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Abstract

In this article, we study the local bifurcation of critical periods near a nonde-generate
center of the quartic Liénard equation with quintic damping and prove that at most
two local critical periods can be produced from either a weak center of finite order
or the isochronous center.
MSC: 34C05; 34C07.

Keywords: Liénard system, center, isochronous center, bifurcation of critical periods

1 Introduction
Liénard equation which contains planar Hamiltonian systems of Newton’s type as a

special case is one of the most important differential equations because it was widely

used in physics and others. The theory of centers and isochronous centers of Liénard

equation have been systematically investigated, but the theory of weak centers and

local bifurcation of critical periods were developed slowly because computations are

tedious and formidable.

In 1989, the theories of weak centers and local bifurcation of critical periods were

investigated and applied to both quadratic Bautin’s systems and planar Hamiltonian

systems of Newton’s type by Chicone and Jacobs [1]. Since then, great efforts have

been made for systems of higher degree in the direction of quadratic Bautin’s systems,

see [2,3]. Meanwhile, great Efforts were also taken for some special systems, the

reduced Kukles system was investigated by Rousseau and Toni [4] and reversible cubic

perturbations of a quadratic isochronous center was studied by Zhang et al. [5]. On

the other hand, many mathematicians have studied the weak centers and bifurcations

of local critical period for Liénard equation ẍ + f (x) ẋ + g (x) = 0 in the direction of

Chicone and Jacobs’ study [1] on planar Hamiltonian systems, namely

dx
dt

= y,

dy
dt

= −g (x) − f (x) y.
(1:1)

where f, g are both polynomials. In this article, we assume that the equilibrium of

interest is at the origin O(0, 0) which is nondegenerate. This requires g(0) = 0, f(0) = 0,

g’(0) >0. When f, g are both quadratic polynomials, it has been studied carefully in [6].

Furthermore when f, g are both cubic polynomials, they found that at most two local
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critical periods can be produced from either a weak center of finite order or the linear

isochronous center and that at most one local critical period can be produced from

nonlinear isochronous centers in [7]. The quartic Liénard equation with quartic damp-

ing has been investigated by [8].

In this article, we assume

f (x) = a1x + a2x2 + a3x3 + a4x4 + a5x5, g (x) = b1x + b2x2 + b3x3 + b4x4. (1:2)

where the parameters a1, a2, a3, a4, b1, b2, b3, b4, b5 Î R and b1 >0. This article will

be organized as follows. In Section 2, we state some preliminary knowledge which is

useful throughout the article. In Section 3, we first apply the results in [9,10] on cen-

ters of polynomial Liénard equations to give a necessary and sufficient condition for a

center at O and find the set of coefficients in which the center is isochronous. Then in

Section 4, we identify the weak centers of various possible order. This article is ended

with Section 5 in which the local bifurcation of critical periods was discussed, the

results that at most two local critical periods can be bifurcated from the linear or non-

linear isochronous center O and for each j ≤ 2 there is a perturbation with exactly j

local critical periods are proved.

2 Preliminary knowledge
In this section, we will recall the some related notions and results.

Let P(r, l) denotes the minimum period of the periodic orbit around the origin

through a nonzero point (r, 0). By the period coefficient lemma [1], P(r, l) is analytic

locally and can be represented as its Taylor series P (r,λ) = 2π +
∑∞

k=2 pk (λ) rk.

Definition 2.1. If there exists l* = (a1, a2, a3, a4, a5, b2, b3, b4) such that τ2 (l*) = · · ·

= τ2k+1(l*) = 0 and τ2k+2(l*) ≠ 0 for an integer k then (3.1) has a weak center of order k

at O.

By the definition in [1], a local critical period is a period corresponding to a critical

point of the period function P(·,l) which arises from a bifurcation from a weak center.

