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1 Introduction

The study of non-equilibrium processes in quantum field theory is an important and active

area of research (see [1–3] for references). The subject has most diverse applications that

range from astrophysics and cosmology, i.e. the study of particle production at the end of

inflation and the generation of density fluctuations, to relativistic heavy ion collisions, i.e.

the dynamics of the quark-gluon plasma at RHIC. For the case of near-equilibrium states

there exist well developed formalisms: linear response, kinetic theory or fluid dynamics.
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This techniques rely on the existence of a dilute equilibrium ensemble or weak coupling.

However in many physical instances the system to be studied can be strongly coupled or

in a dense state or both, and therefore in these situations the standard techniques do not

apply.

The question of whether a given subset of the degrees of freedom of a certain system

reaches equilibrium starting from an arbitrary initial state, and whether such equilibrium

can be described by a thermal density matrix, is an open one whose answer seems to depend

on the details of the underlying dynamics [4]. A large number of numerical and analytical

research on such quenching process has been published (see [5–7] and references therein),

regarding both weakly coupled systems in the perturbative regime [8, 9], and integrable

systems [10–15]. Moreover, strong coupling QFT’s have been studied numerically in the

lattice [16].

In this paper we will consider the study of far from equilibrium strongly coupled

systems using the gauge/gravity correspondence. As it is well known, the holographic cor-

respondence is the natural arena for analyzing strongly coupled QFT problems translating

them into classical gravity computations. For near-equilibrium states, the correspondence

has been extensively studied with particular emphasis in the linear response and the hy-

drodynamic regime, in terms of perturbations of the black hole geometry (see the recent

reviews [17, 18]). More recently, attention has been paid to far-from-equilibrium states.

Reference [19, 20] made a holographic proposal to model the sudden injection of energy

into the QFT vacuum state, and its subsequent thermalization, in terms of an AdS Vaidya

geometry. The dynamical Vaidya spacetime physically corresponds to the collapse of a

homogeneous massless shell in AdS, leading to the formation of a black hole [21, 22]. It

interpolates between pure AdS spacetime (vacuum) in the distant past to an AdS black

hole (thermal state) in the distant future. Two point functions of operators O of large

conformal dimensions, which in the dual picture can be computed in the semiclassical ap-

proximation in terms of geodesics, and Wilson loops and entanglement entropy, which in

the gravity perspective relate to minimal (hyper)surfaces, were used as probes of thermal-

ization. The resulting picture is that the UV degrees of freedom thermalize first, followed

later by the IR ones (top-down thermalization [19, 20]). From the gravity perspective this

is an expected result since IR probes explore deeply in the radial direction being therefore

sensitive to the shell position for longer times.

The aforementioned results were generalized in [23–26] to situations with a non-trivial

chemical potential or, in the dual perspective, to the case in which the system experiences

a sudden injection of both energy and particles. The dual geometry was chosen to be

that of a charged collapsing null shell interpolating between AdS in the distant past and

asymptotically AdS Reissner-Nordstrom black hole (AdSRN) in the distant future. The

thermalization was probed by two point functions of chargeless operators, Wilson loops,

and entanglement entropy. The emergent picture of [23–25] was that as the final chemical

potential is increased, it takes longer for the system to thermalize (see [27]–[51] for related

works).

It is the aim of the present paper to extend the studies mentioned above. In particular,

since the Vaidya geometry is known to be supported by an energy-momentum tensor sat-
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isfying null energy conditions, in the present work we analyze the energy conditions of the

previously explored charged Vaidya geometries [23–26] and its further generalizations. We

afterwards study the thermalization process by probing the system with charged operators.

The organization of the paper is the following: in section 2 we analyze whether the

Vaidya metric used in [23–26], that represents a quench on the chemical potential and tem-

perature in the dual field theory, is supported by matter satisfying null energy conditions,

in section 3 we probe the thermalization process with two point functions of charged opera-

tors. The results are presented and discussed in section 4. We conclude with a summary in

section 5. In the appendices we discuss Eddingtong-Finkelstein coordinates, the worldline

formalism and the WKB approximation, used in the text to obtain the two-point functions

of charged operators.

2 Background geometry

The gauge/gravity duality relates a strongly coupled quantum field theory (QFT) in d flat

spacetime dimensions with a weakly coupled gravity theory in a d+1 dimensional spacetime

which asymptotes to anti-de Sitter spacetime. According to the standard gauge/gravity

dictionary, a finite temperature state of the field theory is represented by a geometry with a

horizon in the bulk side. Moreover, a global symmetry in the field theory induces a gauge

symmetry in the gravity side. As a consequence, the presence of a chemical potential

for a global U(1) charge at finite temperature on the QFT side is described in the dual

gravitational picture by the presence of an electrically charged black hole [52, 53]. In the

simplest example, an equilibrium state with finite temperature and chemical potential is

represented by an AdSRN black hole with given mass and charge. On the other hand,

a process in which the temperature and chemical potential vary can be represented by a

metric which interpolates between two such geometries with different values of mass and

charge. In this section, we describe those geometries and analyze the energy momentum

tensor that is needed to support them. We model the dynamical geometry by the collapse

of a thin shell of null dust. It turns out to be convenient to substitute the standard time

coordinate t, which is not constant across the shell, by an infalling radial null coordinate

v which is.

In what follows, we take d to be the spacetime dimension of the dual field theory, hence

our bulk geometry will be d + 1 dimensional. The indices µ, ν = 0 . . . d denote the bulk

coordinates xµ = (v,x, z).

2.1 Equilibrium state

Bulk geometry. In Eddington-Finkelstein ingoing null coordinates, the metric and gauge

fields corresponding to a planar AdSd+1 Reissner-Nordstrom black hole take the form (see

appendix A)

ds2 =
L2

z2

(
−fdv2 − 2dvdz + dx2

d−1

)
, (2.1)

F = LFzv dz ∧ dv , (2.2)
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where f and Fzv are functions of z that read

f = 1−Mzd +Q2z2(d−1) , (2.3)

Fzv = −γ(d−2)Qzd−3, with γ2 =
d− 1

2(d− 2)
. (2.4)

The static background (2.1)–(2.2) is a vacuum solution of the (d+1)-dimensional Einstein-

Maxwell system with negative cosmological constant Λ = −d(d− 1)/2(κL)2

SEM =
1

2κ2

∫
dd+1x

√
−g
[
R+

d(d− 1)

L2

]
− 1

4

∫
dd+1x

√
−gFµνFµν . (2.5)

Setting κ2 = 1 the equations of motion following from SEM are

Rµν −
1

2
gµνR+ Λgµν = TMaxwell

µν , (2.6)

∇µFµν = 0 , (2.7)

where

TMaxwell
µν = FµαFνβg

αβ − 1

4
gµνF

2 . (2.8)

The geometry (2.1) asymptotes AdS space with radius L as we approach the boundary

located at z = 0, and the constants M and Q correspond to the ADM mass and electric

charge respectively. The metric (2.1) has a curvature singularity at z → ∞ and has

horizons whenever the function f vanishes. To characterize the horizons, notice that f has

two stationary points, one at z = 0 at which f = 1, and a second one (a local minimum) at

zmin = (dM/2(d− 1)Q2)1/(d−2). The curvature singularity will be hidden from the outside

as long as f(zmin) ≤ 0, which implies a constraint on the possible values of M,Q(
Md−1

Qd

)2

≥
(

2(d− 1)

d

)d(2(d− 1)

d− 2

)d−2

. (2.9)

Whenever this inequality is satisfied, we generically have two horizons at z = z± (in-

ner/outer). Moreover, when the bound is saturated the two horizons coincide and the con-

figuration is called an extremal black hole solution (more on this below). We will demand

the constraint (2.9) on all our solutions in order to have a physically sensible gravitational

background.

Although charged black holes generically depend on two arbitrary parameters Q and

M , this is not so in the planar horizon case. The absence of a scale on the horizon geometry

allows us to get rid of one of the parameters. Explicitly, the rescaling (v,x, z) = z−(ṽ, x̃, z̃)

maps the (outer) horizon position to z̃ = 1. Defining M̃ = Mzd− and Q̃ = Qzd−1
− one finds

that M̃ = 1 + Q̃2 resulting into [52, 53]

f = 1− (1 + Q̃2)z̃d + Q̃2z̃2(d−1) , (2.10)

Fzv = −γ (d−2)Q̃z̃d−3 . (2.11)

This is the parametrization often used in the literature for the planar Reissner-Nordstrom

AdS black hole. It automatically satisfies the constraint (2.9), and notice that Q̃ can
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take any arbitrary value. The geometry (2.10) has generically two horizons. Depending

on the value of Q̃ one has: (i) an outer one at z̃− = 1 and an inner one at z̃+ > 1 for

|Q̃| ≤
√
d/(d− 2), (ii) coincident horizons at z̃± = 1 for Q̃2 = d/(d − 2) (extremal BH),

and (iii) an inner horizon at z̃+ = 1 and an outer one at z̃− < 1 for |Q̃| >
√
d/(d− 2).

