a depicts the average number of TSP used per node,

depending on whether the traditional RSA or the proposed mechanism is applied as a

function of the offered load. As can be observed, up to a load equal to 20, the average

number of TSPs used per node in our mechanism is practically identical as with the tradi-

tional RSA. Moreover, even for loads beyond this value, the average TSP utilization does

not increase so notoriously, so as to imply a strong TSP unavailability in any network

node. These results could be explained from the fact that, in the usual network operating
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range (e.g., offered loads resulting in BP around 1%), the fragmentation of the demands

are only required in a small number of occasions.

To complete the study, the effect of the guard band when accommodating the demands has

been also analyzed. To this goal, two different offered load scenarios have been considered,

namely, 20 and 40. Then, in such scenarios, the size of the guard band has been modified

from 0 (ideal situation) to 20 GHz. Figure 4.6.b shows the average blocked bandwidth as a

function of the size of G. We can see that both traditional RSA and proposed mechanism

show similar behaviors in this regard. As the size of G increases, so it does the blocked

bandwidth. Moreover, even though the proposed mechanism requires the allocation of

an extra number of guard bands for those high data-rate demands that need to be split

in multiple parts, the resulting behavior does not show a clear performance degradation,

since the spectrum utilization still remains higher than in the traditional RSA.

4.3.2 Optimal SS-enabled RSA

The previous subsection presented a mechanism capable of efficiently perform the resource

assignment of incoming connections in a SS-enabled EON. However, its design only con-

sidered the BV-TSP implementation as the enabling technology to perform the splitting

of the demands. Additionally, although the mechanism encouraged the minimization of

the number of parts a demand is split, the decisions made by the mechanism are purely

heuristic-based. Hence, to really obtain a solution that minimizes the number of employed

parts and, as a consequence, the number of FSs used to serve a demand, a more opti-

mized mechanism has to be designed. To this end, in what follows, a Mixed Integer Linear

Programming (MILP)-based mechanism called Split Spectrum-enabled RSA (SSRSA) is

proposed to efficiently allocate incoming demands in SS-based dynamic EONs, with the

objective to find the optimal resource assignment that minimizes the number of parts into

which a demand is split, jointly with the undesired spectrum fragmentation. The SSRSA

mechanism is valid for both SSA implementation strategies using BV-TSPs or MF-TSPs.

Note, however, that SSRSA only employs the SSA to solve demand blocking due to lack

of enough contiguous FSs, as its use is reserved for moderately-sized networks where all

candidate paths are within the maximum transmission reach of the signals. Moreover,

the routing of the parts follows the single path strategy, that is, all the parts into which a

demand is split are routed through the same physical path. The incorporation of the mul-

tipath routing strategy and the implications on the resource assignment will be studied

in the following section.

Before proceeding with the mechanism details, let us discuss more in depth some extra

considerations regarding the number of parts a demand may be split in a SS-enabled

EON as well as the size of the said parts when optimally tackling the resource assignment

for every one of the split parts. Although the actual number of necessary FSs to allocate

a demand in a SS-enabled EON can be computed according to Equation (4.1) as stated

before, its value may vary significantly depending on the amount of B allocated to each
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one of the parts. Hence, it is necessary to estimate the range of possible values of S as a

function of the number of parts resulting from the split procedure.

Taking as an example the case where a demand is split into two parts, that is H = 2,

and developing the expression depicted in Equation (4.1), thanks to the mathematical

properties of the ceiling function the following expression is obtained:

⌈
B + 2G

Fw

⌉
+ 1 ≥ S ≥

⌈
B + 2G

Fw

⌉
(4.4)

Such expression allows us to determine the valid range of employed parts when dividing

a demand. If we extend the expression to the generic case where a demand may be split

in H different parts, the previous expression becomes:

⌈
B +H ×G

Fw

⌉
+H − 1 ≥ S ≥

⌈
B +H ×G

Fw

⌉
(4.5)

This relationship serves in determining how many FSs are needed when dividing B in a

number of parts H, also giving upper and lower bounds of this value. Note, however, that

some restrictions apply on the minimum and maximum part size as well. The minimum

size of a part that allows allocating some amount of B is:

Smin =

⌈
G+ ε

Fw

⌉
(4.6)

where ε denotes an infinitesimal amount of B. Otherwise, the part would not be compli-

ant with the guard band requirements when allocating useful demand bandwidth. The

maximum size of a part, referred as Smax, is equal to the number of FSs determined

by Equation (4.1), avoiding to waste spectral resources due to allocating more FSs than

needed.

With such considerations, let us now proceed with the mechanism description. Let the

optical network substrate be characterized by a graph Gn = (N,E), where N denotes the

set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the set of physical links. Let F denote

the set of available FSs per physical link and d the incoming demand to be allocated.

We define Pd as the set of candidate paths over Gn for demand d, with hp the length in

hops of path p, F p
u as the set of FSs already in use over p ∈ Pd, and TSPs and TSPd

as the number of unused TSPs at source and destination nodes, respectively. Finally,

Hmax denotes the maximum number of parts into which a demand can be split (i.e., to

avoid excessive splitting) and FLmax denotes the maximum number of independent flows

a MF-TSP is capable to produce. Regarding the MF-TSP-base implementation, it is

considered that a single MF-TSP is used to transmit at most one demand, being split or

not, with the aforementioned limit of independent flows.
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Inputs: d, Gn, F , G, Fw, K, Hmax, FLmax, α;
Output: Sol

Phase 1: Pre-processing
TSPs ← free transponders at source node
TSPd ← free transponders at destination node
if TSPs = 0 or TSPd = 0 then

Demand blocked
else

Pd ← K shortest paths in terms of number of hops
for i = 1 to K do

F i
u ← set of end-to-end busy FSs in path i

Phase 2: MILP solving
Sol← output from MILP

Phase 3: Solution evaluation
if Sol = ∅ then

Demand blocked
else

Return Sol
Update network resources according to Sol
Demand allocated

Table 4.1: SSRSA mechanism pseudo-code.

The proposed mechanism executes a MILP formulation, considering the demand needs,

the candidate paths and the actual state of the network resources, with the objective

of minimizing the number of parts required to allocate d, together with the spectrum

fragmentation on the network. The aim of the first objective is to reduce the number

of required TSPs to serve the demand (BV-TSP-based implementation) as well as the

complexity of the whole assignment process since more parts will require a larger control

plane burden in terms of setup, management and release operations. Moreover, another

reason to encourage the minimization of the number of parts is that, due to the presence

of the guard bands, dividing a demand into a large number of parts will usually result in

more spectral resources (i.e. FSs) needed to allocate the demand as it was already stated

during the previous subsection.

As for the second objective, since the problem under consideration deals with an online

optimization scenario, where demands arrive and depart at random, the aforementioned

spectrum fragmentation effect becomes a limiting factor when trying to establish a new

connection. Under such scenario, it is desirable to keep the spectrum fragmentation at

minimum in order to facilitate the establishment of future demands. The approach that

the presented mechanism follows in this respect is to minimize the average end-to-end

spectrum fragmentation in the candidate paths for the demand that is being established,

since an overall network defragmentation would be too costly to perform. In this regard,

the MILP formulation minimizes the contiguous busy portions in the spectrum, that is,

it tries to fit the demands so as to avoid having idle spectrum gaps in between occupied

resources. Doing so the free spectral resources will become less scattered along the total

fiber spectrum, hence, reducing the spectrum fragmentation in the network.

If the model finds a non empty solution, it means that a feasible RSA for the demand has
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been found. In this event, resources are reserved and the network status is updated ac-

cordingly. Otherwise, the demand is marked as blocked. A pseudo code of the mechanism

is depicted in Table 4.1.

Regarding the specific MILP formulation, the model variables are as stated below:

xp,f : binary; 1 if slot f is the first slot of a part in path p, 0 otherwise.

yp,f : binary; 1 if slot f is used in path p to allocate d, 0 otherwise.

zp,f : binary; 1 if slot f is occupied in path p, 0 otherwise.

up: binary; 1 if path p is used to allocate d, 0 otherwise.

mp: integer; number of parts into which d is split that are routed through path p.

sp: integer; number of FSs needed to allocate d that are routed through path p.

tp: integer; number of busy contiguous spectrum portions in path p.

c: integer; used to calculate the ceiling function present in Eq. 4.5

vp,f,f+1, wp,f,f+1: real; auxiliary variables ∈ [0,1].

Before detailing the exact MILP formulation, it is necessary to introduce the procedure

that is followed to compute mp in a candidate path. Taking the state of the spectral FSs,

a potential part of d is discriminated by a free-to-allocated and another allocated-to-free

FS transition, namely, a 0-1 and a 1-0 transition in variables yp,f . Thus, subtracting yp,i+1

from yp,i, if the result is different than 0, a transition is detected. Therefore:

mp = 0.5

|F |−1∑
i=1

|yp,i − yp,i+1| (4.7)

However, equation (4.7) does not detect correctly transitions before the initial and after

the last FS of the fiber link spectrum. To this end, it is necessary to add yp,1 and yp,|F |
in (4.7) to properly compute mp:

mp = 0.5(yp,1 + yp,|F | +

|F |−1∑
i=1

|yp,i − yp,i+1|) (4.8)

The term within the sum in (4.8) can only take values equal to -1, 0 or 1. Hence, the

absolute value function can be substituted by the square function, which results in:

mp = 0.5(yp,1 + yp,|F | +

|F |−1∑
i=1

(y2
p,i − 2yp,iyp,i+1 + y2

p,i+1)) (4.9)
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Thanks to the binary nature of the variables, quadratic terms can be simplified. Thus,

rearranging expression (4.9):

mp =

|F |∑
i=1

yp,i −
|F |−1∑
i=1

yp,iyp,i+1 (4.10)

Using expression (4.10) the number of parts into which d is split and are routed through

path p can be now obtained. A similar reasoning can be applied to obtain the number of

busy contiguous spectral portions in a candidate path (i.e., considering variables tp and

zp,f ). However, a product of decision variables is encountered, making the expression non-

linear. To linearize it, auxiliary variables vp,f,f+1 and wp,f,f+1 are introduced, together

with some additional constraints in the proposed MILP formulation, which is detailed in

what follows:

min α
1

Hmax|Pd|
∑
p∈Pd

hpmp + (1− α)
2

|Pd||F |
∑
p∈Pd

hptp+

ε
1

|Pd||F |
∑
p∈Pd

|F |∑
i=1

ihpyp,i

(4.11)

subject to:

B +
∑
p∈Pd

mp ×G

Fw
+ 1 ≥ c ≥

B +
∑
p∈Pd

mp ×G

Fw
(4.12)

c+
∑
p∈Pd

mp − 1 ≥
∑
p∈Pd

sp ≥ c (4.13)

∑
p∈Pd

sp ≥ Smin ×
∑
p∈Pd

mp (4.14)

i+Smax∑
j=i

yp,j ≤ Smax,∀ p ∈ Pd, i = 1, ..., |F | − Smax (4.15)

xp,i ≤ yp,j,∀ p ∈ Pd, i = 1, ..., |F | − Smin + 1

j = i, ..., i+ Smin − 1

xp,i = 0,∀ p ∈ Pd, i = |F | − Smin + 2, ..., |F |
(4.16)
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yp,i−1 ≤ 1− xp,i,∀ p ∈ Pd, i = 2, ..., |F | (4.17)

mp =

|F |∑
i=1

yp,i −
|F |−1∑
i=1

vp,i,i+1, ∀ p ∈ Pd (4.18)

tp =

|F |∑
i=1

zp,i −
|F |−1∑
i=1

wp,i,i+1,∀ p ∈ Pd (4.19)

|F |∑
i=1

xp,i = mp,∀ p ∈ Pd (4.20)

|F |∑
i=1

yp,i = sp,∀ p ∈ Pd (4.21)

yp,f = 0, ∀ p ∈ Pd, f ∈ F p
u (4.22)

zp,f = 1,∀ p ∈ Pd, f ∈ F p
u

zp,f = yp,f ,∀ p ∈ Pd, f ∈ F\F p
u

(4.23)

vp,i,i+1 ≤ yp,i, yp,i+1

vp,i,i+1 ≥ yp,i + yp,i+1 − 1,∀ p ∈ Pd, i = 1, ..., |F | − 1
(4.24)

wp,i,i+1 ≤ zp,i, zp,i+1

wp,i,i+1 ≥ zp,i + zp,i+1 − 1,∀ p ∈ Pd, i = 1, ..., |F | − 1
(4.25)

∑
p∈Pd

mp ≤ TSPs, TSPd (4.26a)

∑
p∈Pd

mp ≤ FLmax (4.26b)

∑
p∈Pd

mp ≤ Hmax (4.26c)
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up ≥ yp,f ,∀ p ∈ Pd, f ∈ F (4.27)

∑
p∈Pd

up = 1 (4.28)

Objective function (4.11) has a twofold goal. First, it minimizes the number of parts into

which d is split in order to be served. Moreover, it minimizes the spectrum fragmenta-

tion in the candidate paths through the minimization of the number of contiguous busy

spectrum portions. Parameter α ∈ [0, 1] is used for pondering purposes, while the last

term in (4.11) aims to speed up the convergence time of the model, with ε� 1. The use-

fulness of the convergence term comes from the fact that, initially, the MILP formulation

may find itself with a lot of symmetrical solutions with different RSA which evaluate the

objective function to the same value. In such conditions, the MILP formulation will have

troubles on deciding an initial root solution for starting the exploration of the solution

space. In order to help the MILP formulation making faster decisions when it faces the

situation where many different solutions lead to the same objective value, we introduce

the convergence factor.

Essentially, it prioritizes the lower part of the spectrum when assigning resources to d,

so in this way the model will quickly prefer lower indexed slots when there are multiple

candidate slots, exploring faster the solution space. Furthermore, the convergence term

also helps in providing a solution that requires less spectral resources (i.e., FSs), since

the model will try to minimize the summation of the used FSs. Finally, all terms in the

objective function are pondered by the length in hops of the associated candidate path

(hp). This is done since shorter candidate paths will usually entail using less network

resources, hence, helping on having enough free resources for future demands.

Constraints (4.12) and (4.13) build the relationship depicted in (4.5), where variable c is

used to calculate the ceiling function that appears in that expression. Constraint (4.14)

adds an additional lower bound for the total number of allocated FSs due to the presence

of Smin, ensuring that the total number of allocated FSs does not fall below the number

of used parts multiplied by the minimum size of a part (Smin). Constraints (4.15) and

(4.16) bound the minimum and maximum individual part size as presented before. Note

that, despite the presence of constraint (4.14), constraints (4.16) are still necessary to

guarantee that the size of each individual part does not fall below the minimal allowed

size part. Constraints (4.17) set the minimum separation between parts to one FS.

Constraints (4.18) and (4.19) account for the number of parts into which d is split and

the number of contiguous busy spectrum portions in the candidate paths, respectively.

Constraints (4.20) and (4.21) are the traffic constraints, accounting for the number of

needed FSs. Constraints (4.22) prevent the use of FSs that are already occupied. Con-

straints (4.23) give value to variables zp,f according to the current state of the FSs and
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the choice made by the model, while constraints (4.24) and (4.25) give value to auxiliary

variables vp,f,f+1 and wp,f,f+1.

Constraints (4.26) set the upper limit of parts into which d may be split. More specifically,

constraint (4.26a) avoids splitting d in more parts than available TSPs at source and

destination nodes, constraint (4.26b) avoids splitting d in more parts than flows a MF-

TSP is able to produce, while constraint (4.26c) sets the upper limit of the allowed number

of parts as commented before. Note that the first constraint (4.26a) is only applied in a

BV-TSP-based implementation while the second constraint (4.26b) is only applied in a

MF-TSP-based implementation. As for constraint (4.26c), its is applied for both MF-TSP

and BV-TSP-based implementations.

Finally, constraints (4.27) and (4.28) restrict the routing to a unique candidate path

since the presented mechanism focuses on the single-path approach, where all parts are

routed through the same physical path. Note that the presented model is based on a

link-path formulation, so restricting the size of Pd to K may not lead to obtaining the

overall optimal solution. The reason to follow such approach is due to the fact that

the mechanism is targeting an online optimization problem, so the execution times of

the model have to be under a reasonable time threshold. Such time requirements would

not be met if other modeling approaches where to be adopted, such as a flow-based

formulation. For this reason, a link-path-based formulation that allows to find a trade-off

between computational requirements of the model and optimality of the solution found

by properly setting the value of K has been adopted.

Although the presented SSRSA mechanism allows top optimally find the resource assign-

ment (both route and FSs) for every split part of a demand in a SS-enabled EON, its

dependence in a MILP may challenge its scalability in large network scenarios. To this

end, an heuristic mechanism called H-SSRSA that has the same objective as SSRSA is

also presented. The H-SSRSA can be used in large network scenarios and is based on the

assignment procedure presented during subsection 4.3.1. Indeed, the actual steps of the

H-SSRSA are as follows:

1. Check if there is at least one available TSP in both source and destination nodes.

Not being the case, mark the demand as blocked.

2. Compute K-shortest candidate paths from source to destination nodes.

3. For each candidate path, check if the total number of available FSs is equal or higher

than the minimum number of FSs needed to allocate d (i.e., in a single part). If

not, mark the candidate path as infeasible. Otherwise, sort the available spectral

gaps in descending order according to the following expression:

α
g

Gmax

+ (1− α)
Gmin

g
(4.29)
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where g denotes the size of the particular gap and Gmax and Gmin the sizes of the

largest and smallest gaps in the path, respectively.

4. For each of the feasible candidate paths, start filling the available spectral gaps

from the first to the last one, according with the previous ordering, with useful

bandwidth of d plus the guard bands (each gap will allocate a part of d). If d cannot

be completely allocated in the path, or the number of resulting parts exceeds Hmax,

or there are not enough TSPs at source/destination nodes to support the resulting

RSA (BV-TSP case), or the number of parts exceeds FLmax (MF-TSP case), mark

the path as infeasible.

5. If no feasible candidate path still exists, set d as blocked. Otherwise, evaluate the

objective function as in the MILP model particularized for each one of the feasible

candidate paths, and choose the path with the smallest value. Take its RSA as the

solution of H-SSRSA, reserve the associated network resources and set d as served.