We say that k local critical periods bifurcate from a weak center at O corresponding to

the parameter l* if for every ε >0 and every neighborhood W of l* (in the region of

parameters for which the system has a center at O) there is a point l1 Î W such that

P’(r, l1) = 0 has k solutions in U = (0, ε). Moreover, we say that at most k local critical

periods bifurcate from a weak center at O corresponding to the parameter l* if for
every ε >0 there is a neighborhood W of l* such that P’(r, l) = 0 has k solutions in U

= (0, ε) for any l Î W.

As defined in [11],

Definition 2.2. Real functions g1, . . . , gl on Rn are said to be independent with

respect to real function gl+1 on Rn at l* Î V(g1, . . . , gl) if

(i) every open neighborhood of l* contains a point l Î V(g1, . . . , gl-1) such that gl(l)
gl+1(l) <0.
(ii) the varieties V(g1, . . . , gj), 2 ≤ j ≤ l - 1 are such that if V(g1, . . . , gj) and gj+1(l) ≠

0 then every neighborhood W of l contains a point s Î V(g1, . . . , gj-1) such that gj(l)gj
+1(l) <0.
(iii) if l Î V(g1) and g2(l) ≠ 0, then every open neighborhood of l contains a point s

such that g1(s)g2(s) <0.
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So it is easy to see that, if g1, . . . , gl are independent with respect to gl+1 at l* Î V

(g1, . . . , gl) then, for each k = 2, . . . , l, g1, . . . , gk-1 are independent with respect to

gk at every l Î V(g1, . . . , gk-1) such that gk(l) ≠ 0.

Lemma 2.1. [9]System (1.1) with f (x) =
∑m

i=1 aix
i , g (x) =

∑n
i=1 bix

i , where ai, bi Î R,

b1 = 1, has a center at O if and only if

x∫
0

f (ξ) dξ = A (M (x)) ,

x∫
0

g (ξ) dξ = B (M (x)) , (2:1)

for some polynomials A, B and M such that M′(0) = 0, M″(0)≠0

Lemma 2.2. [10]If f(x) or g(x) is odd, then M = x2 and (1.1) has an isochronous cen-

ter at the origin of (1.1) if and only if f(x) is odd and

g (x) = x +
1
x3

⎛
⎝ x∫

0

ξ f (ξ) dξ

⎞
⎠

2

(2:2)

3 Conditions for center and isochronous center
We can always assume that b1 = 1, unless we could make transformation (x, t) ®

(x /
√
b1, t /

√
b1) to make b1 = 1.

Applying Lemma 2.1 to the

dx
dt

= y,

dy
dt

= −x − b2x
2 − b3x

3 − b4x
4 − (

a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5) y. (3:1)

We give the following condition of center directly for coefficients.

Theorem 3.1. O is a center of system (3.1) if and only if l Î SI ∪ SII ∪ SIII, where

SI =
{
λ ∈ R8 : a2 = b2 = a4 = b4 = 0

}
;

SII =
{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0

}
;

SIII =
{
λ ∈ R8 : a2 = a1b2, a4 =

5
3
a3b2 , a5 =

2
3
a3b

2
2, b3 = b4 = 0, b2 �= 0

}
.

Proof. Our proof is based on the method developed by Cherkas [12]. In order to

solve system (3.1) with m = 5, n = 4. we choose

A (x) =
∑4

i=0
αixi, B (x) =

∑4

i=0
βixi, M (x) = x2 +

∑6

i=3
mixi. (3:2)

In fact,

x∫
0

f (ξ) dξ =
m∑
i=1

ai
i + 1

xi+1,

x∫
0

g (ξ) dξ =
n∑
i=1

bi
i + 1

xi+1.

They are both polynomials of M(x) if and only if they are both polynomials of poly-

nomial M(x) /m2 - m0/m2, where m0, m1 are coefficients of the first two terms of poly-

nomial M(x). Without loss of generality, we can assume that m0 = 0, m2 = 1.
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Substituting those formal polynomials (3.2) in (2.1), and comparing coefficients with

the help of mathematica, we obtain the conditions of theorem.