An appropriate rescaling of the holographic coordinate maps the type (iii) solutions to the

type (i) ones.

Summarizing, the background (2.10)–(2.11) with |Q̃| ≤
√
d/(d− 2) parametrizes the

most general static planar AdSRN solution with an outer horizon located at z̃− = 1 and

an inner horizon located at z̃+ ≥ 1.

Boundary theory. As mentioned above, the AdS boundary is located at z = 0 and, as

it is well known, the static geometry (2.1)–(2.2) represents a dual QFT equilibrium state

characterized by a chemical potential µ and a temperature T [52, 53]. The bulk variable

v is identified with the dual gauge theory time t since both coincide at z = 0 (see (2.12)

below).

The standard procedure to relate the boundary and bulk parameters is to impose

regularity of the Wick rotated solution. For the static case (2.3)–(2.4), the redefinition

− idtE = dv +
dz

f
, (2.12)

turns the geometry (2.1) into the Euclidean form

ds2 =
1

z2

(
fdt2E +

dz2

f
+ dx2

d−1

)
. (2.13)

We note in passing that if the function f were v-dependent, as it will become later when

we define Vaidya metrics, the redefinition (2.12) would not be allowed, the right hand side

being not an exact differential. The metric (2.13) is regular at the outer horizon z = z− if

we periodically identify tE ≡ tE + β, with

β =
4π

|fz(z−)|
, (2.14)

the subindex z on fz denotes derivative with respect to z. The boundary theory tempera-

ture is then defined as

T ≡ 1

β
=
dMzd− − 2(d− 1)Q2z2d−2

−
4πz−

. (2.15)

Regarding the chemical potential of the boundary theory, it relates to the black hole charge

as follows: we can choose the bulk gauge potential to be

Av = −γQLzd−2 + µL , (2.16)

with µ arbitrary. From (2.12) one has iAtE = −γQLzd−2 + µL. Since the tE circle

smoothly collapses at the outer horizon, the gauge field must satisfy AtE (z−) = 0 to avoid

singularities. This condition fixes the asymptotic value of the gauge field to

µ = γQzd−2
− . (2.17)

– 5 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
6

For a fixed mass black hole, increasing the chemical potential (i.e. the black hole charge)

decreases the black hole temperature. The extremal bound in (2.9) corresponds to the

T = 0 and µ 6= 0 case. In the gauge/gravity duality context one identifies the gauge field

boundary value µ as the source for the QFT conserved charge operator.

2.2 Time dependent states

Bulk geometry. To construct a time dependent geometry, we promote the z-dependent

functions f and Fzv on (2.2) to (z, v)-dependent functions. In other words, we keep the

ansatz for the metric and the field strength (2.1)–(2.2), but the functions f, Fzv now depend

on both variables z, v. Under this conditions, extra matter contributions TMatter
µν and jµMatter

need to be added to the right hand side of (2.6)–(2.7), in order to satisfy Einstein-Maxwell

equations of motion. They physically represent an infalling charged matter shell giving

birth to the black hole [21, 22]. The additional contribution to the energy momentum

tensor is defined as

TMatter
µν =

[
Gµν −

(d− 1)d

2L2
gµν

]
− TMaxwell

µν . (2.18)

Working out the components of TMatter
µν in terms of the functions f, Fzv and their derivatives

one finds

TMatter
vv =

(d− 1)

2z2

(
f
(
zfz − d f + d

)
− z fv

)
− z2

2
fF 2

zv , (2.19)

TMatter
vz =

(d− 1)

2z2

(
z fz − d f + d

)
− z2

2
F 2
zv , (2.20)

TMatter
xixj = δij

[
1

2
fzz −

(d− 1)

2z2

(
2z fz − d f + d

)
− z2

2
F 2
zv

]
. (2.21)

In the right hand side of these expressions a subindex in f denote partial derivative, fv ≡
∂vf and fz ≡ ∂zf .

A crucial point to be verified is whether the infalling matter that supports the time

dependent solution satisfies appropriate energy conditions. In this work we will consider

the null energy condition. The reasons for considering it have been thoroughly discussed

(in particular in [26]). Succinctly, it can be argued that fundamental inequalities in the

quantum field theory, like the decreasing of degrees of freedom along the renormalization

group flow or the strong sub-additivity property for entanglement entropy, steam from the

gravitational dual satisfying the null energy condition.

The null energy condition states that for any null vector nµ, the energy momentum

tensor must satisfy

TMatter
µν nµnν ≥ 0 , (2.22)

everywhere in spacetime. Writing a generic vector as nµ = (nv, nz, nx,0d−2), where we have

used the rotational invariance in the Cartesian coordinates xd−1 to eliminate redundant

components, the condition for it to be null reads

gµνn
µnν =

1

z2
(−f(nv)2 − 2nvnz + (nx)2) = 0 . (2.23)

– 6 –
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This equation can be solved for nz. There is one solution nv = nx = 0 under which (2.22)

vanishes identically imposing no constraint. On the other hand, when nv 6= 0 the solution

reads nz = ((nx)2 − f(nv)2)/2nv, and upon replacing it into the energy condition (2.22)

one finds

(TMatter
vv − fTMatter

vz )(nv)2 + (TMatter
xx + TMatter

vz )(nx)2 ≥ 0 . (2.24)

In order for this quadratic form to be positive definite for any null vector, we need (Tmvv −
fTmvz) ≥ 0 and (Tmxx + Tmvz) ≥ 0, using (2.19)–(2.21) one finds

fv ≤ 0 , (2.25)

zfzz − (d− 1)fz − 2z3 F 2
zv ≥ 0 . (2.26)

This set of equations constraint the (z, v)-dependence of the ansatz functions f, Fzv.

Another important requirement to be imposed on the solution is that any physical

matter current sourcing the gauge fields must be time-like or null. Defining the matter

current as

jνMatter = ∇µFµν

=
1√
−g

∂µ
(√
−gFµν

)
, (2.27)

we find

jzMatter =
z4

L3
Fzv,v , (2.28)

jvMatter =
(d− 3)z3

L3
Fzv −

z4

L3
Fzv,z . (2.29)

The matter current must satisfy

gµν j
µ
Matter j

ν
Matter ≤ 0 , (2.30)

or using (2.29)(
(d− 3)

z
Fzv − Fzv,z

)(
2Fzv,v + f

(
(d− 3)

z
Fzv − Fzv,z

))
≥ 0 . (2.31)

We now consider the particular case where the f, Fzv functions keep the same z-

dependence as in (2.3)–(2.4), and M and Q become v-dependent functions M̂(v) and Q̂(v).

As expected, this implies that the locus of zeros of f (i.e. the horizon positions ẑ±) will

be v-dependent, and equations (2.28)–(2.29) imply that jµMatter = (0, jzMatter,0 ) with jzMatter

given by (2.28). This matter current satisfies condition (2.30) as an equality, which means

that the charged source for the gauge field is light-like. Moreover, the ensuing TMatter
µν

takes a null dust form, and the energy condition (2.26) is again satisfied as an equality.

In passing, we notice that although we have a time dependent electric field, the matter

current leads to no magnetic field in Ampere’s law. In summary, generalizing the ansatz to

v-dependent functions M̂(v) and Q̂(v) in f and Fzv leads to a physically sensible gravity

solution as long as they satisfy (2.25), which can be rewritten as

M̂v ≥ 2Q̂Q̂vz
d−2 . (2.32)

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
6

This energy condition (2.32) was discussed in [23–26]. We would like to remark that (2.32)

coincides with the condition for the horizon not the recede. Indeed, if we define the (time

dependent) horizon position ẑh as the solution to f(ẑh, v) = 0, we get dẑh/dv = −fv/fz ∝
−M̂v+2Q̂Q̂vz

d−2, thus from the condition dẑh/dv ≤ 0 we obtain (2.32) (see figure 3 below).

Nevertheless, condition (2.32) must be satisfied even in the absence of horizons.

We now turn to analyze its consequences:

• When the charge Q̂ vanishes, (2.32) translates into

M̂v ≥ 0 . (2.33)

Therefore, any interpolation between pure AdS and the planar AdS-Schwarzschild

metric with a monotonically growing mass function, asymptotically reaching a con-

stant value M , is a healthy solution of Einstein-Maxwell equations. The required

additional matter contribution satisfies the null energy condition. The chargeless

Vaidya metric case, used in [19, 20] to study thermalization of a strongly coupled

plasma at zero chemical potential after an energy quench, allows for an arbitrary

time pattern of energy injection (this is a well known result, and we mention it here

only for completeness).