Note that by sorting the available spectral gaps according to (4.29), the H-SSRSA mech-

anism tries to replicate the behavior of the SSRSA mechanism. If α = 1, the available

gaps will be ordered from the biggest to the smallest, so once they are filled with useful

bandwidth of d, the number of parts is being minimized. In the opposite case (α = 0), the

available gaps will be ordered from the smallest to the biggest, so when filling them, the

total number of spectral gaps after the filling process is minimized. Any case in between

would lead to a trade-off solution between the minimization of the number of parts and

the spectral gaps in the candidate path. Indeed, it can be seen that with this ordering,

jointly with the evaluation of the same objective function as in the MILP formulation,

H-SSRSA pursues the same optimization goal as SSRSA.

4.3.2.1 Simulation results

To evaluate the performance of both SSRSA and H-SSRSA mechanism, some simulation

studies have been performed. In order to quantify the benefits of optimally splitting

demands, a scenario where no splitting is performed (hereafter referred as 1-SSRSA) as

been used, forcing Hmax = 1 and α = 0 in the formulation. Two network scenarios have

been considered, namely, the EON16 (16 nodes, 23 links) and DT (14 nodes, 23 links)

network topologies as depicted in Appendix A. Besides, two situations with 160 and 320

FSs per fiber link have been assumed, with Fw = 6.25 GHz and G = 10 GHz. Regarding

network nodes, it is assumed that every node in the network is equipped with an infinite

pool of TSPs (i.e., no blocking occurs due to the lack of TSPs).

Results have been extracted by generating 105 bidirectional demand requests per exe-

cution. Requests arrive to the network following a Poisson process, with exponentially

distributed HTs. Loads are thus generated by adjusting the ratio between the mean HT

and IAT, so that load = HT/IAT. Bandwidth requirements of the demands are uniformly
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Table 4.2: SSRSA performance comparison

Scenario 1-SSRSA SSRSA

Network |F| Load % BBw BV-TSPs/node % BBw BV-TSPs/node MF-TSPs/node

EON16

160

5 0 0.69 0 0.69 0.69

10 0.0108 1.3 0.0016 1.3 1.3

15 0.1721 1.92 0.0319 1.93 1.93

20 1.0435 2.53 0.2499 2.58 2.55

25 3.3271 3.09 1.0503 3.27 3.18

320

30 0.0016 3.77 0 3.79 3.79

40 0.0344 5.05 0.0039 5.06 5.06

50 0.3627 6.28 0.0402 6.38 6.36

60 1.86 7.54 0.244 7.67 7.55

70 4.04 8.55 1.1244 9.21 8.79

DT

160

5 0 0.78 0 0.78 0.78

10 0.0152 1.5 0.0012 1.5 1.5

15 0.1677 2.21 0.0256 2.21 2.21

20 0.6769 2.9 0.1716 2.94 2.93

25 2.2554 3.57 0.6914 3.67 3.61

320

30 0.0016 4.33 0 4.4 4.4

40 0.0204 5.75 0.0068 5.76 5.76

50 0.2648 7.25 0.0392 7.26 7.18

60 1.0758 8.64 0.2206 8.76 8.67

70 2.7075 9.91 0.6764 10.24 9.98

chosen among 32, 64, 96 and 128 GHz. Moreover, K = 3, Hmax = FLmax = 4 and α =

0.5 are set in all cases. All simulations are run in standard PCs with i7-3770 CPUs at

3.4 GHz and 16 GB RAM using CPLEX v12.5.

Table 4.2 displays the percentage of blocked bandwidth (BBw) for 1-SSRSA and SSRSA,

as well as the average number of TSPs used per node when either BV-TSPs or MF-TSPs

are equipped in network nodes. As seen, SSRSA lowers BBw significantly in contrast to

1-SSRSA. Particularly, we can observe differences of one order of magnitude for low loads

in both networks and scenarios, with relative gains no worse than 69% for higher loads.

As in the study performed during subsection 4.3.1, demands requesting larger bandwidth

are the most benefited as they can be split up and be more easily allocated.

Regarding the average number of TSPs used per node with SSRSA, they are generally

reduced when MF-TSPs are employed, since all parts of a split demand can be supported

over a unique MF-TSP. However, note that such differences remain very small under

realistic offered loads (e.g., offered loads leading to BBw ≤ 1%). This is because a

low percentage of incoming demands need to be split in such scenarios (around 1% of

the total in average), which makes the MF-TSP capability to be considerably wasted

most of the time. In light of the above,the network CAPEX investments that would

be incurred to implement the SSA with either BV-TSPs or MF-TSPs in EON16 and

DT networks, as a function of the relative cost of a MF-TSP against a BV-TSP has been

analyzed. Parameter γ is used for these purposes, so that CostMF−TSP = γ ·CostBV−TSP .

Specifically, the study has focused on the scenario with 320 FSs/link in both networks, as

well as on two of the tested loads, namely, 60 and 70. The obtained results are shown in

Figure 4.7. The average network cost is calculated as Avg. TSPs/node × Nr of nodes ×
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a) b)

Figure 4.7: Simulation results: average network cost comparison in a) EON16/320
and b) DT/320 scenarios.

Cost of a TSP in both BV-TSP and MF-TSP implementations, setting CostBV−TSP = 1

as the base unit of cost.

As observed, MF-TSPs are only cost-effective with γ very close to 1, since demand split-

ting is infrequent under such a realistic offered loads leading to BBw < 1%. Conversely,

assuming that γ > 1 due to the inherently higher complexity of MF-TSPs compared to

BV-TSPs, it is generally more appropriate to deploy a slightly overprovisioned number

of BV-TSPs per node to perform SSA. For example, looking at Table 4.2 for the EON16

network and a load of 60, around 0.13 more BV-TSPs per node would be required to

perform SSA, compared to a non-splitting scenario (1-SSRSA). In the same network, this

value is increased to 0.66 for an offered load of 70.

Finally, as we commented during the description of H-SSRSA, SSRSA may suffer from

scalability issues in larger network scenarios. Let us discuss in more depth the computa-

tional complexity of SSRSA. Looking back at its description, one can see that the number

of binary variables of the MILP formulation is in the order of O(3K|F |) and the number

of constraints is in the order of O((Smin + 5)K|F |). It can be appreciated that its com-

plexity is tightly related to the size of F . As for the value of K, this parameter can be

tuned to find a trade-off between optimality and swiftness of the mechanism. However,

little can be done regarding |F |, as it is an intrinsic characteristic of the network scenario.

For this reason, the H-SSRSA mechanism has been proposed as an alternative mechanism

to find good solutions at a lower computational cost. Fig. 4.8 depicts the comparison

of H-SSRSA against SSRSA in terms of BBw as a function of the offered load. For this

results, K = 3, α = 0.5 have been considered, as well as no blocking due to the lack of

TSPs. All the results have been extracted focusing on the 160 FSs scenarios.

It can be appreciated that H-SSRSA produces BBw figures very close to the ones obtained

through SSRSA. As for the execution times experienced for both mechanisms, they are in
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a) b)

Figure 4.8: Simulation results: H-SSRSA vs SSRSA in a) EON16/160 and b) DT/160
scenarios.

the range 1.43-1.54 ms and 270-450 ms for H-SSRSA and SSRSA, respectively, in the 160

FSs scenarios, while they are in the range 1.33-1.74 ms and 340-730 ms for H-SSRSA and

SSRSA, respectively, in the 320 FSs scenarios. It can be appreciated that, as pinpointed

before, the execution times of SSRSA increase substantially as the size of F grows up,

while the execution times of H-SSRSA remain steady for all tested scenarios and more

than one order of magnitude below those of SSRSA. For these reasons, H-SSRSA succeeds

in its goal of providing near optimal solutions in much less time.

4.4 Route, Spectrum and Modulation level Assign-

ment (RSMLA) in SS-enabled EONs

During the previous section, the benefits of the SSA have been clearly stated through

the evaluation of the proposed mechanisms to perform the RSA in SS-enabled EONs.

However, it was considered that the bandwidth of a demand could be split in any way

among the resulting parts from the splitting procedure. In a more realistic scenario, this

is not the case, as the bandwidth of the parts is strictly related to the modulation format

employed to establish the different lightpaths. In fact, when serving an incoming demand

requesting for a bit-rate equal to Rd that needs to be split in multiple parts, the actual

bit-rate that will be served is equal to
H∑
i=1

Rmi
, where Rmi

is the bit-rate of the modulation

format employed to serve the ith part. At its turn, the bit-rate of each of the individual

parts will occupy a spectral bandwidth equal to Bmi
depending on the spectral efficiency

of the employed modulation format i.e., how many bits per second can be squeezed per

unit of spectrum. It can be clearly seen then that the total number of FSs needed to

allocate a demand in a SS-enabled EON strongly depends of the available modulation
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formats at the nodes and the current modulation formats assigned to each one of the

split parts. For this reason, it is necessary to extend the previous studies to also consider

the choice of the modulation format of the parts so as to address more accurately the

resource assignment when employing the SSA.

Additionally, as commented during section 4.2, the SSA may be used to overcome blocking

situations due to physical transmission reasons, since the resulting split parts are of a lower

bit-rate and more robust modulation formats can be used to serve them. In this sense,

it may happen that, although there are enough contiguous FSs to serve a high bit-rate

demand it has to be split into lower bit-rate sub-demands due to the fact that it is not

possible to establish a high-bit rate connection between the source and the destination

nodes due to transmission reach limitations.

Moreover, even though that the SSA allows to solve potential blocking situations (due

to the lack of contiguous FSs or transmission reach reasons) by exploiting the spectral

gaps on the end-to-end path of the connection, it may still be insufficient as the employed

FSs are constrained to the available spectral resources of the path. In this sense, it may

happen that there are not enough FSs in a single candidate path to allow the splitting of

the demand. To this end, the multipath routing strategy as introduced in section 4.2 can

be employed. In such situation, the different parts can be routed through totally different

physical paths, taking advantage even more of the available spectral gaps in the whole

network.

With all these considerations, a MILP-based mechanism called SSRSMLA to optimally

tackle the RSMLA problem in a dynamic SS-enabled EON is presented. The objective of

the optimization problem at hand is to find the most suitable resources (paths, spectrum

portion and modulation formats) to allocate an incoming demands (in one or multiple

parts) in the network, according to the current resources state, so that the overall BBR is

minimized. To encourage the minimization of BBR, two main sub-objectives are pursued:

1) Minimize the number of resources to serve the incoming demand; 2) Minimize the

spectrum fragmentation in the network.

To achieve the first sub-objective, multiple action lines are defined. Firstly, the number

of parts into which the demand is split should be minimized, as dividing the demands

into too many parts may exhaust rapidly the available TSPs in the nodes (BV-TSP case).

Moreover, as each of the resulting parts must be surrounded by guard bands, using more

parts to serve the demand implies occupying more spectral resources in the network.

Secondly, as a demand can be served employing multiple paths and modulation formats,

it may happen that different feasible solutions employing the same number of parts may

result in different number of required FSs. Therefore, the explicit minimization of the

total of FSs employed by the demand should be also encouraged. And thirdly, it is clear

that the sum of the bit-rates of all parts used to serve a demand has to be, at least, equal

to the original bit-rate of the demand. But, depending on the demand bit-rate and the

modulation formats supported by the TSPs, it may be infeasible to allocate exactly the
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requested bit-rate due to the limitations imposed by the granularity of the TSPs. With

this in mind, the disparity between these two values, stated as
H∑
i=1

Rmi
− Rd, should be

minimized. The main reason for doing so is to minimize the amount of spectrum finally

used by the demand, as higher bit-rate modulation formats usually require larger spectral

widths.

As for the second sub-objective, its main goal is to facilitate the allocation of future in-

coming demands, as spectrum fragmentation may lead to undesired BBR due to demands

not finding enough contiguous spectral resources, even if the SSA is applied. To achieve

such goal, as an overall network defragmentation would be too costly in terms of time and

complexity, the number of spectral gaps present in the candidate paths of the demand is

minimized, as already presented for the SSRSA mechanism in 4.3.2 By minimizing the

spectral gaps, spectral resources are less scattered along the candidate paths, helping

future demands in finding large portions of contiguous FSs.

Before depicting the details of the SSRSMLA mechanism, additional definitions aside

from the ones introduced in 4.3.2 are stated. Let d represent the incoming demand to be

served which is characterized by its requested bit-rate Rd and its source and destination

nodes (sd and td), lp the physical length of the candidate path p ∈ Pd and Pe ⊆ Pd
the set of candidate paths for d that traverse physical link e ∈ E. Additionally, let M

represent the set of modulation formats supported by TSPs at nodes and Mp ⊆M as the

set of feasible modulation formats for demand d in path p ∈ Pd, that is, the modulation

formats that support a transmission reach equal or greater than the physical length of

the candidate path. Every modulation format m belonging to Mp is characterized by its

transmission reach TRm, bit-rate Rm, spectral bandwidth Bm and associated number of

FSs Sm calculated using expression (4.1). Finally, Lmax represents the maximum number

of paths that a demand is allowed to use. This parameter will be used to avoid employing

too many paths, which may result in spectrum allocation inefficiency.

Moreover, reviewing the literature related to MILP-based formulations tackling the op-

timal solution of the RSMLA problem [CTV11, WCP11, KW11, WHZ12] it can be ap-

preciated how the consideration of the spectrum contiguity constraint greatly increases

the complexity of the formulations. Note that in SS-enabled EONs such a constraint

still has to be ensured for each one of the parts into which the demand is split. To this

end, the spectrum contiguity constraint is modeled following the same approach proposed

by the authors in [VKRC12]. There, authors use pre-computed sets of contiguous FSs,

named channels. Each channel consists of a subset of adjacent FSs providing just enough

spectrum to support the spectral needs of a particular demand. This approach makes

MILP-based solutions for the RSMLA problem solvable in practical times.

With all this in mind, let C represent the set of pre-computed candidate channels for

demand d, Cp ⊆ C the set of channels for candidate path p ∈ Pd, Cp,m ⊆ Cp the set

of channels employing modulation format m ∈ Mp in path p and Cp,f ⊆ Cp the set of

channels that are mapped in FS f in path p. Note that all channels belonging to Cp,m
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Inputs: d,Gn,F ,M ,K,Hmax,Lmax,FLmax,α,β,γ,δ; Output: Sol

Phase 1: Pre-processing
if TSPs = 0 or TSPt = 0 then

Demand blocked
Pd ← K shortest paths from sd to td using lp as the metric
for i = 1 to K do

Mi ← set of modulations belonging to M with TRm ≥ li
if Mi = ∅ then

Remove pi from Pd

if Pd = ∅ then
Demand blocked

C ← ∅
for i = 1 to |Pd| do

Ci ← ∅
for j = 1 to |Mi| do

Ci,j ← ∅
c← ∅
for k = 1 to |F | do

if fk ∈ F in path pi is free then
c← fk ∪ c

else
c← ∅

if |c| = Sj then
Ci,j ← c ∪ Ci,j

c← ∅
Ci ← Ci,j ∪ Ci

if Ci = ∅ then
Remove pi from Pd

else
C ← Ci ∪ C

Phase 2: MILP solving
if Pd = ∅ then

Demand blocked
else

Sol← output from MILP(d, Pd, C, Hmax, Lmax, FLmax,α, β, γ, δ)

Phase 3: Solution evaluation
if Sol = ∅ then

Demand blocked
else

Return Sol
Update network resources according to Sol
Demand allocated

Table 4.3: SSRSMLA mechanism pseudo-code.

will have an associated number of FSs equal to Sm as they are the candidate sets of

contiguous FSs that fit the spectral needs of modulation format m ∈ Mp. Specifically,

every channel c ∈ C has its own value of associated bit-rate, number of FSs and first FS

of the channel, denoted as Sc, Rc and fc, respectively.

Considering these definitions, Table 4.3 depicts the pseudo-code of the presented mecha-

nism. Essentially, given an incoming demand, a MILP formulation is executed in order to

find the optimal RSMLA depending on the network status and the demand needs. More

specifically, the mechanism is structured in three phases. The first phase is devoted to

obtaining the sets that will be later used in the MILP formulation, namely, the candidate

path and channel sets. For the candidate path set, a K link-distinct SP strategy, where

K is an input parameter. The metric of the paths is the physical distance, as it becomes
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a very relevant factor in order to maximize the possibilities to successfully allocate a

demand. That is, shorter paths allow more modulation formats than longer ones, hence

supporting more candidate channels to serve a demand.

As for the channel calculation, firstly it determines for every of the previously calcu-

lated paths which are the modulation formats supported through that path, that is, the

modulation formats so that TRm ≥ lp. If no path has at least one feasible candidate

modulation, the demand is automatically blocked, as it will be impossible to reach the

destination in a transparent way as an all-optical scenario is being targeted. For the

candidate paths that have at least one feasible candidate modulation, the mechanism

proceeds to calculate the candidate channels, given the modulation characteristics and

FS availability over the path. The operation to determine the candidate channels is very

simple, it consist on just finding spectral gaps of equal width as the spectral width of the

modulation format to be associated to the channel.

Once the candidate path and channel sets are filled, the mechanism proceeds with the

following step. In this phase, the mechanism executes a MILP formulation, whose details

will be later explained, that will find the optimal RSMLA for the demand d given the

aforementioned candidate sets and the state of the network. The parameters α, β, γ and

δ are weighting factors. Before executing the MILP, though, the mechanism checks if at

least one of the candidate paths has a non empty set of candidate channels, otherwise

the demand is directly blocked as no combination of modulation format and contiguous

spectral blocks that fulfill the requirements of the demand is found.

Finally, the mechanism checks if the solution of the MILP formulation is empty or not.

If not empty, it means that exists an optimal solution that fulfills the requirements of

the demand. This being the case, the solution is adopted as the RSMLA for the demand

and network resources are updated accordingly. The details of the MILP formulation are

shown below, whose decision variables are introduced below:

xp,c: binary; 1 if path p ∈ Pd and channel c ∈ Cp are used to allocate the demand, 0

otherwise.

yp: binary; 1 if path p is utilized to allocate the demand, 0 otherwise.

zp,f : binary; 1 if FS f in path p is occupied, 0 otherwise.