Theorem 3.2. O is an isochronous center of system (3.1) if and only if l Î SIV, where

SIV =
{
λ ∈ R8 : a2 = a3 = a4 = a5 = b2 = b4 = 0, b3 =

a21
9

}
.

Proof. When l Î SI, Lemma 2.2 implies that system (3.1) has an isochronous center

at O if and only if

x + b3x3 = x +
1
x3

(a1
3
x3 +

a3
5
x5 +

a5
7
x7

)2

Thus b3 = a21
9

and a3 = a5 = 0 implying that l Î SIV

With the same method, we could get that O is an isochronous center of system (3.1)

when l Î SI, SII, SIII if and only if a1 = a2 = a3 = a4 = a5 = b1 = b2 = b3 = b4 = 0,

namely ẋ = − y, ẏ = x. It imply that l Î SIV.

Obviously, lI∩lIV = lIV, lII∩lIV = (0, 0, 0, 0, 0, 0, 0, 0), lIII∩lIV = (0, 0, 0, 0, 0, 0, 0,

0), In the following section, we discuss the weak centers of finite order for (lI ∪lII
∩lIII)\lIV.

4 Weak centers of finite order
This section is devoted investigating how many local critical periods can be produced

from a perturbed system of (3.1) near O. The independence condition should be used

in the proof of bifurcation of critical periods. For more detail please see [11].

Theorem 4.1. O is a weak center of order at most two of system (3.1) when l Î SI

\SIV, and the center is of order k(k = 0, 1, 2, 3) if and only if λ ∈ �k
I , where

�0
I =

{
λ ∈ R8 : a2 = b2 = a4 = b4 = 0, b3 �= 1

9
a21

}
;

�1
I =

{
λ ∈ R8 : a2 = b2 = a4 = b4 = 0, b3 =

1
9
a21, a1a3 �= 0

}
;

�2
I =

{
λ ∈ R8 : a1 = a2 = a4 = b2 = b3 = b4 = 0, a3 �= 0

} ∪{
λ ∈ R8 : a3 = a2 = b2 = a4 = b4 = 0, b3 = 1

9a
2
1, a5 �= 0

}
.

Proof. When l Î SI, with the computer algebra system Mathematic 8.0 we calculate

τ1 =
1
12

(
9b3 − a21

)
,

τ2 = − 1
12

a1a3,
(4:1)

If a1 = 0, a3 ≠ 0

τ3 = − 7
320

a23;

If a3 = 0,

τ3 = − 5
96

a25.

Hongwei Advances in Difference Equations 2012, 2012:24
http://www.advancesindifferenceequations.com/content/2012/1/24

Page 4 of 9



So when τ1 ≠ 0, we have

�0
I =

{
λ ∈ R8 : a2 = b2 = a4 = b4 = 0, b3 �= 1

9
a21

}
;

When τ1 = 0, τ2 ≠ 0, we have

�1
I =

{
λ ∈ R8 : a2 = b2 = a4 = b4 = 0, b3 =

1
9
a21, a1a3 �= 0

}
;

If τ1 = 0, τ2 = 0, τ3 ≠ 0, we have

�2
I =

{
λ ∈ R8 : a1 = a2 = a4 = b2 = b3 = b4 = 0, a3 �= 0

} ∪{
λ ∈ R8 : a3 = a2 = b2 = a4 = b4 = 0, b3 =

1
9
a21, a5 �= 0

}
;

Theorem 4.2. O is a weak center of order at most two of system (3.1) when l Î SII

\SIV, and the center is of order k(k = 0, 1, 2) if and only λ ∈ �k
II, where

�0
II =

{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0, b3 �= 1

9

(
a21 + 10b22

)}
;

�1
II =

{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0,

b3 =
1
9

(
a21 + 10b22

)
, −2a41 + 35a21b

2
2 + 280b42 − 378b2b4 �= 0

}
;

