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EPMLR: sequence-based linear B-cell epitope
prediction method using multiple linear regression
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Abstract

Background: B-cell epitopes have been studied extensively due to their immunological applications, such as
peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several
decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task.

Results: In this work, based on the antigen’s primary sequence information, a novel linear B-cell epitope prediction
model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-
redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by
the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall
sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728.

Conclusions: We have presented a reliable method for the identification of linear B cell epitope using antigen’s
primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction:
http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/.

Keywords: B-cell, Linear epitope, Prediction, Multiple linear regression
Background
The humoral immune response is based on the amazing
ability of antibodies to recognize and bind to antigens of
intruding organisms, such as bacteria and viruses [1].
Antibodies bind specifically to a contiguous amino acid
sequence of a protein known as the linear B-cell epitope
or to a folded structure formed by discontinuous amino
acids known as the conformational B-cell epitope [2,3].
Prediction of B-cell epitopes is critical for immunological
applications. Specifically, predicted peptides can be syn-
thesized and can be used to replace the intact antigen
molecules as reagents for detecting anti-protein anti-
bodies in immunoassay [4], as immunogens for raising
anti-peptide antibodies to cross-react with the protein of
interest [5], or in the development of synthetic peptide
vaccines [6]. Although the majority of B-cell epitopes are
conformational [7], most B-cell epitopes prediction ap-
proaches concentrate on the “easier” linear epitopes [8].
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Earliest linear B cell epitope prediction models were
based on propensity profiling. Blythe and Flower [9]
demonstrated that the propensity profiling methods can-
not be used to reliably predict the epitope. Even the best
propensity profiling method only yielded a success rate
marginally better than that produced randomly using a re-
ceiver operating characteristics (ROC) plot. Later, machine
learning methods have been explored to improve the
prediction performance [10-22]. However, most of these
methods were developed on very small datasets (~872
epitopes and non-epitopes) with negative dataset that
were randomly selected peptides instead of experimentally
verified non-epitopes [23].
In this work, based on the antigen’s primary sequence

information, a novel linear B-cell epitope prediction
model was developed using the multiple linear regres-
sion (MLR). A large dataset called BEOD which was
derived from BEOracle dataset [19] was used to train
and test our model. It is worthwhile to note that all
epitopes and non-epitopes of our BEOD dataset were
experimentally verified. Nevertheless, experimental non-
epitope data still have the potential to be epitopes due to
flawed interpretation of the results or simple experimen-
tal errors [24]. Models built on different subsets of such
is is an Open Access article distributed under the terms of the Creative
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noisy negative dataset may produce very different results.
In order to alleviate the noisy problem caused by the
negative dataset and report a reliable prediction result of
our model, we have performed 300 experiments utilizing
300 sub-datasets of which each negative sub-dataset was
randomly selected from the BEOD negative dataset while
each positive sub-dataset was the unchanged BEOD
positive dataset. 10-fold cross-validation was employed to
evaluate the performance of our model. Our model pro-
duced average sensitivity (Sn) of 81.8%, precision (P) of
64.1% and area under the receiver operating characteristic
curve (AUC) of 0.728 over the 300 experiments. A web
server EPMLR implementing linear B cell epitope predic-
tion is available at: http://www.bioinfo.tsinghua.edu.cn/
epitope/EPMLR/.
Results
Sliding window size selection
To evaluate the effect of sliding window size n on the
prediction performance, we conducted modelling trials
on BEOD dataset using different window sizes from 5 to
19, representing the range in which peptides can be syn-
thesized relatively easily for immune experiments. As
shown in the Figure 1, the F-measure value of 10-fold
cross-validation test achieved its highest value when the
window size n was 15. Moreover, at 15 point, the F-
measures obtained by the 10-fold cross-validation test
and the self-consistency test are very close to each other,
which further validates the reliability of the performance
using sliding window size of 15. It is generally accepted
that the closer the F-measures obtained by the cross-
validation and self-consistency tests are, the more reliable
the performance of the cross-validation test is. Therefore,
in this work, 15 was set as the default window size.
Figure 1 The effect of the sliding window size on the overall
prediction F-measure. Red: Self-consistency test; Green: 10-fold
cross-validation test.
Prediction performance
We performed 300 experiments on 10-fold cross-vali
dation utilizing 300 sub-datasets that are the same in the
positive datasets but different in the negative datasets. For
each trial, the positive dataset of 4405 epitopes are exactly
same with BEOD’s 4405 epitopes while the negative data-
set of 4405 non-epitopes are randomly selected from
BEOD’s 8467 non-epitopes. The ROC plots for the best
and worst performances among the 300 trials are shown
in Figure 2. The performances of all 300 trials are summa-
rized in Table 1. As shown in Table 1 and Figure 2, the
variance of the 300 results is large, with Sn ranging from
83.5% to 81.7%, P from 77.6% to 55.7%, F-measure from
0.805 to 0.663, and AUC from 0.893 to 0.673. These large
discrepancies corroborate our speculation of the noise of
non-epitopes even if they are experimentally verified and
support our means of randomly constructing many nega-
tive sub-datasets and reporting the average result instead
of the best result. In conclusion, our sequence-based
linear B-cell epitope prediction method achieved an aver-
age Sn of 81.8 ± 0.8% (95% CI), P of 64.1 ± 0.2% (95% CI),
F-measure of 0.719 ± 0.08 (95% CI), and AUC of 0.728
using 10-fold cross-validation.