Pp: integer; number of parts routed over path p.

Tp: integer; number of spectral gaps in path p.

wp,f,f+1: real; auxiliary variables in the range [0,1].

A: real; difference between the requested bit-rate and the allocated bit-rate.

Variables zp,f , Tp and wp,f,f+1 have the same goal as in the SSRSA mechanism presented

in subsection 4.3.2: determine the portions of busy FSs along the candidate paths, which
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will be used to minimize the spectrum fragmentation in the network. The procedure to

calculate them is the same already introduced for the SSRSA mechanism. With this, the

proposed MILP formulation is as follows:

min α
1

Hmax|Pd|
∑
p∈Pd

hpPp + β
2

|F ||Pd|
∑
p∈Pd

hpTp +

γ
1

|C|
∑
p∈Pd

hp
∑
c∈Cp

Sc(1 + εfc)xp,c + δ
A

max{Rm}
(4.30)

subject to:

Rd ≤
∑
p∈Pd

∑
c∈Cp

Rcxp,c (4.31)

A =
∑
p∈Pd

∑
c∈Cp

Rcxp,c −Rd (4.32)

yp ≥ xp,c,∀p ∈ Pd, c ∈ Cp∑
p∈Pd

yp ≤ Lmax (4.33)

∑
p∈Pd

Pp ≤ Hmax, TSPs/φ, TSPt/φ, FLmax/(1− φ) (4.34)

∑
p∈Pe

∑
c∈Cf

xp,c ≤ 1,∀e ∈ E, f ∈ F (4.35)

Pp =
∑
c∈Cp

xp,c,∀p ∈ Pd (4.36)

Tp =

|F |∑
i=1

zp,i −
|F |−1∑
i=1

wp,i,i+1,∀p ∈ Pd (4.37)

zp,f = 1,∀p ∈ Pd, f ∈ F u
p

zp,f =
∑
c∈Cf

xp,c,∀p ∈ Pd, f ∈ F\F u
p (4.38)
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wp,i,i+1 ≤ zp,i, zp,i+1

wp,i,i+1 ≥ zp,i + zp,i+1 − 1,∀p ∈ Pd, i = 1, ..., |F | − 1 (4.39)

Objective function (4.30) has multiple optimization goals: 1) minimize the number of

parts into which the demand is split; 2) minimize the number of spectral gaps in the

candidate paths; 3) minimize the number of FSs that the demand uses; and 4) minimize

the difference between the allocated and the requested bit-rate. Note that the model

tries to prioritize the use of paths with less hops; this way, less network resources are

occupied. Parameters α, β, γ and δ are weighting factors used to put more or less weight

to the terms in the objective function depending on the scenario. Factor ε is used as

a convergence factor with value � 1 to reduce the execution time of the MILP model.

Finally, max{Rm} denotes the maximum value among all bit-rates of the modulation

formats supported by TSPs.

Regarding the constraints, constraint (4.31) is the traffic constraint, ensuring that at least

a bit-rate equal to Rd will be assigned to demand d, while constraint (4.32) accounts for

the aforementioned difference between the allocated and requested bit-rate. Constraints

(4.33) set the limit of paths to be used by the demand to Lmax. Note that this value is

independent of the value K used to obtain Pd. It could happen for instance that even

having 3 candidate paths, the operator wants to limit the number of paths over which the

demand will be routed to 2. The single-path option can be easily implemented by setting

Lmax = 1 with no need of further modifications in the formulation nor the mechanism

itself. Constraints (4.34) set the allowed number of parts, limiting them to the number of

available TSPs at source and destination and the maximum number of flows; parameter

φ is set to 0 if MF-TSPs are employed and to 1 otherwise. Constraints (4.35) are the

spectrum clashing constraints that avoid using more than one channel in a FS of a given

path. Constraints (4.36) and (4.37) account for the number of parts and spectral gaps in

the candidate paths, respectively. Constraints (4.38) give value to variables zp,f according

to the actual status of the spectral resources and the decisions made by the model. Finally,

constraints (4.39) are used to give value to auxiliary variables wp,f,f+1.

The proposed SSRSMLA mechanism allows solving optimally the RSMLA problem for

an incoming connection in a SS-enabled EON, considering both BV-TSP and MF-TSP

implementations, as well as both single and multipath routing strategies. However, its

dependence on MILP may limit its scalability to address very large network instances.

For this reason, a heuristic mechanism, called H-SSRSMLA, is also developed in order

to provide still accurate results at lower computational cost, making it an option when

scalability becomes challenging.

H-SSRSMLA is based on a greedy iterative mechanism that selects at every iteration

the best solution element from a pre-calculated set of candidate solution elements. This
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element is considered as a part of the whole solution constituting the RSMLA for the

demand. Next, the candidate solution elements are updated and the mechanism proceeds

with the next iteration, until the demand is fully allocated or the candidate set becomes

empty. Let us define O as the candidate set, being o an element inside this set. Every

element o has associated a path p, a modulation format m and an ordered set of spectral

gaps gp corresponding to the spectral gaps of path p, being g1
p the first element in the set

gp. With these, Table 4.4 depicts the pseudo-code of H-SSRSMLA.

The first phase in H-SSRSMLA builds the candidate path, modulation and spectral gaps

sets. For the latter, the mechanism obtains the end-to-end spectral gaps for a candidate

path and sorts them in descending size order, that is, starting with the gap of biggest

size and ending with the gap of smallest size. The idea behind this ordering is to favor

the allocation of a demand in less parts, as bigger spectral gaps will likely be able to

fit more types of modulation formats. As for the modulation format sets, note that the

mechanism removes from the sets any modulation format for which its spectral width in

FSs, that is, Sm, is bigger than the first element in the candidate gaps sets, that is, the

biggest spectral gap, as it would be infeasible to employ these modulation formats to serve

the demand. Once all the candidate sets have been built, the mechanism proceeds with

the construction of the initial set of candidate solution elements, assigning to each one

of them a candidate path, modulation format and set of spectral gaps. Then, it orders

the solution elements according to a comparison method, named CompareProcedure

in the pseudo-code. The exact details of CompareProcedure will be discussed later

on.

The next phase starts a loop where the first element in O is added to the complete solution

in each iteration, until any of the following stop criteria is met: 1) all the demand’s bit-rate

is served; 2) no more candidates exist; 3) the number of parts has reached its limit Hmax;

4) there are not enough free TSPs at source or destination to support such number of parts

(BV-TSPs case); or 5) the number of parts has reached the maximum number of flows

(MF-TSPs case). Parameter φ has the same purpose as in SSRSMLA. In every iteration

the mechanism also updates the resources associated to the elements in O (basically

the set of spectral gaps gp) and sorts them again according to CompareProcedure.

Moreover, it eliminates all the infeasible candidates once updated. Furthermore, in every

iteration the mechanism checks if the path limit Lmax is reached, eliminating all elements

in O with paths not in the solution built so far once this limit has been reached. Finally,

the mechanism checks if all the bit-rate of the demand has been served and, hence, a

feasible RSMLA has been found for that particular demand. This being the case, the

demand is successfully allocated and network resources are updated accordingly.

As for CompareProcedure, essentially, it is a prioritization mechanism that given two

elements from the set O, determines the relative order between them in terms of quality.

So, when executing CompareProcedure, the elements of higher quality will be at the

beginning of the set. The prioritization criteria are as follows:
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Inputs: d,Gn,F ,M ,K,Hmax,Lmax,FLmax; Output: Sol

Phase 1: Pre-processing
if TSPs = 0 or TSPt = 0 then

Demand blocked
Pd ← K shortest paths from sd to td using lp as the metric
for i = 1 to K do

Mi ← set of modulations belonging to M with TRm ≥ li
if Mi = ∅ then

Remove pi from Pd

if Pd = ∅ then
Demand blocked

for i = 1 to |Pd| do
gi ← spectral gaps of ith path
if gi = ∅ then

Remove pi from Pd

else
Order gaps in gi in descending size order

if Pd = ∅ then
Demand blocked

for i = 1 to |Pd| do
for j = 1 to |Mi| do

Si,j ← number of FSs for modulation j in path i
if Si,j > |g1i | then

Remove mi,j from Mi

if Mi = ∅ then
Remove pi from Pd

if Pd = ∅ then
Demand blocked

Phase 2: Construction
O ← ∅
for i = 1 to |Pd| do

for j = 1 to |Mi| do
O ← o{pi,mi,j , gi} ∪O

Sort O according to CompareProcedure

Phase 3: Execution
ResBr ← Rd, Parts← 0, Paths← 0, ps ← ∅, ms ← ∅, ss ← ∅
while ResBr > 0 and O 6= ∅ and Parts < Hmax and Parts < TSPs/φ and
Parts < TSPt/φ and Parts < FLmax/(φ− 1) do

ps ← path of first element in O
ms ← modulation of first element in O
ss ← first Sm FSs in g1p of first element in O
Sol← {ps,ms, ss} ∪ Sol
Parts+ +
ResBr ← ResBr − o.Rm

if Paths = 0 then
Paths+ +

else if Paths < Lmax then
Paths← number of different paths used currently in Sol

else
Remove all elements o ∈ O with o.p not in Sol

Update and sort again gp for every o ∈ O
for i = 1 to |O| do

if |oi.g1p| = 0 or oi.Sm > |oi.g1p| then
Remove oi from O

Sort O according to CompareProcedure

Phase 4: Evaluation
if ResBr > 0 then

Demand blocked
else

Return Sol
Update network resources according to Sol
Demand allocated

Table 4.4: H-SSRSMLA mechanism pseudo-code.
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1. Element with Rm = ResBr. If both meet, then:

(a) Element with bigger |g1
p|/(Sm × hp).

(b) Element with smaller Sm × hp.
(c) Element with bigger |g1

p|.

2. Element with Rm > ResBr. If both meet, then:

(a) Element with smaller Rm.

(b) Element with bigger |g1
p|/(Sm × hp).

(c) Element with smaller Sm × hp.
(d) Element with bigger |g1

p|.

3. Element with Rm < ResBr. If both meet, then:

(a) Element with bigger Rm.

(b) Element with bigger |g1
p|/(Sm × hp).

(c) Element with smaller Sm × hp.
(d) Element with bigger |g1

p|.

In this regard, candidate elements with Rm equal to the current residual bit-rate are

prioritized, followed by elements with Rm higher than the residual bit-rate and, last,

elements with Rm lower than the residual bit-rate. Within the latter two categories,

elements with Rm closer to the residual bit-rate are prioritized among the rest. By doing

so, the number of parts into which a demand may be split is minimized. Also, inside

each category, elements are prioritized in the following order: 1) bigger |g1
p|/(Sm × hp);

2) smaller Sm × hp; and 3) bigger |g1
p|. By doing so, the mechanism makes a good trade-

off between combinations of path and modulation format that will employ less network

resources (i.e., FSs) and paths with bigger spectral gaps, that will likely fit the demand

in less parts and leave more contiguous resources for future demands.

Note, however, that H-SSRSMLA is only intended for the multi-path case, while some

adjustments are necessary to obtain a good mechanism for the single-path case. In fact, by

only setting Lmax = 1 in H-SSRSMLA would limit the heuristic to only examine the first

selected path among the candidate ones, potentially getting trapped in a local optimum.

To avoid this, some minor modifications in H-SSRSMLA are introduced to also work

properly in the single-path case. Essentially, instead of feeding the mechanism with all

candidate paths at once, the mechanism is executed independently for every candidate

path and, at the end, the produced solution of higher quality in terms of |g1
p|/(# of

employed FSs×hp) is selected. By doing so, it makes sure that all candidate paths are

explored to obtain a single-path solution, selecting among these solutions the one that

makes the best trade-off between contiguous and used spectral resources. Note in this

case that the the value of Lmax is not relevant as the mechanism is executed for one path

at a time, implicitly setting this parameter to 1.
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4.4.1 Simulation results

To evaluate the performance of both SSRSMLA and H-SSRSMLA mechanisms extensive

simulations have been executed. In order to quantify the benefits of optimally splitting

the blocked demands, a scenario where no splitting is performed (hereafter referred as

NSRSMLA) is used as a benchmark. To this end, the presented SSRSMLA mechanism

forcing Hmax = 1 and α = 0 in the formulation is employed. Two network topologies,

namely, the EON16 and the DT topologies, as well as two situations regarding spectral

resources, namely 160 and 320 FSs per fiber link, with Fw = 6.25 GHz and G = 10

GHz have been cosnidered. As for the modulation formats supported by TSPs, Table 4.5

depicts them, together with their characteristics in terms of bit-rate (Br), spectral width

(Bw) and transmission reach (TR).

Results have been extracted by generating 105 bidirectional demand requests per execu-

tion. Requests arrive to the network randomly following a Poisson process, with expo-

nentially distributed HTs. The bit-rate of the demands is uniformly chosen among 25, 50,

100 and 200 Gb/s. Additionally, source and destination nodes for the demands are chosen

with equiprobability among all network nodes. Moreover, K = 3, Hmax = FLmax = 4

and α = β = γ = δ = 1 are set in all cases. As for Lmax, its value is set to 3 for the

multi-path case and to 1 for the single-path case. All simulations are run in standard

PCs with i7-3770 CPUs at 3.4 GHz and 16 GB RAM using CPLEX v12.2 as optimization

software.

Figure 4.9 depicts the BBR of the mechanisms in the 320 FSs scenarios. Graphs are plot-

ted as a function of the normalized HT of the demands, fixing their average inter-arrival

time to 1 time unit. It can be appreciated that the optimal splitting of the demands leads

to substantial reductions on the BBR when compared to a scenario where no splitting

is performed, with the multi-path option performing better than the single-path option.

Particularly, relative gains in the range 21-40% and 27-50% can be appreciated in the DT

network scenarios for SSRSMLA against NSRSMLA, in single and multi-path scenarios,

respectively. As for EON16 scenarios, relative gains in the range 22-80% and 38-85% can

be appreciated for SSRSMLA against NSRSMLA in the single and multi-path scenarios,

respectively. In this regard, it can be observed that, in average, the mechanism achieves

greater reductions in the EON16 scenarios. This can be explained due to its topological

characteristics; particularly, it has a physical diameter bigger than DT, so less candidate

modulation formats are available. Hence, giving the opportunity to be served as multiple

parts has larger impact on the number of demands that can be successfully allocated. As

for the DT network scenarios, since demands have more candidate modulation formats,

it is easier to allocate them without splitting, so the splitting procedure has a slightly

lower impact in terms of BBR in such scenarios. On average, demands in EON16 network

scenarios are split in 1.02 parts, while in DT network scenarios they are split in 1.0023

parts.
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Table 4.5: Supported modulation formats

Modulation Br (Gb/s) Bw (GHz) TR (km)

28 Gbaud SP-BPSK 25 42 3000

28 Gbaud PDM-BPSK 50 42 2400

28 Gbaud PS-QPSK 75 42 2000

28 Gbaud PDM-QPSK 100 42 1200

28 Gbaud PDM-8QAM 150 42 500

28 Gbaud QPM-16QAM 200 42 300

56 Gbaud SP-BPSK 50 70 3000

56 Gbaud PDM-BPSK 100 70 2400

56 Gbaud PS-QPSK 150 70 2000

56 Gbaud PDM-QPSK 200 70 1200

84 Gbaud SP-BPSK 75 98 3000

84 Gbaud PDM-BPSK 150 98 2400

112 Gbaud SP-BPSK 100 126 3000

112 Gbaud PDM-BPSK 200 126 2400

a) b)

Figure 4.9: Simulation results: BBR in a) DT/320 and b) EON16/320 scenarios.

Concerning the comparison between single-path and multi-path cases with SSRSMLA,

the multi-path case achieves relative gains in the range 13-22% and 20-28% for DT and

EON16 network scenarios. Again, it can be seen that the relative difference is greater in

the EON16 scenarios. The reason is the same as before: since EON16 has larger diameter,

a single physical path has a limited set of candidate modulation formats, thus routing a

demand through multiple physical paths increases the chances of serving it successfully.

On average, for the multi-path case, demands in EON16 network scenarios are routed

over 1.0082 paths while in the DT network scenarios they are routed over 1.0009 paths.

Additionally, given the multi-objective nature of the MILP formulation employed in

SSRSMLA, additional simulations to determine the influence of the specific optimiza-

tion objectives in the overall performance have been executed, focusing in the scenario
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a) b)

Figure 4.10: Simulation results: BBR in a) single-path and b) multi-path cases.

DT/320. There, for increasing values of the normalized HT, the BBR of SSRSMLA for

various configurations, namely, the case where all weighting parameters are set to 1 (“All

one” case) and the cases where only one of these parameters is set to 1 and the rest to 0

have been plotted. Figure 4.10 depicts the obtained results for both single and multi-path

cases.

It can be appreciated indeed, that the the joint minimization of all the objectives provides

lower BBR figures than focusing only in one of them. It can also be seen that minimizing

only the number of allocated FSs performs very similarly to the joint minimization case,

indicating that this objective takes the highest importance in the combined objective

function. Focusing on the rest of the objectives, the minimization of the number of

parts takes the second place, the minimization of the difference between allocated and

requested bit-rate takes the third one and, finally, the minimization of the spectral gaps

has the lowest importance. Focusing on this last objective, it can be seen that minimizing

it solely results in a significant performance degradation when compared with the other

cases. This can be explained as follows. Since SSRSMLA tries to minimize the spectral

gaps present in the candidate paths, it divides the signal in many parts and chooses the

most spectral width-demanding modulation format in order to fill as much spectral gaps

as possible, resulting in a poor resource utilization.