�2
II =

{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0,

b3 =
1
9

(
a21 + 10b22

)
, b4 =

−2a41 + 35a21b
2
2 + 280b42

378b2
, b2 �= 0

}
∪{

λ ∈ R8 : a1 = a2 = a3 = a4 = a5 = b2 = b3 = 0, b4 �= 0
}

Proof. When l Î SII, with the computer algebra system Mathematic 8.0 we calculate

τ1 =
1
12

(
9b3 − a21 − 10b22

)
,

τ2 =
1
216

(−2a41 + 35a21b
2
2 + 280b42 − 378b2b4

)
,

(4:2)

If b2 = 0,

τ2 = − a41
108

, τ3 = −63
80

b24;

If b2 ≠ 0,

τ3 = − 12a81 + 987a61b
2
2 + 3395a41b

4
2 + 85750a21b

6
2 + 450800b82

544320b22
.

So when τ1 ≠ 0, we have

�0
II =

{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0, b3 �= 1

9

(
a21 + 10b22

)}
;

When τ1 = 0, τ2 ≠ 0, we have

�1
II =

{
λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0,

b3 =
1
9

(
a21 + 10b22

)
, −2a41 + 35a21b

2
2 + 280b42 − 378b2b4 �= 0

}
;
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If τ1 = 0, τ2 = 0, τ3 ≠ 0, we have

�2
II = {λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0,

b3 =
1
9

(
a21 + 10b22

)
, b4 = −2a41 + 35a

2
1b

2
2 + 280b

4
2

378b2
, b2 �= 0

}
∪{

λ ∈ R8 : a1 = a2 = a3 = a4 = a5 = b2 = b3 = 0, b4 �= 0
}

Theorem 4.3. O is a weak center of order 0 of system (3.1) when l Î SIII\SIV.

Proof. When l Î SIII, with the computer algebra system Mathematic 8.0 we calculate

τ1 =
1
12

(−a21 − 10b22
)
. (4:3)

So τ1 ≠ 0, namely, the O is a weak center of order 0.

From Theorem 3.1 to 3.3 we conclude the following result.

Theorem 4.4. O is a weak center of order at most 2 of system (3.1) when l Î (SI ∪ SII

∪ SIII) \ SIV, and the center is of order k(k = 1, 2) if and only if λ ∈ �k
I ∪ �k

II, the cen-

ter is of order 0 if and only if λ ∈ �0
I ∪ �0

II ∪ �0
III.

5 Bifurcations of critical periods
In this section, we investigate how many local critical periods can be produced from a

perturbed system of (3.1) near O. The independence condition should be used in the

proof of bifurcation of critical periods. For more detail please see [11].

Theorem 5.1. For each k = 1, 2 at most k local critical periods occur in a perturbed

system of (3.1) for λ ∈ �k
I ∪ �k

II, . Moreover, there are perturbations of (3.1) where

λ ∈ �1
I ∪ �1

II with exactly one critical periods. There are perturbations of (3.1) where

λ ∈ �2
I ∪ {

λ ∈ R8 : a2 = a1b2, a4 = b4a1, a3 = a1b3, a5 = 0, b3 = 1
9

(
a21 + 10b22

)
, b4 = −2a41 + 35a

2
1b

2
2 + 280b

4
2

378b2
, b2 �= 0

}
with exactly

two critical periods.

Proof. The first assertion was directly proved by [1, Lemma 2.2], so we need only to

check conditions for independence, in order to prove the second by [1, Theorem 2.1].

It is sufficient to discuss the case of k = 2 and prove the independence of τ1, τ2 with

respect to τ3 at each λ ∈ �2
I ∪ �2

II by checking (i) and (iii) only.