• If the charge remains constant as we perform the quench (Q̂v = 0), condition (2.32)

reduces to (2.33). As discussed above, the constraint (2.32) is identically satisfied

as long as the mass function is monotonically increasing. The corresponding Vaidya

geometry can be used to study thermalization processes at fixed chemical potential

after an injection of energy.

• For non-constant charge situations, outside of the support of Q̂v, condition (2.32)

reduces to (2.33). On the other hand, for analytic Q̂ the support is non-compact,

implying

– Whenever Q̂Q̂v > 0, it is immediate to see that (2.32) is violated at large enough

z for any fixed value of v. Notice that Q̂Q̂v > 0 corresponds to an increasing

absolute value of the charge, what we will call a “charging” background in what

follows. The null energy condition therefore tell us that we can use a charging

AdS Vaidya ansatz to study the thermalization of the dual field theory, as long

as our probes explore the near boundary region. From the dual point of view

this means that the geometry can only be trusted to describe the UV degrees

of freedom of the field theory. These classes of solutions were used in [23–

26] to study the thermalization process after a quench on energy and chemical

potential.

– No additional constraint follows from (2.32) for the case of a “discharging”

background Q̂Q̂v < 0, provided the mass is increasing Mv > 0.

In summary, the charged metrics obtained by promoting the AdSRN charge and the

mass into v-dependent functions (with growing mass), satisfy energy conditions everywhere

– 8 –
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in spacetime whenever they are “discharging” Q̂Q̂v < 0, while violate energy conditions in

the bulk for large enough z, i.e. in the deep IR, whenever they are “charging” Q̂Q̂v > 0.

In this last case probing the near boundary geometry is still a safe option. Note that

in the above definitions, and throughout this paper, we use the words “charging” and

“discharging” as referring to an increasing or decreasing absolute value of the charge.

In what follows, we use the aforementioned charging and discharging geometries in

order to get information about the thermalization processes of the boundary theory. To

such end, we choose our functions M̂ and Q̂ as interpolating between initial constant values

Min and Qin in the asymptotic past v → −∞ and final constant values M and Q in the

asymptotic future v →∞.

In the time-dependent background, the field strength in (2.2) can be obtained from

the gauge potential

Av = −γQ̂L zd−2 + µ̂L , (2.34)

with µ̂ an arbitrary v-dependent function. The background v-dependence precludes the

global definition of a time coordinate, since (2.12) is not an exact differential, avoiding an

Euclidean continuation. Thus, the only constraint we impose on the function µ̂ arises from

the regularity of the Euclidean continuation of the asymptotic regions v → ±∞. In other

words we choose µ̂→ γQinz
d−2
in when v → −∞, and µ̂→ γQzd−2

h when v →∞, where zin

and zh are the positions of the horizons before and after the quench.

Boundary theory. In the dual field theory, the proposed geometry describes a system

interpolating between two different values of the temperature as the result of injecting

energy homogeneously into the system, and at the same time quenching the chemical

potential. The quench can take the chemical potential up or down depending on whether

we have a charging or a discharging geometry, and corresponds to a homogeneous injection

of particles/antiparticles into the system. Even if, as mentioned in the previous sections,

there is no global time coordinate, with the hindsight of the static background we define a

time coordinate in the asymptotic region z → 0 as t ∼ v: the variable v at the boundary

then coincides with the gauge theory time.

3 Probes of thermalization

As a probe for analyzing the thermalization process, we study two point correlators of

charged scalar operators O∆ of conformal dimension ∆. Decomposing the bulk coordi-

nates as xµ = (xα, z), the AdS/CFT dictionary relates the QFT two point correlator

〈O∆(xα1 )O∆(xα2 )〉 to the Feynman propagator G(xα1 , z1|xα2 , z2) of a charged scalar field of

mass m =
√

∆(∆− d)/L propagating in the bulk, according to the formula [54, 55]

〈O∆(xα1 )O∆(xα2 )〉 = lim
z1,z2→0

z−∆
1 z2

−∆G(xα1 , z1|xα2 , z2) . (3.1)

In the large mass limit 1 � mL ≈ ∆, the bulk propagator can be approximated by the

classical trajectory (see appendix B)

G(xα1 , z1|xα2 , z2) ≈ eiSon−shell(x
α
1 ,z1|xα2 ,z2) , (3.2)

– 9 –
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with

Son−shell(x
α
1 , z1|xα2 , z2) =

∫
dτ
(
−m

√
−gµν ẋµẋν + eAµẋ

µ
)∣∣∣∣
xµ(τ)=xµclassical(τ)

. (3.3)

Here Son−shell is the appropriate action for the time-like trajectory, for a particle of mass m

and charge e, evaluated on the classical trajectory xµclassical(τ) that joins (xα1 , z1) and (xα2 , z2).

The charge to mass quotient e/m is supposed to remain finite in the large m limit (see

appendix B for details). In the limit of large conformal dimension ∆ � 1, equations (3.1)–

(3.3) instruct us to compute the two-point correlator (3.1) from the classical trajectory of

a charged particle whose endpoints sit at the boundary. It is important to realize that any

such trajectory lies completely in the classically forbidden region, a complete discussion of

the different ways to access such region with classical trajectories is given in appendix C.

For the time being, let us analytically continue the parameter τ and the electric charge e

according to τ = −iτE and e = ieE , resulting in

G(xα1 , z1|xα2 , z2) = e−S
E
on−shell(x

α
1 ,z1|xα2 ,z2) , (3.4)

with

SEon−shell(x
α
1 , z1|xα2 , z2) = m

∫
dτE

(√
gµνx′

µx′ν + qEAµx
′µ
)∣∣∣∣
xµ(τE)=xµclassical(τE)

. (3.5)

where we defined qE = eE/m.

In what follows we evaluate the two point correlator according to

〈O∆(xα1 )O∆(xα2 )〉 = lim
zε→0

z−2∆
ε e−S

E
on−shell(x

α
1 ,zε|xα2 ,zε) , (3.6)

where zε is a cutoff in holographic direction, and the on-shell Euclidean action

SEon−shell(x
α
1 , zε;x

α
2 , zε) is given in (3.4), and evaluated on classical paths starting at (xα1 , zε)

and ending at (xα2 , zε). In AdS space any geodesic approaching the boundary has a diver-

gent logarithmic contribution to the length ∼ − log z, the z∆ factors in (3.1) are present

to precisely cancel this contribution. In appendix D we show that expression (3.6) for the

correlator coincides with the standard holographic definition, as the quotient of the sub-

leading to the leading components of the bulk scalar field as z approaches the boundary,

when the Klein-Gordon equation is solved in the WKB approximation.

Therefore, to evaluate the two-point correlator for the quench we insert in (3.5) the time

dependent background of section 2.2. Afterwards, we compare it with the corresponding

correlator obtained by substituting in formula (3.6) the static background of section 2.1.

The probed degrees of freedom can be said to have reached thermal equilibrium, whenever

the quantity

δS = SEon−shell
t−dependent

− SEon−shell
equilibrium

, (3.7)

vanishes. Our interest is to find a time profile of δS.

In the present work we look for spacelike U-shaped trajectories for mass m and charge

e on the the aforementioned backgrounds starting and ending at the boundary, whose

– 10 –
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Figure 1. U-shaped profiles of the geodesics required to compute the two-point correlators. Gauge

theory time runs horizontally to the right and is parametrized by the v-coordinate in eq. (2.1).

The endpoints of the trajectories, located at the AdS boundary, are separated in space and time

(see (3.10)). The geometry to the left of the shell is pure AdS (T = 0), at v = 0 energy and charge

are injected homogeneously into the system giving rise to the formation of a charged black hole

geometry (T > 0) to the right of the shell. Early geodesics (orange) intersect the shell at v = 0

(red plane) only once, late geodesics (green) intersect it twice, while thermalized geodesics (blue)

do not intersect it at all.

Figure 2. Plots of the three types of geodesics that we encounter in our calculations. Early

geodesics (orange) intersect the shell at v = 0 (red line) only once, late geodesics (green) intersect

it twice, while thermalized geodesics (blue) do not intersect it at all. The plots show the xz (left),

the xv (center) and vz (right) projections.
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endpoints are separated along one of the Cartesian coordinates by a distance `, and in

time by a distance ∆t (see figures 1 and 2).