Regarding the performance of the H-SSRSMLA mechanism, looking back at Fig. 4.9, it

can be seen that it achieves BBR figures quite close to the ones obtained by the SSRSMLA

mechanism. Table 4.6 depicts the performance comparison between both mechanisms,

displaying for some of the tested scenarios the optimality gap of H-SSRSMLA against

SSRSMLA and the average execution times, denoted as Tm and Th for SSRSMLA and

H-SSRSMLA, respectively. Indeed, H-SSRSMLA performs quite good when compared

against SSRSMLA, with optimality gaps around 10-14% on average. Note that for nor-

malized HTs leading to BBR < 1%, possible working range for these networks, the dif-

ferences between H-SSRSMLA and SSRSMLA are very small. Regarding the execution
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Table 4.6: SSRSMLA vs H-SSRSMLA

Single-path Multi-path

Scenario Gap (%) Tm(ms.) Th(ms.) Gap (%) Tm(ms.) Th(ms.)

DT/160 HT=35 0.24 180 16 1.44 160 15

DT/160 HT=45 10.2 144 15 12.4 132 15

DT/320 HT=90 7.27 472 16 4.14 438 16

DT/320 HT=110 11.3 363 16 17.8 339 15

EON/160 HT=25 9.34 147 14 6.43 133 14

EON/160 HT=35 12.1 109 14 20.2 99 14

EON/320 HT=70 12 326 14 10.2 313 14

EON/320 HT=90 14.5 221 14 23 202 14

times although SSRSMLA can work in the sub-second range, when the number of FSs per

link increases, the average execution time grows up substantially. This was the main mo-

tivation for the development of H-SSRSMLA. In this regard, it can be appreciated that its

execution times remain steady for all the scenarios and more than one order of magnitude

below those of SSRSMLA, highlighting the superior scalability of H-SSRSMLA.

4.5 Chapter summary

The recently proposed elastic optical networks provide numerous benefits when compared

to traditional fixed grid-based optical network, allowing for a better spectrum utilization

since their finer granularity allows to efficiently serve both low and high bit-rate con-

nection demands. However, they are not exempt of drawbacks, being the main one the

so called spectrum fragmentation effect. To overcome such limitation multiple strategies

have been proposed in aims to enhance the performance of EONs by means of spectrum

defragmentation. By rearranging the currently active connections, it is possible to pack

the used spectrum and free enough contiguous spectrum portions in the whole network

so as to allow the allocation of future incoming demands. However, such defragmentation

techniques require complex operations that increase the control plane burden. Addition-

ally, depending on the approach followed, there may be some disruption of the already

established connections as a consequence of the connection rearrangement.

For all of these reasons, alternative ways to deal with the spectrum defragmentation effect

have to be though. To this goal, after reviewing the main principles of the defragmentation

process, the Split Spectrum Approach is introduced as a way to mitigate the effects of

the spectrum fragmentation problem. Running away from defragmentation and spectrum

conversion techniques, the SSA is based on splitting a high bit-rate demand into lower bit-

rate ones so as to allocate more easily the connection into the available spectral gaps. In

this regard, section 2 has reviewed the main literature regarding the SSA, putting special

emphasis on the enabling technologies that make the SSA possible and the potential
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routing solutions that may be applied when serving demands in a SS-enabled EON.

This has lead to the conclusion of needing optimized mechanisms in order to perform

the resource allocation of the demands (paths, spectrum and modulation formats) when

splitting a demand in a SSA environment.

To realize such optimized resource allocation, various mechanisms have been proposed

through section 3 and 4. Starting from a simple resource allocation, section 3 has pro-

posed both MILP and heuristic based mechanisms to perform the Route and Spectrum

Assignment in a SS-enabled EON. Through extensive evaluations, it has been shown that

SS-enabled EONs achieve substantial gains when compared to traditional EON. Addition-

ally, various TSP implementations have been evaluated, namely, BV-TSP and MF-TSP.

The results obtained suggest that, because in normal traffic conditions the splitting of

demands is infrequent, the use of MF-TSPs to realize the SSA is not justified due to its

higher cost. In this regard, it is more beneficial to deploy an overdimensioned number of

BV-TSPs per network node.

After these studies, in section 4 the presented mechanism has been enhanced to also

consider multiple routing possibilities, namely, the single and multipath routing options.

Additionally, the choice of the most suitable modulation format to serve a demand in

multiple parts has been also introduced. This becomes specially important, since in

a realistic network scenario the bit-rate of the established lightpaths is determined by

the modulation formats available at the nodes. In such circumstances, the bit-rate of

the parts into a demand is split also must follows these limitations imposed by the TSPs

granularity. Extensive evaluations have showed that even with these considerations, a SS-

enabled EON still outperforms the case where demands are served in a contiguous way,

with the multipath option reveling itself as the routing strategy that provides a better

performance since it allows to exploit more efficiently the available spectral resources in

the network.





Chapter 5

Energy efficiency in transport

networks

Up to this chapter, various solutions have been presented so as to provide an optimized

environment for the allocation of VONs in top of a physical network substrate. Chapter

3 provided mechanisms to efficiently perform the mapping of the VONs in various sit-

uations, while Chapter 4 has studied how to provide a more efficient network substrate

in terms of spectrum utilization so VONs with better spectrum management can be re-

alized. However, as commented during Chapter 2, another important aspect in order to

provide the future network architecture for efficient optical transport networks relates to

the energy consumption of the physical substrate. Indeed, as VONs typically span a geo-

graphically distributed area, virtual links may be mapped to very long physical paths, so

multiple devices are crossed on the end-to-end route, increasing the power consumption

of the VON. For this reason, it becomes highly interesting to provide solutions in order to

achieve a more energy-efficient network substrate so VONs with less power consumption

can be deployed, reducing the associated OPEX.

To this end, various techniques to improve the energy efficiency of transport optical

networks are presented. The first section presents an energy-aware routing solution which

combines both load and energy parameters in order to achieve a good trade off between

energy consumption of the connections and BP. The presented solution is intended to be

used in multi-domain transport optical networks. In this regard, the proposed solution

is composed of a domain abstraction mechanism for the intra-domain route calculation

and several routing algorithms for the inter-domain route calculation. Next, the second

section introduces the concept of sleep-enabled transport networks as a way to further

reduce the energy consumption in optical networks. In this regard, a formal analysis

of the performance in terms of BP and power savings is presented when a multi-class

scenario is faced so as to provide guidelines on how to properly dimension the network

according to the traffic pattern and the available physical resources.

99
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5.1 Energy-aware routing in multi-domain transport

networks

As commented during section 2.4, the concept of energy efficiency in optical networks

is a very hot topic that has both gathered the interest of the reserach community (e.g.

[ZCTM10]) and spanned multiple industrial initiatives, such as the GreenTouch con-

sortium [GRE]. One of the potential ways to increase the energy efficiency in optical

networks consists on the design of energy-aware routing mechanisms [MAV13, IBC+13].

Essentially, energy-aware routing algorithms incorporate energy consumption and physi-

cal layer information into the routing mechanism, so decisions are no longer done relaying

solely on topological or resource state information. With this, the routes assigned to the

connections are the ones that will keep the energy consumption on the network low. How-

ever, most of the works regarding energy-aware routing focus on single domain networks,

where the whole transport network is administrated by a single operator/administra-

tor, and very few work has investigated energy-aware routing solutions on multi-domain

transport networks.

Moreover, as the objective of energy-aware routing mechanisms is to choose the paths that

will entail the least energy consumption on the network, short routes are mostly preferred,

since they are the ones that will consume less energy. This is a drawback in many

situations, since connections tend to saturate rapidly the shorter routes, hence increasing

the blocking of the connections. For this reason, energy-aware routing mechanisms are

usually combined with load distribution techniques so as to find good trade-offs between

energy consumption and blocking of the connections.

It is well known from consolidated literature that the ability of distributing a load in a

dynamically-operated network is highly beneficial [KP12, DLWZ08]. An even distribution

of traffic by the Network Elements (NEs) allows for the prevention of potential congestion

conditions, thus increasing the capability of supporting a higher amount of demands by

the users, i.e., lowering BP. However, although load distribution can be easily achieved

in a single-domain network, it becomes more difficult in a multi-domain scenario. In

fact, end-to-end routing may not be totally computed by a single entity, especially when

source and destination nodes are in different and distant domains. Also, the occupancy

state of all the NEs may result as being unknown or unavailable outside the domains.

These difficulties, generated by scalability and confidentiality issues, prevent classical load

distribution routing algorithms to work properly in a multi-domain scenario.

For all these reasons, an end-to-end solution for computing routes in a multi-domain

network scenario that benefit from the load-distribution concept while it also takes into

account for the power consumption of the connections is presented. The presented method

is intended to be applied to the dynamic management and design of long-distance high-

capacity backbone networks that span multiple domains and that have a large geographi-

cal extension. In this regard, it is assumed that the multi-domain network is based on the
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Hierarchical-Path Computation Element (H-PCE) network architecture (see Appendix B)

In such networks, links are almost never composed of a single fiber. Rather, in order to

save infrastructural costs (of the ducts), they are composed of several parallel fibers, each

fiber equipped with a set of optical amplifiers and possibly other line equipment, such as

dispersion compensators.

Therefore, in the proposed solution it is assumed that all the inter- and intra-domain links

are multifiber. Additionally, occupation of a link is defined as the number of connections

that are routed on that particular link with no regard to the fiber where a connection

is allocated. Moreover, the presented mechanism intends to be used for establishing

bidirectional connections between a source and a destination node, and therefore, the

occupation of a link (i,j), connecting node i to node j, will be the same of the occupation

of the link (j,i) according to the number of connections routed. This is due to the fact

that it is assumed that the paths in both directions are exactly the same.

Furthermore, it is assumed that each physical link of the network has at least one fiber

always in operation with all its amplifiers and related line equipment switched on, regard-

less of the traffic flowing through that link. This is to ensure connectivity for performance

measurement and periodical testing (bit error rate, frame error rate, etc.), alarming, and

control plane tasks. For example, the Resource Reservation Protocol-Traffic Engineering

(RSVP-TE) protocol is supported by a refresh procedure that implies periodically sending

path messages once a connection is established [RFC4872]. Moreover, RSVP-TE based

protection and restoration procedures also require connectivity during the network opera-

tion while the Open Shortest Path First-Traffic Engineering (OSPF-TE) protocol requires

connectivity to disseminate topological and traffic engineering information [RFC4203]. In

case the Link Management Protocol (LMP) is also implemented, it requires Hello mes-

sages to be exchanged to monitor the health of the control channels [RFC4204].

Note that an always powered-on fiber does not entail that nodes have to also keep the local

transceivers powered-on; in fact, the power state of all line equipment, such as amplifiers,

is independent of the power state of the nodes equipment. That is, a node may switch-off

unused transceivers without the need of switching-off all the equipment along the fiber.

By keeping only a fiber switched-on, we guarantee still enough connectivity for monitoring

reasons while the power consumption is kept minimal.

With this in mind, the presented mechanism is composed of two parts. First, there is a

topology abstraction design model to perform the intra-domain routing. For this, a MILP

formulation whose goal is to obtain optimal mapping between the physical paths and vir-

tual links for a single domain in order to achieve a good trade-off between load-distribution

and energy efficiency, assuming that a fully-meshed domain abstraction is employed, is

presented. The corresponding mappings will be used by the child PCEs to establish the

intra-domain route. Secondly, multiple inter-domain routing algorithm, which take into

account the costs associated to the virtual links obtained through the aforementioned

MILP formulation (along with occupation and length parameters) in order to compute
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inter-domain routes that are both efficient in terms of energy consumption and connec-

tion establishment success are presented. The following subsections detail both parts of

the solution.

5.1.1 MILP formulation for intra-domain routing

Let the optical network of a single domain be characterized by a graph Gn = (N,E),

where N denotes the set of nodes and E = {(i, j), (j, i) : i, j ∈ N, i 6= j} the set of

physical links. Moreover, let Bn denote the set of Border Nodes (BNs) of the domain

with Bn ⊆ N and Ev the set of virtual links of the domain abstraction, for which esdv
denotes the specific virtual link connecting BNs s and d. Additionally, let P denote the

set of physical paths in the optical network of the domain, Psd ⊆ P the set of candidate

paths between BNs s and d, and K the number of paths that will be associated to every

virtual link.

Assuming a full-meshed domain abstraction, the objective of the model is to compute the

optimal mapping between virtual links and physical paths that minimizes at the same

time the BP (by means of load-balancing) and the power consumption of the domain. To

this purpose, Qp
sd ⊆ P defines the set of physical paths that share at least one physical

link with the candidate path p ∈ Psd for connecting BNs s and d, lpsd defines the physical

length of p ∈ Psd and TR defines the transparent reach of the lightpaths without needing

regeneration. With this, the number of intra-domain REGs needed for every candidate

path, denoted as Rp
sd, is:

Rp
sd =

⌈
lpsd
TR
− 1

⌉
∀ p ∈ Psd; s, d ∈ Bn, s 6= d (5.1)

where Rmax denotes the maximum value among all Rp
sd.

Moreover, let M define the mean sharing of physical links between paths associated to

virtual links, that is, the average number of virtual links that share at least one physical

link with other virtual links. If this metric is minimized, that is, the number of virtual

links that share physical resources between them is kept at minimum, the load in the

domain becomes as balanced as possible among physical resources belonging to virtual

links, potentially reducing the BP of the connections. Finally, T defines the mean use

of REGs in the domain, that is, the average number of REGs employed in the physical

routes associated to the virtual links. If this metric is minimized, the paths that will be

associated to the virtual links will entail a minimal use of REGs and, hence, the power

consumption of the domain will be kept at a minimum.

With all of these, let us discuss the details of the MILP formulations, for which the model

variables are as stated below:
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xp
esdv

: binary; 1 if path p is used to map virtual link esdv , 0 otherwise.

zp
esdv

: integer; indicates how many virtual links share some physical links with path p for

virtual link esdv if path p belongs to the solution, i.e. xp
esdv

= 1, otherwise its value is equal

to 0.

Z: integer; represents the maximum among all zp
esdv

variables.

Now, with the presented variables, M and T can be written as:

M =
1

K|Ev|
∑
esdv ∈Ev

∑
p∈Psd

zp
esdv

(5.2)

T =
1

K|Ev|Rmax

∑
esdv ∈Ev

∑
p∈Psd

Rp
sdx

p
esdv

(5.3)

With these definitions, the MILP formulation is as stated below:

min α(βZ + (1− β)M) + (1− α)T, s.t. (5.4)

∑
p∈Psd

xp
esdv

= K, ∀esdv ∈ Ev (5.5)

zp
esdv
≥
∑
i∈B

∑
j∈B
i 6=j

∑
k∈Qp

sd

xk
eijv

+ (xp
esdv
− 1)

∑
i∈B

∑
j∈B
i 6=j

∑
k∈Qp

sd

1,∀p ∈ Psd, esdv ∈ Ev (5.6)

Z ≥ zp
esdv
,∀p ∈ Psd, esdv ∈ Ev (5.7)

The objective function’s (5.4) goal is twofold: i) minimize the sharing of physical links

between the paths associated to the virtual links that form the domain abstraction; ii)

minimize the average number of REGs that are used by the intra-domain paths corre-

sponding to the virtual links of the domain abstraction. Parameters α and β are real

numbers in the range [0,1] and are used to put more or less weight to the components of

the objective function. With the minimization of the sharing of the physical links, the

model aims at reducing the BP of the connections, as they will potentially use different

parts of the network and hence, balance the load among all the physical links. More

in depth, the model minimizes at the same time the average sharing and the maximum

sharing. The rationale behind this is to keep the mean sharing as low as possible and, at

the same time, the deviation from this value for all virtual links; that is why the maxi-

mum sharing is also minimized (variable Z). In this way, it balances the load between
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virtual links in a fair way. Additionally, by minimizing the number of REGs, it the power

consumption of the associated virtual links.

As for the constraints and their meaning, constraints (5.5) is needed to map every virtual

link to K different paths in the physical network. The role of variable K is to provide

a more flexible mapping mechanism if more sophisticated routing schemes were adopted,

e.g., K candidate physical paths may be employed for connections traversing a particular

virtual link. Constraints (5.6) set the value of variables zp
esdv

, which account for the sharing

of physical links among virtual links. As commented before, zp
esdv

only takes a value greater

than 0 if the corresponding xp
esdv

= 1; that is, the path belongs to the solution. For this

reason, the second term is added to the constraint, which will drag to 0 variable zp
esdv

if

xp
esdv

= 0, as all variables z are defined as positive integers (greater or equal to 0). Finally,

constraints (5.7) allow the minimization of the maximum sharing of physical links.

5.1.2 Inter-domain routing algorithms

In this section, several routing algorithms for the inter-domain route computation are

presented: SP routing, Least Loaded (LL) routing, and Round Robin (RR) routing. In

their design, it assumed that only BNs can be the source or destination of the traffic.

Moreover, the full inter-domain path is specified as a sequence of inter-domain physical

links, BNs and intra-domain virtual links. The translation of this path into a fully-detailed

path, i.e., a sequence of physical links and nodes, is not done at the inter-domain level.

In fact, the intra-domain virtual links are automatically translated into physical paths

within each crossed domain because of the fixed correspondence between virtual links and

physical paths connecting the BNs. In this regard, it is assumed that mapping of virtual

links to physical paths remains static (no re-optimization of the abstract topologies is

performed) due to the computational complexity of the MILP formulation described in

the previous section. With this, the following sections detail the three considered routing

algorithms.

5.1.2.1 SP routing algorithm

In the SP routing algorithm, the path chosen is the shortest one in terms of the physical

length, between the source and destination nodes. Thus, the cost related to the length

of the path is computed in the same manner for both inter-domain and intra-domain

links by directly assigning to each link a cost proportional to its physical length and then

summing over all the links crossed by the path. The state of the links (both virtual

and inter-domain) is not taken into account at all: if a link on a computed path is fully

occupied, then the connection is blocked. Thus, this algorithm requires only a limited

amount of information exchanged between domains; in particular link-state information

updates are not required in real time.
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5.1.2.2 LL routing algorithm

In the LL routing algorithm, two different weights with different priorities are used to

compute the minimum-cost path. In particular, the aim is sharing the load over different

alternative paths, the weights considered are i) the occupation weight, and ii) a cost

related to the length of the links. In general, the occupation weight of a physical link

is defined as the number of wavelength channels currently in use on that link. The

occupation weight of an inter-domain link is straightforward. Instead, the occupation

weight assigned to an intra-domain link is the occupation weight of the most used physical

link that composes the corresponding intra-domain path. Conversely, the cost related to

the length of the path is computed in the same manner for both inter-domain and intra-

domain links by directly assigning to each link a cost proportional to its physical length

and then summing over all the links crossed by the path.