Consider some λ∗ ∈ �2
I ∪ �2

II, when

λ∗ ∈ �2
I , if λ

∗ =
(
0, 0, a∗

3, 0, a
∗
5, 0, 0, 0

)
, a∗

3 �= 0. It is obviously that every open

neighborhood of l* contains a point λ1 = (−sgn (a∗
3)ε, 0, a

∗
3, 0, a

∗
5, 0,

ε2

9 , 0) , where ε

>0 is sufficiently small. We can check that τ1(l1) = 0, τ2(l1)τ3(l1) <0 for sufficiently

small ε. If λ∗ = (a∗
1, 0, 0, 0, a

∗
5, 0,

(a∗
1)

2

9 , 0), a∗
5 �= 0. Obviously, every open neighbor-

hood of l* contains a point λ1 = (a∗
1, 0, −sgn (a∗

1)ε, 0, a
∗
5, 0,

(a∗
1)

2

9 , 0) , where ε >0 is

sufficiently small. We can check that τ1(l1) = 0,τ2(l1)τ3(l1) <0 for sufficiently small ε.

Thus condition (i) of independence is checked for λ∗ ∈ �2
I .

When λ∗ ∈ �2
II , If

λ∗ =

(
a∗
1, a

∗
1b

∗
2, a

∗
1b

∗
3, b

∗
4a

∗
1, 0, b

∗
2,

1
9

((
a∗
1

)2
+ 10

(
b∗
2

)2)
,

−2
(
a∗
1

)4 + 35
(
a∗
1

)2(
b∗
2

)2 + 280
(
b∗
2

)4
378b∗

2

)
, b∗

2 �= 0
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Obviously, every open neighborhood of l* contains a point

λ1 =

(
a∗
1, a

∗
1b

∗
2, a

∗
1b

∗
3, b

∗
4a

∗
1, 0, b

∗
2,

1
9

((
a∗
1

)2
+ 10

(
b∗
2

)2)
,

−2
(
a∗
1

)4 + 35
(
a∗
1

)2(
b∗
2

)2 + 280
(
b∗
2

)4
378b∗

2
− sgn

(
b∗
2

)
ε

)

where ε > 0 is sufficiently small. After careful calculations, we can check that τ1(l1) =

0, τ2(l1)τ3(l1) < 0 for sufficiently small ε. But λ∗ =
(
0, 0, 0, 0, 0, 0, 0, b∗

4

)
, b∗

4 �= 0.

We could find that every open neighborhood of l* do not contains a point l1 such

that τ1(l1) = 0, τ2(l1)τ3(l1) <0.
In order to check condition (iii), consider l Î V(τ1) and τ2(l) ≠ 0. By Theorem 1, it

is equivalent to say λ ∈ �1
I ∪ �1

II Consider λ ∈ �1
I . If

λ∗ =
(
a∗
1, 0, a

∗
3, 0, a

∗
5, 0, b3 = 1

9

(
a∗
1

)2, 0)
, a∗

1a
∗
3 �= 0. Obviously, every open neigh-

borhood of l* contains a point λ1 =
(
a∗
1 − sgn

(
a∗
3

)
ε, 0, a∗

3, 0, a
∗
5, 0,

ε2

9 , 0
)
, where

ε > 0 is sufficiently small. We can check that τ1(l1)τ2(l1) < 0 for sufficiently small ε.

Thus condition (iii) of independence is checked for λ∗ ∈ �1
I .

Consider λ ∈ �1
II . If λ∗ = (a∗

1, a
∗
1b

∗
2, a

∗
1b

∗
3, b

∗
4a

∗
1, 0, b

∗
2,

1
9 ((a

∗
1)

2 + 10(b∗
2)

2), b∗
4),

where −2
(
a∗
1

)4
+ 35

(
a∗
1

)2 (
b∗
2

)2
+ 280

(
b∗
2

)4 − 378b∗
2b

∗
4 �= 0. Obviously, every open

neighborhood of l* contains a point

λ1 =
((

a∗
1, a

∗
1b

∗
2, a

∗
1b

∗
3, b

∗
4a

∗
1, 0, b

∗
2,

1
9

((
a∗
1

)2 + 10
(
b∗
2

)2) + sgn
(
−2

(
a∗
1

)4 + 35
(
a∗
1

)2 (
b∗
2

)2 + 280
(
b∗
2

)4 − 378b∗
2b

∗
4

)
ε, b∗

4

)
,where ε >0

is sufficiently small. We can check that τ1(l1)τ2(l1) <0 for sufficiently small ε. Thus

condition (iii) of independence is checked for λ∗ ∈ �1
II. Thus condition (iii) also holds.