We choose to parametrize the curve as xµ(x) = (v(x), z(x), x1(x)=x,xd−2) with xd−2

constant, and without any loss of generality we take xi < x < xf , with xi, xf the extremes

of the U-shaped curve whose tip sits at x = 0. The boundary conditions for the trajectories

we are interested in are

z(xi) = z(xf ) = zε, v(xi) = ti , v(xf ) = tf . (3.8)

where, as mentioned above, we have regularized the problem by considering geodesics

whose endpoints lie at z = zε, instead of z = 0 (zε → 0 should be taken at the end of

the computations). Alternatively, the trajectories can be characterized in terms of the

boundary conditions at the tip

z(0) = z∗, v(0) = v∗ , v′(0) = v′∗ , z′(0) = 0 . (3.9)

Viewed from the tip, two branches appear: (i) for xi < x < 0 the trajectory describes

z ∈ (0, z∗) and hence z′ > 0, (ii) while for 0 < x < xf it goes from the tip z = z∗ > 0 to the

boundary z = 0 therefore z′ < 0. These two branches correspond to the two signs in (3.14)

The space and time separation characterizing the geodesic are given by

` = xf − xi , ∆t = tf − ti . (3.10)

At this point we can already suspect that ` will be a growing function of z∗, implying that

any upper cutoff in z∗ imposes an upper cutoff in `. This behavior is well known and can

be explicitly checked in the numerical calculations of the forthcoming sections. Moreover,

this implies that if we are interested in restricting the region of the geometry to be probed

by our geodesics to the near boundary patch, then we must impose an upper bound on

` < `Max. In other words, the violation of energy conditions in the bulk for the charging

case imposes an IR cutoff in the degrees of freedom that can be probed (see figure 3).

3.1 Equilibrium state

Inserting the eternal AdSRN solution (2.13) into the action (3.5) we get

SEequilibrium = mL

∫ xf

xi

dx

(
1

z

√
1− f v′2 − 2z′v′ − qE(γQzd−2 − µ)v′

)
, (3.11)

where prime (′) denotes derivative with respect to the Euclidean parameter τE , that we

have gauge fixed to τE = x. The first term corresponds to the geodesic length, while

the second codifies the coupling to the gauge potential. Notice that only for the case of

geodesics starting and ending at the same value of v can one drop the µ contribution on

the second term.

The two resulting second order equations of motion can be shown to have two first

integrals: one coming from reparametrization invariance, which in our coordinates turns

– 12 –
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Figure 3. Geodesics and the null energy condition: the grey zone depicts the (IR) region in which

the null energy condition (2.32) is violated. We also depict the position of the outer/inner horizon,

defined as the z(v) solution to f(z, v) = 0, as dashed lines. The yellow and blue geodesics do not

explore the sick region and can be used to analyze thermalization. The red geodesics on the other

hand enter into the sick region and we cannot trust them to probe the thermalization process,

in other words the background geometry can be used to analyze the thermalization of degrees of

freedom above an IR cutoff. Note that in concordance with the discussion below (2.32), the region

where the horizon recedes does not satisfy the energy conditions. The background interpolates

between pure AdS in the past to a Q = 2 and M = 1 +Q2 black hole in the future.

into the conserved Hamiltonian generating translation along the x parameter, and the

second from v-independence of the metric. The equations to be solved are1

z
√

1− f v′2 − 2z′v′ =
1

Ẽ
, (3.12)

(f v′ + z′)Ẽ + γqEQz
d−2 = f∗ v

′
∗Ẽ + γqEQz

d−2
∗ , (3.13)

where the value of the constants on the right hand side have been fixed at the tip of the

U-shaped curve (x = 0) according to the conditions (3.9): Ẽ = 1/z∗
√

1− f∗ v′2∗ where

f(z∗) = f∗.

Solving (3.12)–(3.13) for z′ one obtains

z′ = ±

√(
1

Ẽ2z2
− 1

)
f +

(
f∗v′∗ +

γqEQ

Ẽ
(zd−2
∗ − zd−2)

)2

. (3.14)

As explained above, the double sign in this expression corresponds to the two branches of

the U-shaped trajectory: the positive sign corresponds to xi < x < 0 while the negative

1For the case of a chargeless particle, eqn (3.13) implies that the particle motion can be constrained to

the t = t0 surface.
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one happens for 0 < x < xf . Solving for v′ one obtains

v′ =
1

f

(
γqEQ

Ẽ
(zd−2
∗ − zd−2) + f∗ v

′
∗ − z′

)
, (3.15)

with z′ given by (3.14). The two parameters at the tip (z∗, v
′
∗) are related to (`,∆t) by

noting that

` = xf − xi =

∫ 0

xi

dx+

∫ xf

0
dx = 2

∫ z∗

0

dz

z′
, (3.16)

and

∆t = tf − ti = v(xf )− v(xi) =

∫ xf

xi

dx v′ . (3.17)

Finally, inserting (3.12) and (3.15) into (3.11) we can express the on-shell action as2

SEon−shell
equilibrium

= 2
mL

Ẽ

∫ z∗

zε

dz

z′

(
1

z2
+ γqEQ

zd−2

f

(
γqEQ(zd−2 − zd−2

∗ )− f∗v′∗Ẽ
))

+mLµqE∆t .

(3.18)

Since the on-shell action diverges when the endpoints of the trajectory reach the boundary,

we have regularized (3.18) by introducing a cutoff zε. The factor of two arises from the two

branches of the trajectory giving identical contributions. The formulae above enable us to

compute the on shell action (3.18) as a function of ` and ∆t. Notice that the v-independence

of the background implies that no dependence on v∗ is expected.

3.2 Time dependent state

The action for a charged particle moving in the time dependent metric takes the form (3.11),

but with the constants Q and M substituted by the v-dependent functions Q̂ and M̂ .

SEt−dependent = mL

∫ xf

xi

dx

(
1

z

√
1− f v′2 − 2z′v′ − qE(γQ̂zd−2 − µ̂)v′

)
. (3.19)

Notice that we have also introduced a v-dependent µ̂ (see discussion below (2.34)). Due

to the lack of v-translation invariance, the on shell action cannot be taken into a pure z

integral as in (3.18). The equations to be solved now are

z
√

1− f v′2 − 2z′v′ =
1

E
, (3.20)

E

(
fv′′ + z′′ +

fvv
′2

2
+ fzz

′v′
)

= −γqEQ̂(d− 2)zd−3z′ , (3.21)

where the value of E is again fixed at the tip of the curve (3.9) and given by E =

1/z∗
√

1− f∗ v′2∗ .

These equations are solved numerically by the shooting method. In practice, we shoot

from the turning point z∗ with initial (final) conditions (3.9) for 0 < x < xf and xi <

x < 0. For each choice of values (z∗, v∗, v
′
∗) at the tip we will find an U-shaped geodesic

characterized by (`,∆t, tf ) (see figures 1 and 2). The plots below give the thermalization

2Since the trajectories endpoints locate at the same radial position, a total derivative term vanishes.
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curves for δS given by (3.7) with the on-shell action (3.19) being generically a function

SEon−shell
t−dependent

(`,∆t, tf ).

Notice that, since the time dependent charging background violates the null energy

conditions for large enough z, in such case we need to make sure that our geodesics are only

probing the healthy part of the geometry (see figure 3). As mentioned before, this implies

that we can probe thermalization with correlation functions with bounded ` < `Max. On

the other hand in the discharging background, we have no such IR cutoff and we can probe

the thermalization with any value of `.

4 Results

The considerations of the previous sections were made for arbitrary functions M̂ and Q̂. In

this section, in order to proceed with the numerical evaluation of the thermalization time

for different probes, we will need explicit expressions for those functions. We choose

M̂ =
M −Min

2

(
1 + tanh

(
v

v0

))
+Min , (4.1)

Q̂ =
Q−Qin

2

(
1 + tanh

(
v

v0

))
+Qin . (4.2)

Here v0 parametrizes the shell thickness and the v0 → 0 case corresponds to the shock

wave discussed in [19, 20]. These functions satisfy

lim
v→−∞

M̂ = Min , lim
v→∞

M̂ = M

lim
v→−∞

Q̂ = Qin , lim
v→∞

Q̂ = Q . (4.3)

Therefore the backgrounds we consider interpolate between an AdSRN black hole with

mass Min and charge Qin in the distant past v � v0 and an AdSRN black hole with mass

M and charge Q in the distant future v � v0.

4.1 Vanishing background charge

We start by analyzing the thermalization process in the case of vanishing background

charge, which corresponds to a thermal quench with vanishing chemical potential in the

boundary theory. To this end, we choose

M̂ =
M −Min

2

(
1 + tanh

(
v

v0

))
+Min , (4.4)

Q̂ = 0 . (4.5)

For the case of vanishing ∆t we reproduced the results of [19, 20], and for nonvanishing ∆t

we find results in agreement to those in [56].