To route a connection between the source BN and the destination BN, the procedure

first runs the Dijkstra algorithm considering the occupation cost of the (intra- and inter-

domain) links. During this operation, the algorithm also computes the total physical

length of the end-to-end paths. In such a way, at the end of this operation both occupation

and length costs are assigned to each route. The routing decision, i.e., the selection of the

end-to-end path to assign to the connection, is primarily based on the total occupation

cost: the connection will be routed on the path with the minimum occupation cost in

terms of the maximum link occupation. This means that the occupation cost of an end-

to-end path is the occupation of the most charged link which belongs to the end-to-end

route. It may happen that more than one end-to-end path has the same occupation

cost. In this case, the route selected is the one having the minimum end-to-end physical

length among all the paths with the same occupation cost. Additionally, the routing

algorithm avoids that a particular domain is crossed more than once by the same end-to-

end connection. Such a fact would not make sense, both in terms of occupation and power

consumption. The normal behavior of the Dijkstra algorithm is thus modified preventing

a path to comprise more than one virtual link belonging to the same domain.

5.1.2.3 RR routing algorithm

In the RR routing algorithm, the path is chosen in a round robin fashion. This means

that when a connection has to be routed from BN s to BN d, it chooses, as a first path,

the shortest path. Then, for the following connection starting at BN s, it will choose (in

a round robin way) the other possible routes, e.g., if the last route used was route k, the

following route to be used will be route k + 1. When all the possible routes originating

from BN s have been used at least once to establish a connection, then the algorithm will

start the same procedure from the beginning. The RR routing algorithm is performed

independently for each source BN, meaning that the choice of the path made for BN s1

does not affect the decision to route a new connection starting in BN s2. It can be seen
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that the RR routing algorithm enjoys the load-distribution properties of the LL routing

algorithm. On the other hand, as in the SP case, if a link of a chosen path is fully

occupied, then the connection will be blocked.

5.1.3 Results and discussion

5.1.3.1 Test scenario and assumptions

Before presenting the results, this section will explain which has been the network scenario

used to test the proposed solution, along with the major assumptions concerning the

physical equipment. The presented MILP model and routing mechanisms have been

tested through simulations, considering one topology composed of 9 domains, with a total

of 75 optical nodes (48 BNs and 27 non-BNs) and a total of 146 bidirectional physical

links (26 inter-domain and 120 intra-domain) (see appendix A.3). The length of each link,

although not shown, is normalized to the transparent reach of the connections, i.e., to the

maximum length the optical signals can travel without regeneration; for instance, a link

distance of 0.6 means that the link length is 60% of the transparent reach. Additionally,

in order to investigate the impact of the energy consumption due to extra-fibers, a multi-

fiber scenario in which each physical link is composed of two fibers per direction has been

assumed. Each one of these fibers carries 32 wavelength channels.

Two different scenarios have been tested, the Single-Carrier (SC) scenario, where all

the domains belong to the same administrator, and the Multi-Carrier (MC) scenario,

where domains are managed by different administrators. For both scenarios, it has been

considered that every fiber has a set of in-line bidirectional amplifiers that amplify the

whole bundle of wavelengths. If the fiber is the first one of the link, then its amplifiers are

always powered up, regardless of the actual traffic. If the fiber is an extra fiber (second,

third, etc.) its amplifiers are only powered up when there are connections using that

particular fiber. The distance between amplifiers (amplification span) is constant. In

order to calculate the necessary number of amplifiers in one fiber, the expression reported

in Equation 5.8 is used, where llink is the length of the physical link and AR the length of

the amplification span [ST09]. For the calculation of the number of amplifiers, it has been

considered that the distance between amplifiers is equal to a normalized length of 0.07. To

obtain this value, we assume a 100 Gb/s network scenario with a transparent reach of 1200

km [RM11] and a distance of 80 km between amplifiers as in [ST09] (80/1200 ≈ 0.07).

Namp =

⌈
llink
AR
− 1

⌉
+ 2 (5.8)

It is considered that each connection implies the use of one TSP at its source node and

another one at its destination node. For the use of REGs, different rules hold depending

on the scenario. In the SC scenario, it is considered that regeneration takes place only
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in nodes where this is needed, i.e., where the distances between nodes are greater than

the transparent reach, even if the end-to-end path spans more than one domain. On

the other hand, in the MC scenario, it is considered that regeneration is only performed

inside a domain if the intra-domain path distance is greater than the transparent reach;

O-E-O conversion is always assumed at the BNs. The regeneration at the BNs, in such a

scenario, is performed even if the distance between the latest intra-domain node and the

BN is less than the transparent reach. In this regard, it is considered that every node in

the network is equipped with regeneration capabilities, so all nodes become a potential

regeneration point for connections needing it. In this regard, the goal is to evaluate the

power savings that can be obtained through the use of the proposed mechanism without

dealing with the REG placement problem, which is out of the scope of this work. As for

the power consumption of the devices (amplifiers, TSPs and REGs), the power figures

reported in [JMST13] have been used through this section.

5.1.3.2 Intra-domain virtual topology design evaluation

In this section, the general complexity of the proposed MILP model and its effectiveness

upon execution on the tested intra-domain topologies is discussed. Looking back at its

formal description, it can be seen that the model is described using a link-path formula-

tion, that is, the paths in the network are detailed explicitly by pre-calculated sets and

the associated variables. The link-path formulation has the advantage that permits a fine

tuning of the potential candidate paths by limiting the size of the path set. On the other

hand, in highly meshed networks with several nodes and links, due to the high number

of potential candidate paths between a source and a destination, its scalability can be

somehow limited.

In terms of formulation complexity, the number of variables is in the order ofO(2|Ev||P̄sd|)
and the number of constraints is in the order of O(3|Ev||P̄sd|), with |P̄sd| the average

number of candidate paths from BN s to BN d. The main components that contribute

to the MILP complexity, as hinted before, are the number of candidate paths in the

intra-domain network and the number of BNs, since |Ev| can be written as |B|(|B|−1)/2

considering a full-meshed domain abstraction and a bidirectional network scenario.

Table 5.1 below reports the execution times in seconds (Tm) for the model in the tested

intra-domain network scenario for various values of α, in order to evaluate the complexity

of the proposed MILP formulation. Moreover, the (non normalized) values of Z, M , and

T is also depicted, to observe how they evolve as functions of α. For all the depicted

results, β = 0.5 have been assumed. All the results have been obtained using standard

Quad Core PCs at 2.66 GHz with 4 GB of RAM using Cplex v.12.2 as the optimization

software.

From the results, it can be seen that domains that are more meshed or have a higher

number of BNs experience high execution times. Moreover, it can be seen that α = 0.5
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Table 5.1: MILP evaluation in the multi-domain scenario

α = 0 α = 0.5 α = 1
Domain Tm Z M T Tm Z M T Tm Z M T

1 0.56 1 1 0.33 0.22 1 1 0.33 0.22 1 1 0.33
2 0.32 3 2.33 1.17 6.92 3 2.33 1.5 7.84 3 2.33 1.17
3 0.68 10 5.76 0.67 1.3 · 104 7 4.81 0.86 1.3 · 104 7 4.81 0.86
4 1.39 12 6 0.64 7.2 · 103 7 5.36 0.75 7.2 · 103 8 5.28 0.64
5 0.35 4 3 1 6.49 2 2 1.67 5.46 2 2 1.67
6 0.28 3 2.6 0.3 1.64 3 2.4 0.5 2.02 3 2.4 0.4
7 1.52 8 4.9 0.71 7.2 · 103 6 4.8 0.95 7.2 · 103 6 4.5 0.81
8 1.58 9 5.53 0.87 3.4 · 103 4 3.13 0.87 6.3 · 103 4 3.13 0.8
9 0.17 6 4.33 0.67 0.35 2 1.67 0.5 0.33 2 1.67 0.5

and α = 1, in general, lead to larger execution times, since in the corresponding working

points the load-balancing term of the objective function plays an active role. Conversely,

α = 0 leads to lower execution times, as the objective function becomes trivial; it only

has to minimize the average number of REGs, which is tightly related to the length of

the path.

As for the evolution of the values of variables Z, M , and T although the trends are highly

dependent on the intra-domain topology, generally speaking it can be appreciated that

α = 0 leads to the lowest REG usage while having the worst sharing of physical resources

between virtual links, while for the other values of α the use of REGs slightly increases

while the sharing is reduced.

5.1.3.3 Simulation results

In order to evaluate the performance of the proposed methods, some simulations have

been carried out. In all simulations, K has been set to 1 in the MILP formulation, which

means that virtual link is mapped to only one physical path. Additionally, the proposed

routing algorithms have been compared in cases in which the intra-domain mapping is

performed using values of α equal to 0, 0.5, and 1, setting β = 0.5 in all cases. All

the simulations have been performed under a variable offered load, assuming that all

connections are bidirectional and request one wavelength each.

Figure 5.1 shows the BP of the different solutions analyzed as a function of the total

offered load. From the results, it can be seen that the proposed solutions, i.e., the LL and

the RR algorithms, have BP values that are lower with respect to the case when the SP

is used. The LL and RR algorithms produce BP figures of up to 2 orders of magnitude

lower than the SP. Additionally, it can be seen that for medium and high loads the LL

provides a performance that is slightly better with respect to the RR algorithm. Anyway,

the difference between the BP of the LL algorithm and the BP of the RR algorithm is
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a) b)

c)

Figure 5.1: BP as a function of the total load for the SP, LL, and RR algorithms
considering: a) α = 0, b) α = 0.5 and c) α = 1.

less than 2 · 10−2. Moreover, it can be appreciated that different values of α produce very

similar BP figures, with α = 0.5 and α = 1 producing slightly better BP figures.

As for the power consumption, Figures 5.2 and 5.3 depict the performance of the proposed

solutions in terms of power consumption per accepted connection as a function of the

offered load in both SC and MC scenarios, respectively. Specifically, the average power

consumption due to connections that use at least one extra fiber is depicted. In this

way, the extra power consumption due to the utilization of the extra fibers is evaluated.

In fact, the power consumption of the first fiber is the same in every case because it is

assumed that such fibers are always switched on as explained before.

Looking at Figure 5.2, it can observed that, in the range of loads where the network is

overprovisioned, and the BP is very small, the proposed RR routing algorithm has the

lowest values of power consumption. The LL routing also has values of power consumption

that are lower than the SP case at least for loads lower than about 275 Erlang. Anyway,

the power consumption provided by the LL routing solution is a little higher than in
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a) b)

c)

Figure 5.2: Power consumption as a function of the total load in the SC scenario for
the SP, LL, and RR algorithms considering: a) α = 0, b) α = 0.5 and c) α = 1.

the RR case. For the tested scenario, it can be appreciated that while the RR routing

algorithm provides a BP slightly higher than the LL routing algorithm, it shows lower

power consumption values. Conversely, the SP has a high power consumption due to the

utilization of the extra fibers.

This is due to the fact that the SP policy tends to choose a limited set of paths (the

shortest) so the first fibers are saturated rapidly. In such a way, the SP routing algorithm

will switch on the extra fibers sooner than in the case where LL or RR policies are adopted.

Again, it can be appreciated that the impact of different values of alpha is minimal. After

a certain load (around 300 Erlang), when the network is not overprovisioned, the power

consumptions of the LL algorithm tend to become higher than with SP. This is due to

the fact that for higher loads the paths allocated are always the shortest with the SP

algorithm. On the contrary, the LL algorithm at high load will find a lot of overloaded

links and therefore it tends to choose paths that are much longer leading to a higher power

consumption. Instead, the RR algorithm chooses each path among a set of paths but
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a) b)

c)

Figure 5.3: Power consumption as a function of the total load in the MC scenario
for the SP, LL, and RR algorithms considering: a) α = 0, b) α = 0.5 and c) α = 1.

without considering any link state information. For this reason, the power consumption

of the RR algorithm still remains lower than the SP.

As for the MC case (Figure 5.3), the same observations and conclusions that apply for

the SC case are valid. The only difference is that, in the MC case, the values of the

power consumption are scaled up if compared to the SC scenario. This happens because,

in the MC scenario, regeneration is performed in each BN that is included in the path.

Therefore, the power consumed in the MC case is higher than in the SC case.

5.2 Introducing the sleep-mode in transport networks

During the previous section, it has been showed that an appropriate routing mechanism

designed taking into account not only topological or resource information but also energy
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Figure 5.4: Diagram of the transitions between the three power states of a sleep-
enabled transponder.

parameters helps on reducing the energy consumption of the connections on a transport

optical network. However, as the traffic on Internet, and as a consequence, in transport

optical networks grows, it is not sufficient to relay on energy-aware routing algorithms

in order to keep the energy consumption of transport networks low. In this sense, it is

necessary to develop more energy efficient devices in order to keep reducing the energy

consumption.

Several research efforts have been focused on developing energy-efficient devices and the

associated power management strategies. A very promising proposed solution consists in

re-routing traffic carried by scarcely-filled wavelengths during low-load periods, in order to

set some OE transmitters (i.e. TSPs) into a low-power mode or, eventually, turning them

off. Authors in [MSR+11] introduced a novel TSP architecture whose novelty lies in the

capability of putting the TSP modules in a low-power consumption mode (idle mode)

when it does not support traffic; at the same time, the TSP modules can be turned

fully operative (on mode) in a short time, whenever incoming connections are supported.

Specifically, the proposed TSP features three power states, described as follows:

• Powered-on (ON) state: the TSP is receiving/transmitting traffic.

• IDLE state: the TSP is set into a low-power mode (i.e., its power consumption

is significantly lower than the consumption in the ON state) since it is not trans-

mitting/receiving traffic. In this state, the TSP requires much shorter time to

be activated compared to when the TSP is in the OFF state, as the components

which require high stability (the lasers at the emitter and the photodiodes at the

receiver) are left powered-on to avoid long activation times (on the other hand, the

components whose activation time is not critical can be powered-off.

• Powered-off (OFF) state: all the components of the TSP are powered-off.

Figure 5.4 depicts the inter-state transitions. With such TSP architecture, authors in

[MSR+11] showed that, for dynamic traffic scenarios, 67% of energy savings can be

achieved when compared to traditional WDM transport networks where TSPs remain

always powered-on, regardless if they are transmitting traffic or not.



Chapter 5. Energy efficiency in transport networks 113

Let us now consider the case of different classes of connections. In this context, the set-up

time requirements of the connections might become a critical parameter. For instance,

in multi-service networks, high-priority (Ch) traffic, typically requires short set-up times

(few ms.). As a consequence it cannot be supported by TSPs in the OFF power state due

to the long boot-up time (≈ 60 s. [MSR+11]). However, it can be supported by TSPs in

the IDLE state, for which the transition to the ON state is negligible. On the other hand,

low-priority (Cl) traffic can employ OFF TSPs as it can wait for longer boot-up times.

In this regard, and assuming the aforementioned TSP architecture, a power management

strategy with the aim to save the power consumed by unused devices by setting them into

low-power mode (or, eventually, shutting them off), while still guaranteeing the set-up

time target for the different classes (Ch and Cl) of connections is described below.

Namely, in order to avoid that Ch connections miss their set-up time target, it is assumed

that a certain number (say k) of TSPs in a node, among those unused, are set in IDLE

state and reserved for Ch connections. Assuming that every node in the optical network

is equipped with N TSPs, with t representing the number of TSPs that are currently in

the ON state, the other unused TSPs (i.e. N − k − t) are in OFF state and will be used

for future incoming Cl connections.

Defining U as the current number of unused TSPs, it is assumed that, if U ≥ k, then

exactly k are set in IDLE state. Otherwise, all the U TSPs are set into IDLE state.

According to Figure 5.4, when a Ch connection arrives, an IDLE TSP is activated to

support the new Ch connection and an OFF TSP is woken-up (OFF to IDLE) such that

the pool of k TSPs reserved for Ch traffic is maintained at the node. Such transition

(from OFF to IDLE) can be performed if the number of OFF TSPs is greater than 0.

By doing so, a Ch connection is blocked only if no IDLE TSPs are available. On the

other hand, when a Cl connection arrives, an OFF TSP is booted-up. If no OFF TSP

is available when a Cl connection arrives, then the connection is blocked, as the TSPs

in IDLE state are reserved for the Ch connections. When a connection is torn-down,

its TSPs can be either shut-down or hibernated (set into IDLE state) according to the

number of available IDLE devices. Note that, by reserving some of the available TSPs

per node for Ch traffic and putting them on IDLE state, it is possible to satisfy both Ch
and Cl connections set-up time requirements, and, at the same time reduce the power

consumption of the network.

For instance, and utilizing a similar strategy to the described above, authors in [MPAS12]

reported daily power savings around 56% with respect to traditional WDM network

scenarios, while guaranteeing the set-up time requirements of both classes of connections.

However, besides the power savings, the impact of such power management strategy on

the blocking of the connections, e.g. due to the lack of available TSPs, specifically, lack

of IDLE TSPs for Ch traffic and lack of OFF TSPs for Cl traffic has to be carefully

evaluated. To this end, the following sub-section presents an analytical model to evaluate

the blocking of connections and the potential power savings when the described power

management strategy is employed.
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5.2.1 A blocking analysis of sleep-mode enabled transport op-

tical networks

In this sub-section, an analytical model for the evaluation of the blocking and power

savings when adopting the power management strategy previously described is derived.

Looking at the literature, only few papers have evaluated analytically the blocking of

the connections on WDM networks where multiple classes of services are considered

(e.g. [KL09, SS04, HMM98, WLWZ14, WLWZ13]). Additionally, the generic issue of

resource reservation for Ch traffic has been addressed simulatively in some publications

(e.g. [PCF04]), however, with no reference to the power consumption issue. Nevertheless,

no paper has addressed the analytical evaluation of the blocking levels of the connections

in the case some resources are reserved for Ch traffic and a TSP power management is

used.