As far as, we know that it is also interesting to investigate in local critical periods

occurring from an isochronous center besides the bifurcations from weak centers of

finite order. The study of critical period bifurcations from an isochronous center can

be done only by investigating the algebraic structure of the ideal generated by all per-

iod coefficients, i.e., to find the basis of this ideal. As known in Theorem 2.2, O is an

isochronous center if and only if l Î SIV. In addition, O is a linear isochronous center,

when a1 = 0 or nonlinear isochronous center when a1 ≠ 0.

Theorem 5.2. For system (3.1), at most two local critical periods can be bifurcated

from the linear isochronous center O and for each j ≤ 2 there is a perturbation with

exactly j local critical periods; at most two local critical period can be bifurcated from

the nonlinear isochronous center O and there is a perturbation with each j ≤ 2 local

critical period.

Proof. Consider O to be a linear isochronous center, namely l* = (0, 0, 0, 0, 0, 0, 0,

0), we first claim that at most two local critical periods bifurcate from l*. Assume that

k(k ≥ 3) local critical periods bifurcate from l* for every ε >0 and every neighborhood

W of l* there is l1 such that equation P’(r, l1) = 0 has k solutions in (0, ε). Since W ⊂
SI ∪ SII ∪ SIII, by Theorem 1, for every l in W the center is either of degree at most

three or isochronous. It follows that the center corresponding to l1 cannot be isochro-

nous but is of degree at most three, which implies that at most three local critical peri-

ods bifurcate, i.e., there is a neighborhood B of l1 such that equation P’(r, l) = 0 has at

most three (other than k) solutions in (0, ε) for any l Î B, and we have proved that

there is a perturbation with three local critical period. This contradiction proves our

claim.
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Now, we prove that there is a perturbation of l* with j ≤ 2 local critical periods.

Obviously, every small neighborhood W of l* contains a point of the form

(0, 0, δ, 0, 0, 0, 0, 0) ∈ �2
I , where δ >0 is sufficiently small. By Theorem 1, the sys-

tem for (0, 0, δ, 0, 0, 0, 0, 0) has a weak center of order two at O. Since, W is also a

neighborhood of (0, 0, δ, 0, 0, 0, 0, 0), by Theorem 2, for every ε >0 there is a point λ̃

in W such that equation P′(r, λ̃) = 0 has j solutions in (0, ε), implying that exact j

local critical periods bifurcate from O corresponding to l*. Thus, the first assertion is

proved.

With the same method, consider O to be a nonlinear isochronous center, namely

λ∗ =
(
a1, 0, 0, 0, 0, 0,

a21
9 , 0

)
. We find that in small neighborhoods of l* there are

points in �2
I and in every neighborhoods of l*. There are points in �1

I in every neigh-

borhoods of l*, i.e., the origin becomes a weak center of order two. By Theorem 4.1,

the second part of this theorem is proved.

6 Remarks
In this article, quartic Liénard equation with quintic damping are investigated. When f,

g are both quadratic polynomials, namely a3 = a4 = a5 = b3 = b4 = 0, it has been stu-

died carefully in [6]. Furthermore, when a4 = a5 = b4 = 0, f, g are both cubic polyno-

mials, they found that at most two local critical periods can be produced from either a

weak center of finite order or the linear isochronous center and that at most one local

critical period can be produced from nonlinear isochronous centers in [7]. When a5 =

0, the quartic Liénard equation with quartic damping has been investigated by [8]. Our

results cover results of above except when the origin is a isochronous center, we will

investigate the algebraic structure of the ideal generated by all period coefficients in

future.
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