The results are summarized in figure 4, where the thermalization curves δS involving

the on-shell action are plotted as functions of tf . The thermalization time, defined as the

approximated value of tf at which the curve reaches the horizontal axis δS = 0, increases

with ` and with ∆t, implying that UV degrees of freedom thermalize first. This is the phe-

nomenon known as “top down thermalization”. Moreover, we see that the thermalization

time also increases with the dimension of the system.
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Figure 4. Two point correlators as a function of tf for a thermal quench in the absence of chemical

potential (Sect IV.A). Left : plots for d = 3, ` = 1.4 and ∆t = 0, 0.1, 0.3, 0.5, 1 (black, azure, gray,

red and blue resp.). Center : plot for d = 3, ∆t = 0.5 and ` = 1, 1.4, 1.8, 2, 3, 4 (orange, red, azure,

blue, violet and black resp.). Right : plot for ` = 1.4, ∆t = 0.5 and d = 3, 4, 5 (red, blue and violet

resp.). All cases correspond to a chargeless background interpolating between Min = 0 and M = 1.

4.2 Vanishing probe charge

We now consider a quench in both the temperature and the chemical potential. We first

study the effects of the background on a vanishing probe charge qE = 0. For the sake of

illustration, we set our background to be pure AdS (T = µ = 0) in the asymptotic past,

and AdSRN (T, µ 6= 0) in the asymptotic future, namely

M̂ =
M

2

(
1 + tanh

(
v

v0

))
, (4.6)

Q̂ =
Q

2

(
1 + tanh

(
v

v0

))
. (4.7)

As could have been expected, since we are probing the system with uncharged operators

(qE = 0), the background charge Q̂ has little effect in the form of the thermalization curves.

The phenomenon of top-down thermalization is again present, and the thermalization time

grows with the dimension of the field theory as in the previous case. The results are

depicted in figure 5 and are in agreement with those of refs. [23–25].

4.3 Constant background charge

To analyze the thermalization process for a thermal and chemical potential quench we

consider the M̂ and Q̂ functions to be

M̂ =
M −Min

2

(
1 + tanh

(
v

v0

))
+Min , (4.8)

Q̂ = Qin . (4.9)

This background interpolates between a AdSRN black hole of mass Min and charge Qin in

the distant past v � v0, to a heavier AdSRN black hole (M > Min) in the distant future
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Figure 5. Two point functions for uncharged operators as a function of tf for a an energy and

charge quench (Sect IV.B). Top left : plots for d = 3, ` = 1.4 and ∆t = 0, 0.1, 0.3, 0.5, 1 (orange,

azure,blue, red and black resp.). Top right : plots for d = 3, ∆t = 0.5, and ` = 1, 1.4, 1.8, 2, 3, 4

(orange, red, azure, blue, violet and black resp.). Bottom left : plots for ` = 1.4, ∆t = 0.5 and

d = 3, 4, 5 (red, black and grey resp.). Bottom right : plots for d = 3, ` = 1.4, ∆t = 0.5 and

Q = 0, 0.5, 1 (orange, azure and red resp.). In all cases we start from pure AdS at past infinity to

M = 1 at future infinity, for the first three cases the final charge is Q = 1.

v � v0 preserving the charge Qin. In the following we choose to re-scale the z-coordinate

so as to have Min = 1 +Q2
in in the far past. This ensures that the background satisfies the

bound (2.9) in the past, and since the evolution increases the mass while keeping the charge

constant, (2.32) is also satisfied. Notice that although the background charge is constant,

the chemical potential changes when injecting energy into the system. The reason for this

is that we should demand regularity of the euclidean rotated asymptotic geometries (see

discussion after eq. (2.34)). We choose the profile for the chemical potential to be

µ̂ =
µ− µin

2

(
1 + tanh

(
v

v0

))
+ µin , (4.10)

with

µin = γQin, µ = γQinz
d−2
h , (4.11)

where zh < 1 is the horizon position after the quench. The initial position being zin = 1

due to the condition Min = 1 + Q2
in. Notice that during the quench the absolute value of

the chemical potential reduces, but it cannot reach µ = 0.
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Figure 6. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by an interpolation between Min = 1 + Q2
in in the far past to M = 3 in

the future, keeping the charge Q = Qin = 1 constant (Sect IV.C). The plots correspond to d = 3,

∆t = 0.5 and ` = 1, 1.4, 1.8, 2 (green, red, black and azure resp.). Left : qE = 1. Right : qE = −1.
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Figure 7. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by an interpolation between Min = 1 + Q2
in in the far past to M = 3 in

the future, keeping the charge Q = Qin = 1 constant (Sect IV.C). The plots correspond to d = 3,

` = 1.4 and ∆t = 0.3, 0.5, 1 (gray, red and black resp.). Left : qE = 1. Right : qE = −1.

Figures 6 to 9 show the results corresponding to an interpolation between Min = 2 and

M = 3 with Qin = 1. In figures 6 and 7 we see that thermalization time increases as a

function of ` and ∆t respectively, showing again the top-down thermalization effect, and

figure 8 shows that the thermalization time increases with the spacetime dimension. Finally

in figure 9 we see that, for positive chemical potential, the thermalization time probed with

charged operators grows with the charge qE of the operator, this is an expected result from

the gauge theory perspective.

A peculiar feature appears in all the figures: a peak arises at fixed tf where the

derivative of δS with respect to tf has a sudden change. This can be understood with the

help of figure 7, in which it is evident that such peak happens for tf ' ∆t. Indeed, each

point tf in the curves represents a geodesic that, according to our boundary conditions (3.8),

starts at the boundary at t = tf −∆t and ends at t = tf > 0. Since the shell enters space

at t = 0, early trajectories starting at negative times (tf < ∆t) cross the shell once in order

to return to the boundary. On the other hand, late trajectories starting at positive times

(tf > ∆t) either cross the shell twice, or do not cross it at all, this last case corresponds to a

– 18 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
6

0.2 0.4 0.6 0.8 1.0 1.2

tf

-0.05

0.05

0.10

∆S

0.2 0.4 0.6 0.8 1.0

tf

-0.15

-0.10

-0.05

∆S

Figure 8. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by an interpolation between Min = 1 + Q2
in in the far past to M = 3 in

the future, keeping the charge Q = Qin = 1 constant (Sect IV.C). The plots correspond to ` = 1.4,

∆t = 0.5 and d = 3, 4, 5 (red, azure, blue resp.). Left : qE = 1. Right : qE = −1.
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Figure 9. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by an interpolation between Min = 1 + Q2
in in the far past to M = 3 in

the future, keeping the charge Q = Qin = 1 constant (Sect IV.C). The plots correspond to d = 3,

` = 1.4, ∆t = 0.5 and |qE | = 0, 0.3, 0.65, 1, 2 (yellow, green, azure, red and black resp.). Left :

qE > 0. Right : qE < 0.

thermalized situation (see figure 1). These three classes of trajectories prove the spacetime

in different ways. Let us first assume Q̂qE > 0, then, for early trajectories, the gravitational

force of the background competes with the electromagnetic interaction during the first part

of the trajectory (close to t = tf −∆t), after the particle crosses the shell the two forces

pull in the same direction (close to t = tf ). For late trajectories, the two forces compete

only close to the tip of the trajectory, and cooperate at both extremes, close to t = tf −∆t

and t = tf . Finally in the third case the forces cooperate all along the trajectory. The

same reasoning can be repeated for Q̂qE < 0, with the regions in which the forces compete

or cooperate being interchanged. This can be visualized in figures 1 and 2, in which the

three types of geodesics are shown. The absence of peaks for vanishing probe charge is

another evidence of their relation to the electromagnetic interaction.

As can be seen in figure 9, there is a remarkable additional feature on the plots: there

exists a value of tf such that the function δS does not depend on the probe charge qE . We

do not have an explanation for this behavior at the moment.
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Figure 10. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench leading to a final vanishing chemical potential (Sect IV.D). Plots correspond to

d = 3, ∆t = 0.5 and ` = 1, 1.4, 1.8, 2 ( green, red, black and azure resp.). Left : qE = 1. Right :

qE = −1. In figures 10-14, the geometry interpolates between a RNAdS with Min = 1 + Q2
in,

Qin = −1 and pure AdS with M = 3.

4.4 Discharging background

To study a discharging background of the kind described in section 2.2 we need to choose

|Q| < |Qin|. For illustrative purposes we will take the extreme case Q = 0 with the functions

M̂ and Q̂ reading

M̂ =
M −Min

2

(
1 + tanh

(
v

v0

))
+Min , (4.12)

Q̂ = −Qin

2

(
1 + tanh

(
v

v0

))
+Qin . (4.13)

These functions interpolate between an AdSRN black hole with mass Min and charge Qin in

the distant past v � v0 and an AdS black hole with mass M (and vanishing charge) in the

distant future v � v0. We again re-scale the radial coordinate so that Min = 1 +Q2
in in the

initial state. In the final state, the bound (2.9) is satisfied since the charge vanishes. From

the dual point of view, we are modeling the process of a sudden decrease of the absolute

value of the chemical potential while energy is being injected into the system. We would

like to mention that this instance cannot be modeled with a constant charge background

and complements the results of the previous section.