Moreover, a very important parameter to be evaluated is the wake-up time (transition

from OFF to IDLE) of the TSPs, as it affects dramatically the overall blocking levels in

a network, especially for Ch traffic. To put an example, following the previous described

power management strategy, after a Ch has arrived to the network node, an IDLE TSP is

activated to support the connection. In order to maintain the pool of reserved resources

for Ch traffic, if there are spare OFF TSP, an OFF TSP wakes-up and is put on the IDLE

state. However, depending on the duration of the wake-up time and the arrival rate of

the connections, it may happen that k − 1 Ch connections arrive at the node before the

wake-up operation has ended. In such situation, all IDLE TSPs at the node become

exhausted, so an incoming Ch connection will be blocked due to the lack of them. Figure

5.5 depicts an example of such phenomena. A potential way to overcome such situation

may be to increase the pool of reserved resources for Ch traffic (the value of k), however,

this results in an increase of the power consumption. Additionally, Cl traffic would face

higher blocking levels as less resources can be exploited by it.

Therefore, the proper dimensioning of the number of TSPs to be put in the IDLE state is

fundamental in order to achieve a good trade-off between blocking and power consump-

tion. To analyze all these aspects, a novel Markov chain-based analysis is presented in

order to quantify the blocking levels of the aforementioned power management strategy

and the associated power savings with respect to a traditional WDM network scenario.

Moreover, this analytical model provides guidelines on how to choose the optimal value

of the reserved TSPs for Ch traffic depending on multiple parameters such as the load,

the wake-up time of the TSPs and the number of wavelengths per link. To facilitate the

comprehension of the analysis, it starts with a single network node case. Then, it intro-

duces in the analysis the wake-up time parameter to derive its impact on the blocking

and power savings. Finally, the analysis is extended to a whole network scenario.

Before detailing the analytical model, let us comment on the assumed network architec-

ture. In the following model, a SLR network is considered, where TSPs operate at a single

bit-rate (e.g. 100 Gb/s). In this context, a connection results from the aggregation at the
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Figure 5.5: Example of blocking of Ch connections due to the influence of Tw.

source node from various client connections coming from an access/metro network which

require the communication through a core network with a geographically distant node in

the same destination access/metro network. Hence, the entire capacity of a wavelength

is filled.

Additionally, it is assumed an opaque transport network, i.e., in every intermediate node

an O-E-O conversion is performed (thus two WDM TSPs are employed for any link

crossed by a lightpath). So every node is equipped with a pool of W TSPs on each

incoming/outgoing link, which is considered as bi-directional. The analysis focus on this

scenario:

1. as the bit-rate of demands and the use of more complex modulation formats in-

creases, the reach of the connections is no longer compatible with optical paths but

with links, hence transparent networks will be more and more difficult to realize

[KDB11].

2. since client demands have smaller sizes with respect to such channel capacities, for

better filling the tunnels electrical grooming will be required.

3. thanks to the O-E-O conversion, the wavelength continuity constraint can be relaxed

and serve more connections with the available wavelengths’ set (this situation tends

to be preferable when the spectrum is scarce).

For all these reasons, the derivation of an analytical model for the opaque scenario is still

worth and can rise the interest of the readers. Nonetheless, in [PTP+14] the performance

of the presented power management strategy in translucent networks was evaluated, to

which the interested reader can refer.

5.2.1.1 Single node model (without wake-up time)

In this first step, it is considered that the transition between the OFF and the IDLE state

is instantaneous (wake-up time = 0). The main assumptions and variables considered are

as stated below:

• Connections arrive at the node following a Poisson process. The mean arrival rates

for Ch and Cl connections are denoted as λh and λl respectively.
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• The duration of all the connections is assumed to be exponentially distributed with

mean µ.

• The node is equipped with N = (W × nodal degree) WDM TSPs.

• Among the TSPs in the node, k (maximum) are reserved for Ch connections and

are put in IDLE state. If at least k TSPs are actually unused, exactly k TSPs are

put in IDLE state. Otherwise, all unused TSPs are put in IDLE state and reserved

for Ch connections.

• σx,y represents the state in which the node has exactly x TSPs in OFF and y TSPs

in IDLE. Note that the number of TSPs that are actually in ON can be calculated

as N − x− y. Additionally, the probability of being in this state is defined as πx,y.

With such a notation, the evolution of the power-state of the TSPs within the node can

be represented as a time-homogeneous finite-space Markov chain. Figure 5.6 depicts the

state diagram of the mentioned Markov chain, along with the blocking states for both

classes of connections. Note that Ch connections only experience blocking when all the

TSPs in the node are in use, while Cl connections experience blocking when no OFF

TSPs are available (only IDLE TSPs are available).

Such Markov chain describes a birth-death process, for which the state probabilities can

be obtained. For the sake of simplicity, si, 0 ≤ i ≤ N denotes the state where N − i

TSPs are in ON state, that is, i TSPs are currently unused, and with pi the probability

of such state. More specifically, si and pi can be expressed as:

si =

{
σ0,i if 0 ≤ i ≤ k

σi−k,k if k < i ≤ N
=⇒ pi =

{
π0,i if 0 ≤ i ≤ k

πi−k,k if k < i ≤ N
(5.9)

Then the state probabilities can be evaluated as:

pN−1 =
λh + λl
µ

· pN

pN−2 =
λh + λl

2µ
· pN−1 =

(λh + λl)
2

2µ2
· pN

. . .

pk =
(λh + λl)

N−k

(N − k)!µN−k
· pN

pk−1 =
(λh + λl)

N−kλh
(N − k + 1)!µN−k+1

· pN

. . .

p0 =
(λh + λl)

N−kλkh
N !µN

· pN

(5.10)
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Figure 5.6: Markov chain for the single node model without wake-up time.

and can be rewritten in closed form as:

pi =


(λh+λl)

N−i

(N−i)!µN−i · pN if k ≤ i ≤ N

(λh+λl)
N−kλk−i

h

(N−i)!µN−i · pN if 0 ≤ i ≤ k − 1

(5.11)

It can be seen that the state probabilities depend on pN , which can be computed as:

pN = 1−
N−1∑
i=0

pi (5.12)

Given the state probabilities computed using Equations (5.11) and (5.12), the blocking

probabilities of both Ch and Cl traffic and the total blocking probability, (respectively

Pb,h, Pb,l and Pb,tot), can be evaluated as:

Pb,h = p0 Pb,l =
k∑
i=0

pi Pb,tot = h · Pb,h + l · Pb,l (5.13)

where h and l denote the share of Ch and Cl connections, respectively (0 ≤ h, l ≤ 1;h+l =

1).

Moreover, the average power consumption in the node can be also estimated. Given

the state probabilities, the average number of TSPs that are in IDLE and ON state,

respectively, can be determined as the following, where a ∧ b represents the minimum

between two values:

TSP idle =
N∑
i=0

(i ∧ k) · pi TSP on =
N∑
i=0

(N − i) · pi (5.14)
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Using (5.14), the average power consumption of the node can be written as:

P̄ower = Pidle · TSP idle + Pon · TSP on (5.15)

where Pidle and Pon are the power consumption of a TSP being on the IDLE and the ON

state respectively.

5.2.1.2 Single node model (with wake-up time)

The previous model assumed that the transition between the OFF and the IDLE state

is instantaneous. Actually, in a more realistic scenario, this transition time may not

be negligible and its duration may impact the performance of the power-management

strategy.

Indeed, every time an IDLE TSP is activated due to the arrival of a Ch connection, if

there are spare OFF TSPs, an OFF TSP will be woken-up and put on IDLE. However,

during a wake-up time (from now on referred as Tw), and depending on the value of k, it

can happen that, at certain point, new Ch connections are blocked due to the lack of IDLE

TSPs. To capture the influence of Tw on the BP and the average power consumption, the

Markov chain presented in the previous section is generalized. To this end, in addition

to the variables and definitions stated in the previous subsection:

• ωt defines the frequency of waking-up a TSP, that is, ωt = 1
Tw

. Reviewing the

literature, there is no work providing an analysis of the statistical distribution of

the wake-up time of a sleep-enabled TSP. In such circumstances, it is assumed

that the wake-up time follows an exponential distribution, since, in lack of further

knowledge, it is the most conservative statistical distribution consistent with its

mean value[PP02].

• Since circuit-switched networks, where connections typically have very long holding

times, are the target of the study, it is assumed that Tw is much shorter than the

average duration of the connections, that is, Tw � 1
µ
. Conversely, µ� ωt. Hence, in

a realistic network scenario, the probability of a connection terminating during the

duration of a wake-up operation is negligible and such transition is not considered in

the current analysis. Nevertheless, the impact of this assumption on the estimation

of the BP will be assessed later on during subsection 5.2.2.

Also in this case, the evolution of the power-state of the TSPs within the node can

be described as a time-homogeneous finite-space Markov chain, with the difference that

the introduction of the wake-up time variable leads to a bi-dimensional Markov chain.

Additionally, in this case, a slightly different notation for the states and their probabilities
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Figure 5.7: Markov chain for the single node model with wake-up time.

is followed. Due to the presence of TSPs that are operating a power transition from OFF

to IDLE (wake-up operation), the state σx,y now represents the state where the total

number of OFF TSPs plus the ones waking-up is equal to x, while the total number of

IDLE TSPs is equal to y. That is, the the right number represents the number of TSPs

that are on IDLE, while the left number represents the summation of the TSPs that are

in OFF state and the ones that are waking-up, i.e., performing a transition from OFF to

IDLE. More specifically, the actual number of TSPs that are waking-up in every state is

equal to x ∧ (k − y) while the actual number of TSPs that remain in the OFF state is

x− [x∧ (k− y)]. For example, the first row of the first column represents the state where

N − k TSPs are on OFF, 0 are waking-up and k are on IDLE, while the last row of the

first column represents the state where N − 2k TSPs are on OFF, k are waking-up and

0 are on IDLE. Also, note that in some states the maximum number of TSPs that are

waking-up is not k but a number equal to all the OFF TSPs before a wake-up operation

is triggered. For instance, all states from the 3rd to last row of the 6th column, represent

the situation where 0 OFF and 2 waking-up TSPs are present, with the only difference

between them being the number of IDLE TSPs (the value of y). Note that the use of two

indexes is sufficient to represent all considered power states in the Markov chain, allowing

us to formulate a more compact and concise analytical model than the one that would

result if three indexes (OFF, waking-up and IDLE) were used.

Following this notation for the states, Figure 5.7 depicts the state diagram of the Markov

chain, along with the blocking states for both classes of connections.

The first row of the Markov chain is the same as in the previous case, while the extra rows

represent the states where an IDLE TSP has been used and an OFF TSP is waking-up.

As before, Ch connections are blocked when all the TSPs on the node are used and Cl
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connections are blocked when no OFF TSPs are available. However, now new blocking

states appear for both classes due to the influence of Tw.

In the new blocking states for Ch (the ones in the lowest row of the chain), connections are

blocked due to the exhaustion of IDLE TSPs due to multiple arrivals of Ch connections

during a Tw. After a Ch connection arrives, whenever possible, a wake-up operation is

performed in order to maintain a pool of k IDLE TSPs. If during this operation, k − 1

Ch connections arrive to the node, all the IDLE TSPs will become exhausted, so the next

Ch connections will be blocked, as already explained in 5.2.1.

As for Cl connections, the new blocking states are in the right diagonal part of the Markov

chain. In those states, all the current OFF TSPs are operating a power transition from

OFF to IDLE, hence, they are unavailable for Cl connections. Specifically, all OFF TSPs

are operating a power transition in the states where 1 ≤ x ≤ k− y; 0 ≤ y ≤ k− 1. When

this happens, new incoming Cl connections are blocked since there are no OFF TSPs that

can be used to set-up them. Note that in such states, the pool of IDLE TSPs after all

wake-up operations have ended will not be equal to k but instead will be equal to x+ y.

The state probabilities can now be calculated. For this, pm,n represents the probability of

state σx,y (for the sake of conciseness, only the final closed form of the probabilities will

be depicted):

pm,n =



(N−k−1−m)∧k∑
i=0

λ∗m+1+i,k−i·pm+1+i,k−i

(N−k−m)µ
if 0 ≤ m ≤ N − k − 1; n = k

(N−k)∧(n+1)∑
i=0

λ∗i,n+1−i·pi,n+1−i

(N−n)µ
if m = 0; 0 ≤ n ≤ k − 1

λh·pN−k,n+1

(m∧(k−n))·ωt+λ∗N−k,n
if m = N − k; 0 ≤ n ≤ k − 1

λh·pm,n+1+λ∗l;m+1,n·pm+1,n+((m+1)∧(k−n+1))·ωt·pm+1,n−1

(m∧(k−n))·ωt+λ∗m,n
if 1 ≤ m ≤ N − k − 1;

1 ≤ n ≤ k − 1

λh·pm,1+λ∗m+1,0·pm,0

(m∧(k−n))·ωt+λ∗m,0
if 1 ≤ m ≤ N − k − 1; n = 0

(5.16)

with:
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λ∗m,n =


λh + λl if k − n+ 1 ≤ m ≤ N − k; 1 ≤ n ≤ k

λh if 0 ≤ m ≤ k − n; 1 ≤ n ≤ k

λl if k + 1 ≤ m ≤ N − k; n = 0

0 if 0 ≤ m ≤ k; n = 0

(5.17)

λ∗l;m,n =

{
λl if k − n+ 1 ≤ m ≤ N − k; 0 ≤ n ≤ k

0 if 0 ≤ m ≤ k − n; 0 ≤ n ≤ k
(5.18)

Essentially, the state probabilities in the first row depend on the previous state at their

left and on all states diagonally reaching this left state. As for the states in the rest of the

rows, their probabilities depend on all neighboring states that have an incident transition

to that state. Additionally, as before, pN−k,k can be calculated as:

pN−k,k = 1−
N−k∑
m=0

k−1∑
n=0

pm,n −
N−k−1∑
m=0

pm,k (5.19)

With the values of the state probabilities computed using equations (5.16)–(5.19), the

blocking probabilities of both Ch and Cl and the total blocking probability can now be

calculated as:

Pb,h =
N−k∑
m=0

pm,0 Pb,l =
k∑

m=0

k−m∑
n=0

pm,n Pb,tot = h · Pb,h + l · Pb,l (5.20)

Also, the average number of TSPs that are in IDLE (TSP idle), ON (TSP on) and the ones

that are operating a power transition from OFF to IDLE (TSP trans) can be determined

as:

TSP idle =
N−k∑
m=0

k∑
n=0

n · pm,n

TSP on =
N−k∑
m=0

k∑
n=0

(N −m− n) · pm,n

TSP trans =
N−k∑
m=1

k−1∑
n=0

(m ∧ (k − n)) · pm,n

(5.21)

Using (5.21), the average power consumption of the node can be calculated, taking into

account that current devices are capacitance-based and their power consumption can be
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considered lineal. Hence, it is supposed that the average power during transitions can be

calculated as half of the difference between the two states:

P̄ower = Pidle · TSP idle + Pon · TSP on +
1

2
Pidle · TSP trans (5.22)

5.2.1.3 Network-wide model

A more realistic scenario entails the analysis not only on a single node but on the whole

network. In this case, the availability of the TSPs must be evaluated along the entire

end-to-end path between source/destination nodes, where multiple connections interfere

as they compete for the same resources.

To evaluate the BP in a network, the well-known method called reduced load Erlang fixed

point approximation method is used [Gir90]. Due to the complexity of determining such

analytical expressions, it is considered that only the shortest-path route can be exploited

between a source and a destination nodes. This assumption is acceptable since the main

purpose of the study is to provide an analytical model which is sufficiently accurate to

evaluate the benefits of the TSP power management strategy and help to set the most

effective number of IDLE TSPs per node when such strategy is employed (i.e., the value

of k). The analysis of more complex scenarios is left for future work.

A first difference when compared to the single node case is that in the network model, the

N parameter is no longer used. Instead, the total number of wavelengths per fiber link,

denoted as W is used. Since an opaque network is being considered, every wavelength

channel on a link entails the use of 2 TSPs, one at each end of a link. Moreover, k denotes

the number of wavelengths that are being reserved for Ch connections, thus, equivalently,

at every end of a link, k TSPs are being reserved for such connections. This means that,

for a Ch connection to be routed, in every link that composes the end-to-end route, at

least one wavelength has to be available, while for Cl connections to be routed, at least

k + 1 wavelengths have to be available.

Let us discuss in detail the analytical model for such scenario. It is based on the analyt-

ical approach presented in [SS04], for which the independence variation is utilized as a

baseline of the presented work, since in an opaque network the load correlation introduced

by the wavelength continuity constraint does not apply. First, the parameters and the

corresponding definitions that will be used in the analysis are introduced:

• Gn = (V,E) is the physical topology of the network, consisting of a set V of nodes

and a set E of bi-directional links.

• R is the set of connection requests between source-destination pairs.

• rsd defines the route from source node s to destination node d.
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• Hij and Lij are the random variables which represent the number of wavelengths

on link (i,j) ∈ E that can be used to set-up Ch and Cl connections, respectively.

• qijm,n is the probability of having exactly a total of m wavelengths that their associ-

ated TSPs are on OFF (hence, usable by Cl connections) or performing a wake-up

operation and a total of n wavelengths that their associated TSPs are on IDLE

(hence, usable by Ch connections). Note that in the network-wide model the same

notation to represent the state of a link as the one introduced during subsection

5.2.1.2 to represent the state of a node is followed. Note also that, with such nota-

tion, Hij = n while Lij = m− [m ∧ (k − n)].

• Xsd and Zsd are the random variables which represent the number of wavelengths

on the whole route between a source/destination pair (s,d) ∈ R that can be used

to set-up Ch and Cl connections, respectively.

• λh,sd and λl,sd are the base arrival rates of Ch and Cl connections between nodes s

and d.