Comparison with Other Prediction Methods
We compared our EPMLR method with the methods of
ABCpred [10], AAP [11] and BCPred [13] through apply-
ing their web servers to the BEOD dataset. The ROC plots
for performances of ABCpred, AAP, BCPred and EPMLR
are shown in Figure 3. The AUC values for ABCpred,
AAP, BCPred and EPMLR are 0.547, 0.582, 0.615 and
Figure 2 ROC curves of the best and worst performance among
300 modeling trials using 10-fold cross-validation. Red: the best
performance; Green: the worst performance.

http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/
http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/


Table 1 Summary of the 300 trials’ performances using
10-fold cross-validation

Performance Sn (%) P (%) F-measure AUC

Best 83.5 77.6 0.805 0.893

Worst 81.7 55.7 0.663 0.673

Average 81.8 ± 0.8 64.1 ± 0.2 0.719 ± 0.08 0.728
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0.728, respectively. It is clear from the ROC plots that
EPMLR produced better performance in comparison with
ABCpred, AAP and BCPred.
Next, we compared our method with SVMTriP method

which is a recently published large dataset based method
[21]. We performed a 5-fold cross-validation on the
SVMTriP dataset. Our method obtained Sn of 80.56% and
P of 54.9% which is similar to the performance of
SVMTriP method (Sn of 80.1%, P of 55.2%) using 5-fold
cross-validation. Our method observed similar Sn (81.8%
vs. 80.56%) but a decreased P (64.1% vs. 54.9%) on the
BEOD dataset and SVMTriP dataset. The decreased
P value could be resulted from the fact that the negative
non-epitope dataset of the SVMTriP dataset was from the
remaining segments which have not been marked as
epitopes in the corresponding antigen sequences.
Similarly, we compared with LBtope method which is the

most recently published large dataset developed method
[25]. We applied our method to the Lbtope_Fixed_non_re-
dundant dataset (LFNR) whose epitopes and non-epitopes
were all experimentally verified. Using the same experimen-
tal procedure of LBtope, on the LFNR dataset, our method
obtained an AUC of 0.62, which is comparable to the AUCs
(0.57 ~ 0.69) obtained by LBtope method by training using
Figure 3 ROC curves of ABCpred, BCPred, AAP and our EPMLR
method performed on the BEOD dataset. Green: ABCpred; Blue:
BCPred; Yellow: AAP; Red: EPMLR.
5-fold cross-validation on 90% of the data and testing on
the remaining 10% of the data with various features.
Table 2 lists the comparison of our EPMLR with these

methods in detail.