Results are shown in figures 10 to 13. Again we see that top-down thermalization

arises and that the thermalization time grows with `, ∆t and the space dimension. The

peak at tf = ∆t is also present, the reasons being the same as explained in the previous

section. Thermalization time also increases with the charge of the probe.

4.5 Charging background

We conclude by analyzing the thermalization process for a quench leading to an increase

on both the temperature and the chemical potential (this situation has been considered
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Figure 11. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench leading to a final vanishing chemical potential (Sect IV.D). Plots correspond to

d = 3, ` = 1.4 and ∆t = 0.3, 0.5, 1 (gray, red and black resp.). Left : qE = 1. Right : qE = −1.
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Figure 12. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench leading to a final vanishing chemical potential (Sect IV.D). Plots correspond to

` = 1.4, ∆t = 0.5 and d = 3, 4, 5 (red, azure and blue resp.). Left : qE = 1. Right : qE = −1.
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Figure 13. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench leading to a final vanishing chemical potential (Sect IV.D). Plots correspond to

d = 3, ` = 1.4, ∆t = 0.5 and |qE | = 0, 0.3, 0.65, 1, 2 (orange, green, azure, red and black resp.).

Left : qE > 0. Right : qE < 0.

– 21 –



J
H
E
P
0
5
(
2
0
1
5
)
0
1
6

0.2 0.4 0.6 0.8 1.0 1.2 1.4

tf

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

∆S

0.2 0.4 0.6 0.8 1.0 1.2

tf

-0.4

-0.2

0.2

0.4

∆S

Figure 14. Two point functions of charged operators as a function of tf for a thermal and

chemical potential quench modeled by a charging background (section IV.E). Plots corresponding

to d = 3, ∆t = 0.5 and ` = 1, 1.4, 1.8, 2 (orange, green, red, black and azure resp.). Left : qE = 1.

Right : qE = −1. The geometry interpolates between pure AdS and AdSRN with M = 1 +Q2 and

Q = 1.

before in [23–25] for the case of uncharged operators). The functions M̂ and Q̂ read

M̂ =
M

2

(
1 + tanh

(
v

v0

))
, (4.14)

Q̂ =
Q

2

(
1 + tanh

(
v

v0

))
. (4.15)

These functions interpolate between a pure AdS solution in the distant past v � v0, to a

AdSRN solution in the distant future v � v0 with mass M and charge Q. We rescale the

radial coordinates so as to have M = 1 + Q2 in the future state. From the dual point of

view, as energy flows into the system, the absolute value of the chemical potential suddenly

increases. As discussed in Sect 2.2, in the present situation the null energy condition is

violated in the deep IR, so we must check that our geodesics do not reach such region (see

figure 3).

Results are shown in figures 14 to 17, with features similar to the previous cases,

namely, top-down thermalization, thermalization time growing with the dimension of space,

peaks denoting the transition between the different classes of geodesics, etc. It is worth

mentioning that the swallow tale structure found in [23–25] also appears for non-vanishing

probe charges as can be seen in figure 18.

5 Conclusions

We have analyzed the energy conditions for the external matter needed to support a family

of charged AdS-Vaidya metrics. The metrics studied interpolate between two AdSRN

black holes with different mass and charge, or between pure AdS and an AdSRN black

hole with non-vanishing charge. They have been used in the literature, via the AdS/CFT

correspondence, to model the thermalization process in a strongly coupled plasma after a

quench in energy and chemical potential.
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Figure 15. Two point functions of charged operators as a function of tf for a thermal and

chemical potential quench modeled by a charging background (section IV.E). Plots corresponding

to d = 3, ` = 1.4 and ∆t = 0.3, 0.5, 1 (gray, red and black resp.). Left : qE = 1. Right : qE = −1.
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Figure 16. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by a charging background (section IV.E). Plots corresponding to d = 3,

` = 1.4 and ∆t = 0.5 for d = 3, 4, 5 (red, azure and blue resp.). Left : qE = 1. Right : qE = −1.
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Figure 17. Two point functions of charged operators as a function of tf for a thermal and chemical

potential quench modeled by a charging background (section IV.E). Plots corresponding to d = 3,

` = 1.4 and ∆t = 0.5. Left : qE = 0, 0.1, 0.3, 0.65, 1, 2 (orange, light yellow, green, azure, red, black

resp.) Right : −qE = 0, 0.3, 0.65, 1, 2 (orange, green, azure, red and black resp.).
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Figure 18. Two point functions of charged operators as a function of tf for a thermal and chem-

ical potential quench modeled by a charging background (section IV.E). Plots corresponding to a

charging backgound from pure AdS to an extremal AdSRN. Plots coreespond to d = 3, M = 1+Q2,

Q =
√

3, ` = 4, ∆t = 0.5 and qE = 0, 0.5 (blue and violet resp.). On the right we have zoomed the

swallow tale region.

We found that the null energy condition is violated in the infrared region of the geom-

etry for increasing mass whenever the absolute value of the black hole charge increases in

time. On the other hand, when the absolute value of the black hole charge is kept constant

or decreases, the null energy condition is satisfied everywhere. This implies that charged

Vaidya metrics can be used to analyze thermalization processes for all energy scales only

when the quench decreases the absolute value of the chemical potential. On the other hand,

when the quench increases the absolute value of the chemical potential, then the metric is

only useful for probing the thermalization process above an IR cutoff1.

We applied the above results to study the thermalization of a strongly coupled plasma

after a quench in the energy and chemical potential, considering the cases where the chem-

ical potential either increases or decreases in absolute value. As probe of thermalization we

considered charged operators two point functions. We found that the thermalization time

increases with the charge of the operator, as well as with the dimension of the field theory.

As expected in these kind of holographic constructions, the thermalization is top-down, in

the sense that UV degrees of freedom thermalize earlier, followed by IR ones.

Finally, we would like to comment that when studying the system with non-local

probes, i.e. in the entanglement entropy context, an interesting line of research would be

to explore the modifications of the Ryu-Takayanagi proposal in the presence of bulk gauge

fields. In particular one could envisage the posibility of considering co-dimension 2 hyper-

surfaces in higher dimensions (see ref. [64]), with the gauge field oxidized to pure geometry.

Considering such modifications might lead to interesting results for thermalization.
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A Eddington-Finkelstein null coordinates

For completeness we quote here some well known facts of the Eddington-Finkelstein co-

ordinate system Xµ = (v,x, z) chosen in (2.1). Parametrizing the geodesics as Xµ =

(v(z),x(z), z) it is immediate to see that the curve Xµ = (v0,x0, z) moving along the holo-

graphic direction is null. In what follows we show that the sign of the dvdz term in (2.1)

determines whether the curve is either ingoing or outgoing. This in turn determines whether

the mass shell in a Vaydia metric is ingoing or outgoing.

We start by considering the timelike vector ∂v to be future directed. The null geodesics

on the (v, z) plane for the AdSd+1 black hole geometry are obtained from

(1−Mzd)dv2 ± 2dvdz = 0 =⇒ v(z) = C ∓ 2z 2F1

(
1,

1

d
, 1 +

1

d
,Mzd

)
, (A.1)

here C is an integration constant and 2F1 is Gauss hyper-geometric function, blowing up

at Mzd = 1 and having an expansion 2F1 ≈ z +O(zd+1) near the boundary of AdS. The

upper sign choice in (A.1) therefore implies that the geodesic displayed in (A.1) is escaping

from the horizon as v increases. Taking into account that ∂v is timelike outside the horizon,

we conclude that the v = v0 curve corresponds to a radially ingoing null geodesic.
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B World line formalism and geodesic approximation

The bulk propagator G(xα2 , z2|xα1 , z1) in (3.1) is the Green function of the equation of

motion of a bulk charged scalar field, or in other words

G(xα2 , z2|xα1 , z1) =

〈
xα2 , z2

∣∣∣∣ i

gµνDµDν −m2 + iε

∣∣∣∣xα1 , z1

〉
, (B.1)

where Dµ = ∂µ − ieAµ is the covariant derivative for a charged scalar of charge e.