• αijm,n is the connection arrival rate at link (i,j) given that the combination of wave-

lengths that are in the OFF state plus the ones that are in the “wake-up” state is

exactly equal to m and and n wavelengths are in the IDLE state, with αh,ijm,n and αl,ijm,n
the contributions for each kind of traffic. These variables are the so called state-

dependent arrival rates [CKR93] and capture the influence of every connection on

the others.

• Pb,sd is the blocking probability for connections from s to d.

With such definitions, the availability of wavelengths over a particular link (i,j) can be

represented employing the same Markov chain depicted in Figure 5.7, as the wavelengths

in the links follow the same state transitions since their particular availability is strictly

related to the availability of TSPs at nodes. Following this consideration, the equations

used to compute the state probabilities in subsection 5.2.1.2 can be used now, with

the proper variable substitutions: the probabilities pn,m are now substituted by qijm,n,

parameter N is now substituted by W and the arrival rates are no longer constant but

they depend on the state of the link. This last aspect is the main difference in the network-

wide model and is what has been defined as state-dependent arrivals, represented with

variables αijm,n. Therefore, taking into account this consideration, and using the same

analysis presented in section 5.2.1.2, the state probabilities (the q variables) for each one

of the links (i,j) can be determined as:
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qijm,n =



(W−k−1−m)∧k∑
v=0

αij
m+1+v,k−v ·q

ij
m+1+v,k−v

(W−k−m)µ
if 0 ≤ m ≤ W − k − 1; n = k

(W−k)∧(n+1)∑
v=0

αij
v,n+1−v ·q

ij
v,n+1−v

(W−n)µ
if m = 0; 0 ≤ n ≤ k − 1

αh,ij
W−k,n+1·q

ij
W−k,n+1

(m∧(k−n))·ωt+α
ij
W−k,n

if m = W − k; 0 ≤ n ≤ k − 1

αh,ij
m,n+1·q

ij
m,n+1+αl,ij

m+1,n·q
ij
m+1,n+((m+1)∧(k−n+1))·ωt·qijm+1,n−1

(m∧(k−n))·ωt+α
ij
m,n

if 1 ≤ m ≤ W − k − 1;

1 ≤ n ≤ k − 1

αh,ij
m,1 ·q

ij
m,1+αij

m+1,0·q
ij
m+1,0

(m∧(k−n))·ωt+α
ij
m,0

if 1 ≤ m ≤ W − k; n = 0

(5.23)

Similarly to the single node case, qijW−k,k can be calculated as:

qijW−k,k = 1−
W−k∑
m=0

k−1∑
n=0

qijm,n −
W−k−1∑
m=0

qijm,k (5.24)

Once the state probabilities for every link are known, the blocking for every connection

belonging to R as can be calculated as:

Pb,sd = h · (1− Pr{Xsd > 0}) + l · (1− Pr{Zsd > 0}) (5.25)

The terms Pr{Xsd > 0} and Pr{Zsd > 0}, i.e., the probabilities of having enough

resources along the end-to-end route to serve a Ch and a Cl connection, respectively, can

be computed as the product of the probabilities of having enough resources in all links

along the route, since it is necessary that all links from source to destination have enough

free resources to serve the connections:

Pr{Xsd > 0} =
∏

(i,j)∈rsd

Pr{Hij > 0} Pr{Zsd > 0} =
∏

(i,j)∈rsd

Pr{Lij > 0} (5.26)

where Pr{Hij > 0} and Pr{Lij > 0} are the probabilities of having enough resources in

the link (i,j) to serve a Ch and a Cl connection, respectively, and are obtained as follows

considering the blocking states depicted in Figure 5.7:
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Pr{Hij > 0} = 1−
W−k∑
m=0

qijm,0 Pr{Lij > 0} = 1−
k∑

m=0

k−m∑
n=0

qijm,n (5.27)

Hence, the blocking probability in the network can be evaluated as:

Pb,tot =
∑

(s,d)∈R

tsdPb,sd (5.28)

where tsd represents the share of traffic from s to d respect the total traffic in the network.

The average power consumption in the network can be estimated following the same

method as in the single node case:

TSP ij,idle = 2 ·
W−k∑
m=0

k∑
n=0

n · qijm,n

TSP ij,on = 2 ·
W−k∑
m=0

k∑
n=0

(W −m− n) · qijm,n

TSP ij,trans = 2 ·
W−k∑
m=1

k−1∑
n=0

(m ∧ (k − n)) · qijm,n

P̄ower =
∑

(i,j)∈E

(Pidle · TSP ij,idle + Pon · TSP ij,on +
1

2
Pidle · TSP ij,trans)

(5.29)

where the factor 2 is due to the fact that each link entails the use of a TSP on each side

of the link.

However, in the previous analysis, the state probabilities depend on the state-dependent

arrival rates, which have to be still evaluated. The process to evaluate them is an iterative

process, which involves knowing the blocking on each link, and the steps are as follows.

Denoting as αsd,ijm,n the arrival rate of connections (s,d) ∈ R at link (i,j) given that the

combination of wavelengths that are in the OFF state plus the ones that are in the “wake-

up” state is exactly equal to m and n wavelengths are in the IDLE state, its value is as

follows:



Chapter 5. Energy efficiency in transport networks 126

αsd,ijm,n =



0 if 0 ≤ m ≤ k; n = 0

λh,sd · Pr{Xsd > 0|Lij = m− [m ∧ (k − n)];Hij = n} if 0 ≤ m ≤ k − n;

1 ≤ n ≤ k

λl,sd · Pr{Zsd > 0|Lij = m− [m ∧ (k − n)];Hij = n} if k + 1 ≤ m ≤ W − k;

n = 0

(λh,sd + λl,sd) · Pr{Xsd > 0;Zsd > 0|Lij = m− [m ∧ (k − n)];Hij = n}
if k − n+ 1 ≤ m ≤ W − k; 1 ≤ n ≤ k

(5.30)

The probability terms in (5.30) are computed taking into account the availability of

resources on all links along the end-to-end route. Hence, it is necessary to consider the

probability of the states that have at least some resources to allow the establishment of

Ch, Cl or both types of connections. The resulting equations are:

Pr{Xsd > 0|Lij = m− [m ∧ (k − n)];Hij = n} =
∏

(x,y)∈rsd
(x,y)6=(i,j)

(1−
W−k∑
u=0

qxyu,0)

if 0 ≤ m ≤ k − n; 1 ≤ n ≤ k

(5.31)

Pr{Zsd > 0|Lij = m− [m ∧ (k − n)];Hij = n} =
∏

(x,y)∈rsd
(x,y)6=(i,j)

(1−
k∑

u=0

k−u∑
v=0

qxyu,v)

if k + 1 ≤ m ≤ W − k; n = 0

(5.32)

Pr{Xsd > 0;Zsd > 0|Lij = m− [m ∧ (k − n)];Hij = n} =
∏

(x,y)∈rsd
(x,y)6=(i,j)

(1−
W−k∑
u=0

qxyu,0−

−
k∑

u=0

k−u∑
v=0

qxyu,v) if k − n+ 1 ≤ m ≤ W − k; 1 ≤ n ≤ k

(5.33)
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Therefore, using equations (5.30)–(5.33), the new value of the state-dependent arrival

rates can be computed as the summation of all traffic that goes through link (i,j):

αijm,n =
∑
(s,d):

(i,j)∈rsd

αsd,ijm,n (5.34)

Once all involved variables have been correctly evaluated, the blocking levels in the

network can be determined through an iterative process. Firstly, by setting the state-

dependent arrivals to an initial value, the blocking on each link can be obtained. When

determined, it will be used to calculate the value of the state-dependent arrivals for the

next iteration, which, in turn, will allow us to evaluate the blocking in each link for the

next iteration and so on. Through this process, the BP for all pairs (s, d) ∈ R can be iter-

atively calculated until a desired maximum error ε between two consecutive iterations is

achieved. This maximum error is used to decide when the iterative process has converged

and the obtained BP has reached a steady value, so further iterations would not change

significantly the obtained value. Note that if a high value of ε is chosen, it may happen

that the iterative process terminates before a sufficient number of iterations have been

executed, so the obtained value could be far from the real BP. Hence, to obtain accurate

results, a sufficiently small value of ε has to be chosen. The steps of the calculation are

the followings:

1. Set the value of the maximum allowed error between two consecutive iterations (e.g.,

ε = 10−6). Initialize the estimated blocking probability, for every pair (s, d) ∈ R, to

zero, i.e., P̂b,sd = 0, ∀(s, d) ∈ R. For all links (i, j) ∈ E initialize the state-dependent

arrival rates as:

αsd,ijm,n =



0 if 0 ≤ m ≤ k; n = 0

∑
(s,d):

(i,j)∈(s,d)

λh,sd if 0 ≤ m ≤ k − n; 1 ≤ n ≤ k

∑
(s,d):

(i,j)∈(s,d)

λl,sd if k + 1 ≤ m ≤ W − k; n = 0

∑
(s,d):

(i,j)∈(s,d)

(λh,sd + λl,sd) if k − n+ 1 ≤ m ≤ W − k; 1 ≤ n ≤ k

(5.35)

2. Compute the state probabilities for every link using Eqs. (5.23)–(5.24).
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3. Calculate the state-dependent arrival rates for all links according to Eqs. (5.30)–

(5.34).

4. Compute, for every couple (s, d) ∈ R, the blocking probability Pb,sd using Eqs.

(5.25)–(5.27). If max(s,d)|Pb,sd − P̂b,sd| < ε then terminate and evaluate the total

blocking and average power consumption according to (5.28) and (5.29), respec-

tively. Otherwise, set P̂b,sd = Pb,sd and go back to step 2.

5.2.2 Numerical results

In this section, the proposed power management strategy is being evaluated through a

set of numerical results utilizing the aforementioned described analytical model. All the

results in this section have been obtained using the COST239 network topology (11 nodes

and 26 bidirectional links) (see Appendix A). It is assumed that all the traffic is uniformly

distributed among all pairs (s,d). Additionally, it is assumed that the average duration

of the connections is equal to 1, i.e. µ = 1, hence the load is equal to the average arrival

rate of connections to the network λ, with λsd = λ/|R| ∀(s, d) ∈ R.

Different scenarios have been evaluated, where the number of TSPs reserved for Ch con-

nections (k) is varied. Moreover, also the percentages of Ch and Cl connections over the

total are varied. Note that varying these percentages has a direct effect on the values of

the base arrival rates λh and λl, i.e., given the overall connection arrival rate λ = λh +λl,

the values of λh and λl can be determined considering that h + l = 1, h = λh/λ and

l = λl/λ. Additionally, multiple scenarios with different values of Tw (conversely ωt) have

been evaluated. In all tests, the value of ε has been set to 10−12. Additionally, the TSPs

power consumption has been set to Pon = 351 W and Pidle = 18 W for as in [MSR+11].

Figure 5.8.a shows, for increasing values of the network load, the total BP with h = l =

0.5, W = 32 and Tw = 1 ms (ωt = 1000). Additionally, in order to check the accuracy

of the analytical model, some simulations using an event-driven simulator considering

the same power management strategy and network scenario as in the analytical model

has been also performed. All the simulations have been performed considering 4 · 106

connection arrivals to the network. All simulation results have been obtained with 95%

confidence intervals lower than one order of magnitude respect the average value (the size

of the confidence interval is around a relative 2.8% in the worst case and around a relative

1% in average), assuring the statistical accuracy of the presented results. In addition to

various values of k, two special cases as benchmarks have been tested, namely:

• all TSPs are powered-on, that is, any TSP can be used by either Ch or Cl connections

(“All-On” in the figures).

• unused TSPs are powered-off, that is, no TSPs are set in IDLE state, hence, all the

Ch connections are blocked, so the available capacity is completely exploited by Cl
connections (“k = 0” in the figures).
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a) b)

Figure 5.8: a) Blocking probability as a function of the load for the analytical model;
b) Comparison between analytical model and simulations.

In Figure 5.8.a, it can be seen that for low values of k, almost no performance degradation

is experienced in terms of BP, while appreciable performance degradations arise for k ≥ 8.

However, if we observe the case k = 1, a sudden degradation of the BP for low loads can

be observed. Such degradation is due to the influence of the wake-up time and will be

commented in details later on. Additionally, it can be appreciated that the differences

between the analytical model and the simulations are very small (less than a relative 3%

deviation) with almost identical blocking figures (Figure 5.8.b). Such differences arise

from the fact that the analytical model does not take into account the possibility of

connections terminating during a wake-up operation, while such transitions are present

in the simulations. Note, however, that from the depicted results, the impact of this

assumption is very small, demonstrating the correctness and accuracy of the analytical

model. As for the BP of the two different classes, the general trend is that the BP of

the Ch traffic decreases with increasing values of k while the BP of Cl traffic increases.

This is due to the fact that higher values of k imply that more TSPs are put on idle and

reserved for Ch traffic, so less resources can be exploited by Cl traffic. As an example,

taking a load equal to 300, for k = 1, the blocking of Ch and Cl traffic are 0.85% and

0.06%, respectively, while for k = 2 they are 0.01% and 0.12% and for k = 4 they are

0.00185% and 0.31%.

Aside from the BP of the connections, the average and the normalized power consumption

for the analytical model has been also evaluated. The normalized power consumption is

computed as:

normalized power =
total power

n. of connections · (1− Pb)
(5.36)

In Figure 5.9.a, it can be observed that power savings of at least 32% can be obtained by

setting some resources in IDLE state with respect to the All-On scenario. Moreover, huge
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a) b)

Figure 5.9: a) Average power consumption and b) normalized power consumption
as a function of the load for the analytical model.

savings, around 80%, are observed for lower loads and for all the values of k. The impact

of k becomes relevant for higher loads, when reserving more resources for Ch connections

affects the power consumption values, mainly due to the fact that higher blocking is

experienced for increasing k, as more Ch are being blocked.

In order to remove the influence of blocking from the power consumption results, the

normalized power metric has been introduced (Figure 5.9.b). It can be observed that,

when the blocking is negligible, the power consumption increases with k, as more unused

resources are maintained in IDLE state unnecessarily. On the other hand, for increasing

loads, the normalized power consumption decreases more rapidly for higher values of k.

This is due to the fact that, for higher values of k, blocking mainly occurs for multiple-

hops connections, as the chances of having enough available TSPs in every hop decrease

with the length of the path. Thus, the connections accepted for higher k are typically

single-hop and consume less power than those accepted for lower values of k.

Now, let us analyze the influence of the wake-up time on the blocking levels of the network.

Although, as mentioned before, low values of k do not entail significant performance

degradations in terms of blocking, in Figure 5.8.a a sudden degradation in the k = 1 (for

loads below 300 Erlangs) performance can be observed. This is an effect of the wake-up

time of the TSPs. To further investigate this effect, additional experiments focusing on

the case k = 1 have been performed. Figure 5.10 depicts the BP as a function of the load

for various values of Tw. Moreover, the case where the Tw is not considered, as presented

in [MTRP13], is also plotted (“No Tw”).

As expected, the value of the Tw has a substantial impact on the BP. Blocking increases for

increasing values of Tw. This is due to the effect mentioned in section 5.2.1: after an IDLE

TSP is used, and if there are still spare OFF TSPs, a wake-up operation is performed in

order to maintain the pool of k IDLE TSPs; if during this wake-up operation, k − 1 Ch
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Figure 5.10: Blocking probability as a function of the load for varying values of Tw
(k = 1) for the analytical model

.

connections arrive, all the IDLE TSPs will become exhausted, so the next Ch connections

will be blocked. Intuitively, this situation is more likely to happen for longer Tw. In fact

Figure 5.10 shows that higher values of Tw increase substantially the levels of blocking

while for low values, its effect is almost negligible. Note also that for low loads, curves

change their concavity. This can be explained as, for low loads, the main component of

the blocking is the lack of IDLE TSPs during wake-up times, while for increasing loads,

as connections start to compete with each other, the main component of the blocking is

the lack of free resources. As for the case where the Tw is neglected, it can be seen that,

indeed, not considering its influence can lead to substantial differences in the values of Pb
when the load is small.

In light of the results these results, it is clear that the correct dimensioning of k to obtain

a certain network performance (say, Pb ≤ 5%) depends highly on the value of Tw as well

as on the share of Ch connections (since they are the connections that are affected by

the wake-up time). To this end, additional studies where, for various values of Tw and

h, the value of k has been varied in order to determine the most appropriate value of k

to achieve a blocking not greater than 5% for a reference load of 500 Erlangs have been

conducted. The obtained results are depicted in Figure 5.11, where the black solid line

marks the aforementioned threshold for the Pb.

It can be seen that for the selected load, even for low shares of Ch traffic, it is not possible

to fulfill a 5% threshold on the Pb with a wake-up time of 100 ms, as it is still too long to

avoid the lack of TSPs during a Tw. In this case, it would be necessary to dimension the

network for another working load (e.g. by increasing the number of wavelengths per link)

or employ other technologies for the TSPs that allow lower wake-up times. It can be seen

that, if the wake-up time is lower (e.g. 10 ms), as the share of Ch connections increases,

it is necessary to reserve more IDLE TSPs, e.g. k = 1 for h = 0.2, k = 2 for h = 0.5 and

k = 3 for h = 0.8. Moreover, it can be appreciated that, for increasing values of h the

Pb curves have a minimum. This is due to the fact that, as the value of k increases, the
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a) b)

c)

Figure 5.11: Total blocking probability as a function of k for various values of Tw in
a network scenario with 32 wavelengths per link for the analytical model: a) h = 0.2,

b) h = 0.5 and c) h = 0.8.

blocking due to the lack of IDLE TSPs decreases but, at the same time, the blocking due

to lack of resources for Cl connections increases, as less and less resources can be used by

them.

5.3 Chapter summary

Optical transport networks have helped reducing the power consumption by allowing

large amounts of traffic to bypass core routers through optical switching. However, as the

traffic on Internet grows, it is forecast that the energy consumption on transport networks

will increase substantially during the following years. For this reason, energy efficiency

has been widely recognized as an important target in the management of optical WDM

networks and several research efforts have been focused on developing energy-efficient

devices and network management strategies in order to reduce the energy consumption
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on optical networks. Additionally, in the context of VONs a more energy efficient physical

substrate arises of paramount importance in order to provide the future optical network

architecture. With less power hungry network substrates, it is possible to deploy VONs

that consume less energy, keeping the associated OPEX low.