Schwinger’s proper time representation consists in rewriting the inverse operator (B.1)

as [57–62]

G(xα2 , z2|xα1 , z1) =

∫ ∞
0

dT
〈
xα2 , z2

∣∣∣ eiT(gµνDµDν−m2+iε)
∣∣∣xα1 , z1

〉
. (B.2)

The exponential inside the bracket can be understood as the evolution operator for the

Hamiltonian H = −gµνDµDν +m2, which allows us to write

G(xα2 , z2|xα1 , z1) =

∫ ∞
0

dT

∫ xµ(T )=(xα1 ,z1)

x(0)=(xα1 ,z1)
Dx(τ) eiS1particle[x(τ)] ,

with

S1particle[x(τ)] =

∫ T

0
dτ

(
1

4
gµν ẋ

µẋν + eAµẋ
µ −m2

)
. (B.3)

Here S1particle[x(τ)] is a one-particle action written in terms of a world line proper time

parameter τ ∈ [0 . . . T ], and a dot (˙) means derivative with respect to τ . We can rescale

τ → τT in order to get τ ∈ [0 . . . 1] and we end up with

G(xα2 , z2|xα1 , z1) =

∫ ∞
0

dT

∫ xµ(1)=(xα2 ,z2)

xµ(0)=(xα1 ,z1)
Dx(τ) eiS1particle[x(τ)] ,

with

S1particle[x(τ)] =

∫ 1

0
dτ

(
1

4T
gµν ẋ

µẋν + eAµẋ
µ − Tm2

)
. (B.4)

Notice that this one-particle action is not invariant under reparametrization of the world

line. Introducing the einbein eτ (τ), we can interpret (B.4) as a gauge fixed expression for

an originally reparametrization invariant action [61, 62]3

G(xα2 , z2|xα1 , z1) =

∫
Deτ (τ)δ(ėτ )

∫ xµfinal=(xα2 ,z2)

xµinitial=(xα1 ,z1)
Dx(τ) eiSinvariant[x(τ)] ,

with

Sinvariant[x(τ)] =

∫
dτ

(
1

4eτ
gµν ẋ

µẋν + eAµẋ
µ − eτm2

)
. (B.5)

3Action (B.5) is invariant under local reparametrizations δτ = ξ(τ) by virtue of δeτ = −∂τ (eτξ).
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The gauge fixing amounts to setting eτ = T , and the T integral in (B.4) corresponds to the

leftover (Teichmüller) parameter after gauge fixing [62]. In the limit of large mass m, in

which we are interested, we can take the semiclassical approximation of the integral (B.5),

to have

G(xα2 , z2|xα1 , z1) = eiSon−shell(x
α
1 ,z1;xα2 ,z2) ,

with

Son−shell(x
α
1 , z1|xα2 , z2) =

∫
dτ
(
−m

√
−gµν ẋµẋν + eAµẋ

µ
)∣∣∣∣
xµ(τ)=xµclassical(τ)

, (B.6)

where the quotient e/m is assumed finite in the large m limit, and xµclassical(τ) are the

classical trajectories starting at (xα1 , z1) and ending at (xα2 , z2).

C Accessing the classically forbidden region

The classical trajectories we need to compute lie completely in the classically forbidden

region. Indeed, from the action

S =

∫
dτ
(
−m

√
−gµν ẋµẋν + eAµẋ

µ
)
, (C.1)

we find the canonical momenta

pµ =
mgµν ẋ

ν√
−gµν ẋµẋν

+ eAµ , (C.2)

and time reparametrization invariance imply

gµν(pµ − eAµ)(pν − eAν) +m2 = 0 , (C.3)

As we now show, these momenta become imaginary in the near boundary region, implying

that such region is forbidden from a classical point of view.

C.1 Vanishing probe charge

Let us first consider the case e = 0. Using the explicit form of our metric and gauge fields,

the action reads

S = −mL
∫
dτ

1

z

√
−ẋ2

d−1 + fv̇2 + 2żv̇ . (C.4)

The resulting canonical momenta are

pv = −mL
zR

(fv̇ + ż) ,

pz = −mL
zR

v̇ , with R =
√
−ẋ2

d−1 + fv̇2 + 2żv̇ ,

pd−1 =
mL

zR
ẋd−1 , (C.5)
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and the constraint (C.3) results

fp2
z − 2pvpz + p2

d−1 = −m
2L2

z2
. (C.6)

Since for small z we have f ' 1, any v-dependence in f is washed out near the boundary

implying that the quantity pv becomes constant. For fixed pv, the quadratic polynomial

in pz in the left hand side of (C.6) has a lower bound at pz = pv. On the other hand,

the right hand side becomes arbitrarily negative as z → 0. Thus, for z small enough, the

relation cannot be satisfied with real momenta, and the momenta must become complex.

Indeed, for small enough z the relation (C.6) can be solved as pz ≈ imL/z + pv, implying

that it can be satisfied with pure imaginary momenta pz = ipEz and pv = ipEv . Based on

this, for generic z we propose the ansatz pd−1 = ipEd−1, pz = ipEz and pv = ipEv , and in this

new variables we have

pEv = i
mL

zR
(fv̇ + ż) ,

pEz = i
mL

zR
v̇ , with R =

√
−ẋ2

d−1 + fv̇2 + 2żv̇ ,

pEd−1 = −imL
zR

ẋd−1 , (C.7)

and

− fpEz
2

+ 2pEv p
E
z − pEd−1

2
= −m

2L2

z2
. (C.8)

We can re-absorb the i factors in the velocities via a Wick rotation of the wordline time

τ = −iτE obtaining

pEv = −mL
zR

(fv′ + z′) ,

pEz = −mL
zR

v′ , with R =
√

x′2d−1 − fv′2 − 2z′v′ ,

pEd−1 =
mL

zR
x′d−1 , (C.9)

where a prime (′) means derivative with respect to τE . With these redefinitions, the

momenta (C.9) can be re-interpreted as derived from the Euclidean action obtained via

the substitution τ = −iτE in (C.4), namely

SE = mL

∫
dτE

1

z

√
x′2d−1 − fv′2 − 2z′v′ . (C.10)

In other words, the imaginary momenta of (C.4) in the forbidden region can be re-

interpreted as the real momenta of its “Euclidean worldline time” version (C.10).

This “Euclideanization” implies re-interpreting the complex valued classical solution

of the equations of motion in the classically forbidden region, as the real valued classical

solution of the Wick rotated system. Notice that in solving relation (C.6) for small enough

z we could include a real part on the momenta pz = ipEz + pRe and pv = ipEv − pRe, or for

generic z we could put pd−1 = ipEd−1 +pRe, pz = ipEz +pRe and pv = ipEv −pRe, what would
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be a more general solution. Nevertheless, with this complex momenta, the imaginary unit

i could not be removed from the equations of motion by Wick rotation of the worldline

parameter τ = −iτE , and the there would be no real-valued Euclidean variables to access

the forbidden region. As expexcted the square root R in (C.9) is real only for spacelike

trajectories. In other words, our Euclidean action (C.10) allows us to find trajectories

joining spacelike separated boundary points.

The conclusion is that, in the absence of charge, spacelike separated points in the

forbidden region can be joined by real classical trajectories of the Euclidean worldline time

action (C.10), obtained from the original one (C.4) via the Wick rotation τ = −iτE . This

is a standard prescription and the one used in [19, 20].

C.2 Non-vanishing probe charge

C.2.1 Wick rotation of the worldline time and the probe charge

For non-vanishing charge on the other hand, several complications arise. In this case, the

action read

S =

∫
dτ

(
−mL

z

√
−ẋ2

d−1 + fv̇2 + 2żv̇ + eAvv̇

)
. (C.11)

Writing the momenta (C.2) explicitly we have

pv = −mL
zR

(fv̇ + ż) + eAv ,

pz = −mL
zR

v̇ , with


Av = −LγQ̂zd−2 + µL ,

R =
√
−ẋ2

d−1 + f v̇2 + 2żv̇ ,

pd−1 =
mL

zR
ẋd−1 , (C.12)

while the relation (C.3) becomes

fp2
z − 2(pv − eAv)pz + p2

d−1 = −m
2L2

z2
. . (C.13)

Again close enough to the boundary the explicit v dependence disappears, and the mo-

mentum pv becomes a constant. For fixed pv the polynomial in pz in the left hand side

of (C.13) has a minimum at pz = pv − eµL while its right hand side becomes arbitrarily

negative, implying that the relation cannot be satisfied for real momenta at small z. As in

the previous case, this can be solved by pure imaginary momenta pd−1 = ipEd−1, pz = ipEz
and pv = ipEv , and we then write

pEv = i
mL

zR
(fv̇ + ż)− ieAv ,

pEz = i
mL

zR
v̇ , with


Av = −LγQ̂zd−2 + µL ,

R =
√
−ẋ2

d−1 + f v̇2 + 2żv̇ ,

pEd−1 = −imL
zR

ẋd−1 , (C.14)
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and (C.3) becomes

− f(pEz )2 + 2(pEv + ieAv)p
E
z − (pEd−1)2 = −m

2L2

z2
. (C.15)

Now, if we want to interpret the momenta as obtained via a Wick rotation of the wordline

time τ = −iτE , we get

pEv = −mL
zR

(fv′ + z′)− ieAv ,

pEz = −mL
zR

v′ , with


Av = −LγQ̂zd−2 + µL ,

R =
√

x′2d−1 − f v′2 − 2z′v′ ,

pEd−1 =
mL

zR
x′d−1 , (C.16)

where we see that the imaginary unit multiplying eAv still avoids a solution of the equations

of motion with real coordinates. In order to allow that, we also perform the analytic

continuation e = ieE , obtaining

pEv = −mL
zR

(fv′ + z′) + eEAv ,

pEz = −mL
zR

v′ , with


Av = −LγQ̂zd−2 + µL ,

R =
√

x′2d−1 − f v′2 − 2z′v′ ,

pEd−1 =
mL

zR
x′d−1 , (C.17)

These momenta can be obtained from the Wick rotated action

S =

∫
dτE

(
mL

z

√
x′2d−1 − fv′2 − 2z′v′ + eEAvv

′
)
, (C.18)

In conclusion, by Wick rotating the worldline parameter τ = −iτE and the probe charge

e = ieE , we obtain a mechanical system (C.18) whose classical solutions with real valued

coordinates are equivalent to the complex-valued solutions of our original system (C.11) in

the forbidden region.