For all these reasons, the current chapter has focused on providing solutions to reduce the

energy consumption on transport optical networks so a more efficient environment can be

achieved for the deployment of VONs. To this end, section 1 has focused on providing an

end-to-end routing solution for multi-domain transport networks, with the objective to

reduce the energy consumption associated to the establishment of connections and, at the

same time, distribute the load on the network so the BP of the connections is kept low.

The presented solution has been exhaustively tested in multiple scenarios and compared

to simpler SP-based routing mechanisms. The results obtained show that it allows for a

greater reduction on the energy consumption of the connections while still keeping the

BP of the connections low.

However, energy-aware routing algorithms are not enough to reduce the energy consump-

tion in transport optical networks, since the overall energy consumption is tightly related

to the underlying physical equipment. For this reason, it is necessary to develop more

energy efficient physical devices in order to further reduce the energy consumption in

transport optical networks. To this end, section 2 has introduced the concept of sleep-

enabled transport networks, where TSPs can be put on a low power consumption mode

(called idle) when not in operation and still be powered on in few ms. when needed.

However, the use of such sleep-enabled devices in the presence of multiple classes of

connections may impact severely the overall performance of the network depending on

the time needed to put a device in this idle state when powered-off. For this reason, a

Markov-based analytical model have been presented in order to asses the impact of this

transition on the network performance (i.e. the BP of the connections) and predict the

energy savings that can be achieved with such physical devices. The presented analytical

model has been throughly tested under multiple conditions. The obtained results showed

that, indeed, a non-negligible transition from the off to the idle state can augment several

orders of magnitude the BP probability of the connections. However, if a proper dimen-

sioning of the physical devices is done, such effect can be compensated and significant

reductions on the energy consumption can be achieved.





Chapter 6

Conclusions and future work

Virtual Optical Networks reveal themselves as a very interesting option to overcome

the limitations of nowadays optical network architectures. Thanks to the possibility to

fully manage the underlying physical resources associated to the VN, network operators

can adjust the characteristics of the network to the requirements of the applications

and services that will run on top of it in a cost effective way. Furthermore, thanks to

the coexistence of multiple VONs in the same physical substrate, it becomes possible to

build multiple mission-specific VIs effectively broadening the range of offered services and

business opportunities. On this basis, the present thesis identifies and addresses resource

management and efficiency issues in VONs. The overall goal of this study is optimized,

flexible and efficient VON composition and operation.

To contextualize the chapters to come, chapter 2 surveyed current optical network in-

frastructures, leading to conclude on the necessity to provide a more flexible and efficient

network infrastructure. To this end, special attention was paid to the concept of IaaS and

VONs as a mean to achieve this concept. Therefore, VONs become the central framework

for the contributions of the thesis. Nevertheless, as a mean to optimize the performance

of VONs in terms of spectrum utilization Elastic Optical Networks were introduced. In

this regard, the evolution from WDM-based optical networks to EONs was surveyed,

putting special emphasis on the benefits but also the challenges that EONs introduce on

the arena. Finally, in order to deploy more cost efficient VONs, the concept of energy

efficiency in optical networks was introduced. These three key aspects (VONs, EONs

and energy efficiency) were discussed in details during the following chapter, as well as

solutions to specific problems regarding the topics.

For better VON resource allocation, chapter 3 dealt with the virtual network embedding

problem in optical network substrates. To this end, firstly the concept of VNE was in-

troduced, along with the major work present in the literature regarding the topic. Next,

the concept was extended to optical network physical substrates and VONs under the

name of VONA problem. In this regard, it was found that several challenges arise due

to the nature of the optical media when compared to Layer 2/3 electrical networks, such
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as IP networks, and specific algorithms have to be designed to properly map the virtual

resources to physical one. In particular it was revealed that the VONA problem is highly

dependent on the technology employed by the underlying physical substrate as well as

the nature of the services that are intended to be offered on top of the VON. In order

to address such particularities, mechanisms to optimally embed the VONs were designed

and tested. First, the concept of transparent and opaque VONs was presented, assess-

ing that the complexity of the VONA problem increases in the case where transparent

VONs are considered. Additionally, it was showed that optimal embedding mechanisms

can achieve substantial gains in terms of number of successfully embedded VONs when

compared to simpler SP-based techniques. Next, it was studied how the VONA problem

can be addressed if an EON physical substrate is considered and compared the process

against a WDM-based physical substrate. From the results, EON-based physical sub-

strates outperformed WDM-based substrates in terms of number of VONs that can be

allocated ton top of them. For chapter completion, specific mechanisms to perform the

embedding of VONs in dynamic scenarios or in the presence of also IT resources in the

physical substrate were proposed. The evaluation of the solutions revealed that an op-

timal VON embedding becomes a key factor in order to maximize the utilization of the

physical substrate.

Chapter 4 focused on improving the spectrum utilization in EONs. This become of cru-

cial importance when considering a EON-based physical substrate for the composition of

VONs. One of the limiting factors in EONs is the spectrum fragmentation effect, which

complicates the establishment of connections, specially the one requiring high bit-rates.

Hence techniques to mitigate such pernicious effect were introduced in the literature.

After surveying the main work regarding the topic, the Split Spectrum approach was

presented as an alternative way to deal with the spectrum fragmentation effect. How-

ever, the resource allocation in SS-enabled EONs becomes further complicated due to the

splitting process that some demands may undergo in order to better fit on the available

spectral resources. For efficient resource allocation in SS-enabled EONs, multiple mech-

anisms were introduced, starting from a simpler approach towards more sophisticated

ones, accounting for the particularities and challenges that the SSA poses. From the re-

sults, it was found that SS-enabled EONs allow reductions on the BP of the connections

around one order of magnitude for low loads and up to around 40-50% for higher loads.

Interestingly, it was found that high bit-rate connections were the ones experiencing the

greater benefits while low bit-rate connections were not heavily affected to this increment

on the number of successfully established high bit-rate connections. To complete the

study, two possible TSP implementations of the SSA were compared, namely BV-TSPs

and MF-TSPs. In this regard, it was found that, even though a MF-TSP allows to serve

a split demand utilizing a unique physical device, because in normal network conditions

the splitting was infrequent, it was usually more beneficial to deploy an over-provisioned

number of BV-TSPs.

Finally, chapter 5 concentrated on providing and analysing solutions to reduce the energy

consumption in transport optical networks. First, an end-to-end energy-aware routing
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mechanism for multi-domain optical networks was introduced. The solution was com-

posed by an inter-domain abstract topology design mechanism as well as an inter-domain

routing mechanisms. Through extensive simulations, it was shown that the presented

mechanism allows to reduce the power consumption associated to successfully estab-

lished connections to a great extent (almost 90% for low loads) while still providing

significant BP reductions when compared against simpler SP-based routing techniques.

As a second step to reduce the energy consumption on transport networks, the concept

of sleep-enabled optical networks was introduced. In this regard, in order to evaluate the

power savings and the BP of the connections in a multi-class scenario where high- and low-

priority connections coexist, a Markov-based analytical model was presented. Through

the use of the presented analytical model, it was found that sleep-enabled transport

networks yield to substantial energy savings when compared against traditional WDM

optical networks. Particularly, reductions up to 80% and at least around 32% were found

for low and high loads, respectively. However, the introduction of sleep-enabled devices in

the network may increase the BP of connections, specially for high-priority ones, due to

the non-negligible wake-up time. Indeed, it was found that, if not correctly dimensioned,

even for low wake-up times (e.g. 100 ms), several orders of magnitude degradations may

happen in terms of BP in the network. In this regard, it becomes crucial to properly di-

mension the optical network according to the load, the duration of the wake-up time and

the share of high- and low-priority traffic. The presented analytical model was showed to

be a sufficiently accurate tool to give guidelines on how to perform such dimensioning.

Further work may follow the multiple lines of research initiated in this thesis. Concerning

the VONA problem introduced on chapter 3, the solutions presented could be enhanced

in order to consider a physical substrate based on SS-enabled EONs as well as the intro-

duction of energy-efficient devices and algorithms. In this regard, it would be mandatory

to design heuristic mechanisms to target the problem since the complexity of the embed-

ding mechanism considering both the SSA and energy-efficient optical substrates would

increase the complexity of the problem notoriously. Another line of future work could

focus on further developing the studies done regarding the composition of VIs requir-

ing both network and IT resources. Focusing on the work regarding the SSA presented

in chapter 4, the work described has focused on the performance analysis of SS-enabled

EONs against more traditional EONs. A possible way to complement the presented stud-

ies would be to compare the performance of the SSA against defragmentation mechanisms

or fragmentation-aware resource assignment solutions present in the literature so as to

identify better the advantages and drawbacks of each kind of approach. Additionally, the

allocation of the most suitable guard band between demands could be introduced as a

problem decision since the presence of multiple bit-rates on the network allows form some

optimization in this regard. Lastly, regarding the solutions for energy-efficient transport

optical networks presented in chapter 5, specially the work regarding sleep-enabled op-

tical networks, other network architectures and routing policies could be introduced in

the analysis. Particularly, the design of an analytical model for sleep-enabled translucent
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and transparent optical networks could be of great interest in order to analyse the differ-

ences in their performance between the three types of optical networks, namely, opaque,

translucent and transparent, when sleep-enabled optical devices are introduced.



Appendix A

Reference transport network

scenarios

Various topologies present in the literature have been used as test networks throughout

this thesis. This appendix introduces each network topology under consideration together

with its main topological characteristics. Additionally, cross-references to the sections and

sub-sections where each network is used are provided.

A.1 16-Node European Optical Network (EON) core

topology

The EON network topology has been widely used in optical networking scientific litera-

ture. It came up as one of the main achievements of the COST 266 and Lion European

Projects [IKM+03, MCL+03] and was designed as a reference topology for a pan-European

fiber-optic transport network. It consisted in 28 nodes placed in major European cities

connected with fiber links between them. To cover different network situations, three

main configurations were specified, namely basic (41 links), sparse ring (33 links) and

densely-meshed triangular (61 links) configurations. Departing from this 28-Node EON

network topology, a simplified version of the network was also introduced, compromising

only the core part of the network. This resulted in a 16-Node network topology (Figure

A.1). In such network, the 16 nodes were connected employing 23 links, resulting in an

average Nodal Degree (ND) of 2.875. This topology has been used in VON embedding

simulation results presented in subsections 3.2, 3.3 and 3.4 as well as in SS simulation

results presented in subsections 4.3 and 4.4.
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Figure A.1: 16-Node EON core topology. Link distances are in km.

Figure A.2: DT transport network topology.

A.2 Deutsche Telekom (DT) transport network

Various network topologies depicting transport networks owned by real network operators

are commonly used in the literature, being the DT transport network topology one of

them (e.g. [AAA+10]). It consists on 14 nodes interconnected employing 23 links (Figure

A.2), resulting in an average ND of 3.286. This topology has been used in VON embedding

simulation results presented in subsection 3.4 and in SS simulation results presented in

subsections 4.3 and 4.4.
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Figure A.3: Multi-domain reference network topology.

Figure A.4: COST 239 network topology.

A.3 Multi-domain reference network topology

To validate integrated solutions for multi-domain optical networks, the European Project

STRONGEST has defined a reference multi-domain network topology [STR10], which

consists of 75 nodes (48 BNs and 27 non-BNs) distributed in 9 different domains (Figure

A.3). The nodes are interconnected through a set of 146 links (26 inter-domain and

120 intra-domain). This multi-domain network topology here presented has been used

in subsection 5.1 to test various proposal of energy-aware routing algorithms in optical

networks.
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A.4 COST 239 network topology

The objective of COST 239 (Ultra-High Capacity Optical Transmission Networks) project

was to evaluate the feasibility of an optical overlay network interconnecting major cities

within Europe. As one of the outcomes, the COST 239 reference network topology was

defined [Bat99]. It consisted of 11 nodes interconnected through 26 links (Figure A.4),

resulting in an average ND of 4.73. The evaluation of the analytical model for energy

efficient networks presented in subsection 5.2 has been done employing this presented

network topology.



Appendix B

Multi-domain WSONs reference

architecture

This appendix introduces the network architecture assumed during subsection 5.1 in order

to test the presented energy-aware routing solution for multi-domain transport networks.

Additionally, some related work regarding the topic is commented in order to better

contextualize the use of the proposed solution in 5.1.

B.1 The Hierarchical-Path Computation Element (H-

PCE) network architecture

The H-PCE [RFC4655, RFC6805, PCG+13] architecture has arisen as the leading stan-

dard for inter-domain connection provisioning in WSONs. In this architecture, an entity

called the parent PCE, which has visibility of the entire multi-domain topology, is re-

sponsible for the end-to-end domain sequences’ computation from source to destination.

A set of lower tier entities, one for each domain of the network, called the child PCE, is

responsible for the computation of the intra-domain route inside the domain they belong.

However, optimal multi-domain routing is a challenging task that poses some difficulties,

in particular since the computation of the end-to-end domain sequence is related to the

size of the multi-domain scenario.

In such a scenario, it is highly common to have a significant number of different domains

connected between them through pairs of BNs, resulting in quite a large network topology.

Having a wide network topology, compromises the scalability of the H-PCE architectures,

since the parent PCE must manage a huge amount of information to keep track of the

multi-domain topology and of the available resources. Moreover, and more commonly,

domains are often managed by different administrators/operators. In such a context,

confidentiality between domains plays an important role, because those entities do not
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Figure B.1: H-PCE network architecture.

want to disclose the details of their topology and available resources. For these reasons, it

is not possible to provide the parent PCE with a fully detailed view of the multi-domain

topology.

Focusing on the multi-operator/administrator scenario, one key point in the overall per-

formance and management of the H-PCE architecture relates to which one of the involved

entities has the ownership or management rights over the parent PCE. Looking at the

literature, e.g., [PCG+13], and available standards, e.g, [RFC6805], there are no clear

answers to this issue as it is still under discussion in the research community. One pro-

posed approach is to have a third neutral entity responsible of the management of the

parent PCE, but it has to be still defined how this entity would interact with the other

operators/administrators. An alternative approach that totally avoids the issue is the

simple Non H-PCE (NH-PCE) architecture, where the PCEs of the domains exchange

data directly communicating to each other. However, the information exchange is more

limited than in the H-PCE case.

For overcoming the confidentiality and scalability difficulties, in both the H-PCE and NH-

PCE architectures, domain topology aggregation was proposed in the literature [LXF+09].

The rationale behind this is to perform some transformations into the topology graphs

of the domains to obtain smaller topologies that summarize the real topology of the

domains. In this way, domain administrators are not obliged to provide the details of

both the topology and occupation state of the domain. These aggregated topologies (also

named virtual or abstract topologies) are then used by the source-domain or the parent

PCE to compute the inter-domain routes.

Among all the topology aggregation schemes that the literature proposes, the one that

presents better resource usage is the full-meshed abstract topology [vdHGD+10]. In such

a full-meshed abstraction, the domain graph is summarized by the set of BNs of the

domain connected in a full-mesh fashion through virtual links. Virtual links are usually

associated to attributes that represent the cost of traversing the domain using a particular

link. Using these costs along with the associated topologies, the parent PCE is able to

compute the end-to-end sequence of domains with high efficiency, without compromising
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neither the scalability nor the confidentiality of the multi-domain scenario. Figure B.1

depicts the overall picture of the assumed H-PCE network architecture. The NH-PCE

architecture (not represented for brevity) would be the same, but with no parent PCE

and with local PCEs communicating with each other directly.

B.2 Related work

One of the first works that relates to the virtual topology abstraction problem is [LGK06],

where the idea of employing aggregated topologies to deal with the scalability of multi-

domain optical networks is presented. The authors present various abstraction models,

namely the single node, star, and full-meshed model. In the single node model, the whole

domain is summarized as a single node with degree equal to the number of inter-domain

links incident to the domain. The star model is composed of all BNs of the domain

connected in a star fashion to a central node in the domain. Finally, and as explained

in the previous sections, the full-meshed abstraction is composed solely of all BNs of

the domain connected through a full-meshed set of virtual links. Moreover, the authors

provide simple mechanisms to obtain such abstractions given the physical topology of a

domain. Through a set of simulations, the authors prove that the full-meshed domain

abstraction is the one that gives the best performance in terms of underlying physical

resource usage, a conclusion that is corroborated by similar works of different authors,

such as in [vdHGD+10].

Many other works have studied the impact on adopting different abstract topologies and

the related techniques to obtain them in diverse scenarios. For example, in [PCI+10]

authors face the issue of the delay between neighboring BNs, providing a mechanism

that guarantees that any virtual link will have a delay below a certain threshold. Other

works, as in [HSGC12], investigate the implications of topology abstraction on multi-layer

networks. Here, the authors provide a full-meshed model in order to provide connection

QoS in multi-layer multi-domain optical networks.

As for the aspect of obtaining the inter-domain route on H-PCE-based multi-domain

optical networks, the literature is full of works addressing different aspects of the problem.

In [GWL+08], the authors propose a load-balancing mechanism in order to offer protection

against link-failure. Their results show that balancing the load can reduce the disruption

of services due to a physical link failure while also providing low blocking figures. A

similar work is presented in [XMAKG12], where the authors present a diverse lightpath

protection scheme against multi-link failures in multi-domain optical networks. Other

aspects are investigated in the literature such as the presence of physical impairments

[ZZC+10] or the Service Level Agreements between the involved domains [CHZ+09].

However, despite the numerous works targeting the efficient routing on multi-domain

optical networks, there is very little work concerning energy-aware routing solutions. For
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this reason, the impact of adding energy-awareness into the route computation and the

proposal of multiple algorithms that combine resource state and energy parameters in

order to compute the end-to-end inter-domain route is studied in section 5.1.
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J. López Vizcáıno, and Y. Ye. TREND in energy-aware adaptive rout-

ing solutions. IEEE Communications Magazine, 51(11):94–104, November

2013.

[IKM+03] R. Inkret, A. Kuchar, B. Mikac, C. Gauger, and M. Köhn. Advanced
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