C.2.2 Justification by Kaluza-Klein reduction

A way to understand the previous statement about the Wick rotation of the probe charge,

is by dimensional oxidation of the (d+ 1)-dimensional Vaidya metric plus gauge potential

to a purely geometric (d+ 2)-dimensional background. We write

ds2
d+2 =

L2

z2

(
−fdv2 − 2dvdz + dx2

d−1

)
+ (du+ κAvdv)2 , (C.19)

where u is the additional spatial direction and κ is the five dimensional gravitational

coupling. The Kaluza-Klein reduction of (C.19) along the direction u corresponds to the

charged Vaidya metric (2.1)–(2.2) we employed in our calculations.
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The action for a massive particle in this (d+ 2)-dimensional background is

Sd+2 = −
∫
dτ
ML

z

√
fv̇2 + 2v̇ż − ẋ2

d−1 −
z2

L2
(u̇+ κAvv̇)2 , (C.20)

whose canonical momenta read

pv = −ML

zR

(
fv̇ + ż − z2

L2
(u̇+ κAvv̇)κAv

)
,

pz = −ML

zR
v̇ ,

pd−1 =
ML

zR
ẋd−1 , with


Av = −LγQ̂zd−2 + µL ,

R =
√
fv̇2 + 2v̇ż − ẋ2

d−1 −
z2

L2 (u̇+ κAvv̇)2 ,

pu =
Mz

LR
(u̇+ κAvv̇) ,

with the mass shell constraint taking the form

fp2
z − 2(pv − κpuAv)pz + p2

d−1 +
p2
uL

2

z2
= −M

2L2

z2
. (C.21)

In the above equations, the momentum pu is a conserved quantity. So, the dynamics

of the remaining degrees of freedom can be equivalently described by making use of the

“Routhian” L4d obtained by Legendre transforming the original Lagrangian with respect to

u, namely L4d = L5d−puu̇. This Routhian plays the role of a Lagrangian for the remaining

coordinates. In other words, the equations of motion for the remaining coordinates can be

obtained, after fixing the value of pu, by varying the action

Sd+1 =

∫
dτ

(
−mL

z

√
fv̇2 + 2v̇ż − ẋ2

d−1 + eAvv̇

)
, (C.22)

where we have defined

m =
√
M2 + p2

u ,

e = κpu . (C.23)

Action (C.22) is nothing but (C.11) so, as expected by KK reasoning, the dynamics of the

chargeless (d+2)-dimensional particle is equivalent to that of a (d+1)-dimensional charged

particle whose mass and charge are obtained from the pu momentum.

In (C.21) we again notice that for small enough z the momentum pv is conserved,

and for fixed pu and pv the left hand side of the on-shell relation has a minimum at

pz = pv − kpuAv, while its right hand side goes into arbitrarily large negative values,

implying that it cannot be satisfied with real momenta. By defining the purely imaginary

momenta pv = ipEv , pz = ipEz , pd−1 = ipEd−1 and pu = ipEu , and Wick rotating the worldline
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parameter τ = −iτE , we get

pEv = −ML

zR

(
fv′ + z′ − z2

L2

(
u′ + κAvv

′)) ,

pEz = −ML

zR
v′ ,

pEd−1 =
ML

zR
x′d−1 , with


Av = −LγQ̂zd−2 + µL ,

R =
√
−fv′2 − 2v′z′ + x′2d−1 + z2

L2 (u′ + κAvv′)
2 ,

pEu =
Mz

LR

(
u′ + κAvv

′) ,
and (C.3) now reads

− fpEz
2

+ 2(pEv − κpEuAv)pEz − pEd−1
2 − pEu

2
L2

z2
= −M

2L2

z2
. (C.24)

Which can now be fulfilled at small z with real Euclidean momenta. These equations can

be obtained from the (d+ 2)-Euclidean action

SEd+2 =

∫
dτE

ML

z

√
−fv′2 − 2v′z′ + x′2d−1 +

z2

L2
(u′ + κAvv′)

2 . (C.25)

As above, making use of the conservation of pEu , the dynamics encoded in (C.25)

can be equivalently obtained from the Routhian obtained from Legendre transform of the

Lagrangian (C.25), in other words from the action

SEd+1 =

∫
dτ

(
mL

z

√
−fv′2 − 2v′z′ + x′2d−1 + eEAvv̇

)
, (C.26)

where we have defined

m =

√
M2 − pEu

2 ,

eE = κpEu . (C.27)

So we have re-obtained our action (C.18) but now by a Wick rotation of the worldline

parameter only in d+ 2 dimensions, justifying our (d+ 1)-dimensional procedure of Wick

rotating the worldline parameter and the probe charge.

D WKB approximation

We show in this appendix that the geodesic approach (3.2) is equivalent to the WKB

approximation of the standard Green funcion definition. The standard definition of the

holographic Green function of the boundary operator O, dual to a charged scalar field Φ

in the bulk, follows from the near boundary expansion

Φ = A+z
∆+ +A−z

∆− , (D.1)
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where A+ and A− are functions of xµ, and then using the formula

〈O∆(xα1 )O∆(xα2 )〉 =
A+

A−
, (D.2)

where A−, A− are evaluated in xα = xα2 − xα1 .

To obtain the expansion (D.1) we use the WKB approximation to solve the Klein-

Gordon equation for Φ

(gµνDµDν −m2)Φ = 0 . (D.3)

We start by rewriting

(∇µ∇µ − 2ieAµ∇µ − ie∇µAµ − e2AµA
µ −m2)Φ = 0 , (D.4)

and then define Φ = exp(iS), to get

i∇µ∇µS−∇µS∇µS + (2qAµ∇µS− iq∇µAµ)m− (q2AµA
µ + 1)m2 = 0 , (D.5)

where e = mq. Next we propose

S = mS1 + S0 +O
(

1

m

)
, (D.6)

obtaining to the lowest order

gµν (∂µS1 − qAµ) (∂νS1 − qAν) + 1 = 0 , (D.7)

i∇µ(∂νS1 − qAν)− 2gµν∂µS0(∂νS1 − qAν) = 0 . (D.8)

If we rescale mS1 = S from the first equation we get

gµν (∂µS − eAµ) (∂νS − eAν) +m2 = 0 . (D.9)

This is the Hamilton-Jacobi equation for a relativistic spinless particle. From Hamilton-

Jacobi theory, we know that the function S can the identified with the on-shell classical

one-particle action, its derivatives being the momenta ∂µS = pµ, which implies that equa-

tion (D.9) is nothing but the mass shell constraint (C.3)

gµν(pµ − eAµ)(pν − eAν) +m2 = 0 . (D.10)

Regarding the second equation above, writing S0 = −(i/2) logB2, with B is an arbitrary

function, we get

∇µ
[
B2(pµ − eAµ)

]
= 0 . (D.11)

This equation gives the first quantum correction, and can be identified with the continuity

equation for the probability current jν = B2(pν − eAν).

For an asymptotically AdS metric, close to the boundary z = 0, there are two approx-

imated solutions of (D.9)–(D.11)

S± ' pd−1 · xd−1 − pvv ±mL log z , (D.12)

B2 ' c2

z
, (D.13)
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depending on integration constants pv,pd−1 and c. Extending these solutions S± to the

bulk IR region, we get the general form of the scalar field

Φ =
c√
z

(
eiS+ + eiS−

)
, (D.14)

and we can thus identify

A± = lim
z→0

z∓mLeiS±B . (D.15)

In other words

〈O∆(xα1 )O∆(xα2 )〉 =
A+

A−
= lim

z→0
z−2mLei(S+−S−) . (D.16)

Now, by noticing that the functions S± correspond to the classical on shell action integrated

from the turning point at the tip of the trajectory z = z∗ into the boundary z = zε with

the ± identifying each of the geodesic branches, we can establish that S+−S− = Son−shell.

With this, we recover formula (3.1), where we replaced ∆ = mL in the large m limit

(see [63] for a related discussion).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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