Discussion
The development of epitope prediction research was ac-
companied by the development of a large and experimen-
tally well-characterized dataset that comprises both
positive epitopes and negative non-epitopes [26]. In con-
trast to the simplicity of the construction of a positive
dataset, the construction of a negative dataset has been
still debated. Non-epitopes were not used in the early
studies. Some authors attempted to construct negative
datasets by randomly choosing peptides either from a pro-
tein database (such as Swiss-Prot) where no antibody
binding is reported or from the antigen areas not encom-
passing any of the reported epitopes. In recent years,
researchers have begun to construct negative datasets
from the immune epitope database IEDB [27] database.
IEDB collects both epitopes and non-epitopes from
experimentally validated data. However, experimental
non-epitope data still have the potential to be epitopes
due to flawed interpretation of the results or simple
experimental errors [24]. Thus, models built on different
subsets of such uncertain dataset may produce uncertain
predictions, as demonstrated by the results of the 300
trials of our model. Although we can produce a good
result by subjectively selecting a self-reinforcing negative
dataset, the reliability of such good performance is not
guaranteed. Thus, in this work, we performed many paral-
lel trials using the same positive dataset but different nega-
tive datasets that are randomly selected from the noisy
negative dataset and reported the average of all results as
the final result. Such an averaging method could help
produce a reliable result.

Conclusions
In this work, a novel sequence-based linear B cell epitope
prediction model was developed. A web server EPMLR
implementing the prediction is available at: http://www.
bioinfo.tsinghua.edu.cn/epitope/EPMLR/. As a reliable
method developed based on a large dataset, EPMLR offers
new insights into the linear B cell epitope prediction and a
new option for scientists to do their prediction.

Methods
Datasets
In this work, we used BEOracle dataset because it is a
large dataset and both epitopes and non-epitopes of
BEOracle dataset were experimentally verified. Through
combining entries from IEDB, BCIPEP and AntiJen data-
bases, Wang and his colleagues constructed the BEOracle
dataset [20]. They extended these epitope sequences
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Table 2 Comparison of EPMLR with other methods

Methods Dataset
used

Performances

Sn (%) Sp (%) P (%) Acc (%) AUC

ABCpred BEOD 57.19 51.75 54.24 54.47 0.547

AAP 60.25 54.01 40.53 56.15 0.582

BCPred 65.04 51.87 41.28 56.38 0.615

EPMLR 81.79 45.87 64.07 63.83 0.728

SVMTriP SVMTriP 80.1 Unavailable 55.2 Unavailable 0.702

EPMLR 80.56 32.30 54.9 56.43 0.644

LBtope LFNR 54.38 ~ 65.88 57.31 ~ 63.97 Unavailable 55.85 ~ 64.86 0.57 ~ 0.69

EPMLR 60.76 56.14 57.99 58.45 0.62
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equally on both sides to get epitopes of a final length of 100
amino acids using the Uniprot identifiers associated with
them. Further, we trimmed BEOracle dataset (100-mer)
from both ends equally to extract the core 20-mer peptides.
Finally, we obtained 4,405 epitopes and 8,467 non-epitopes
and we called this unbalanced BEOracle-Derived dataset
(BEOD).
To alleviate the problem caused by the noise of nega-

tive dataset, we then constructed 300 sub-datasets
which were the same in the positive dataset but differ-
ent in the negative dataset. Each of the 300 sub-
datasets contained the whole 4,405 epitopes of BEOD
and an equal number of 4,405 non-epitopes randomly
selected from the 8,467 BEOD non-epitopes. These 300
sub-datasets were used to perform the 300 experiments
using the same algorithm.
The SVMTriP dataset, which was introduced by Yao B

et al. [21], consists of 4925 epitopes and 4925 non-
epitopes. Originally, total of 65,456 B-cell linear epitopes
were downloaded from IEDB (version June 11th, 2012)
and the identical epitopes and those possibly related to
T-cell are removed. Next, truncation and extension tech-
nique was applied to get fixed length pattern. Finally, 4925
non-redundant epitope sequences were obtained after > =
30% similarity process by BLAST [28]. For the negative
dataset, the same number of equal-length sub-sequences
were extracted from the non-epitopic segments in the cor-
responding antigen sequences.
The Lbtope_Fixed_non_redundant dataset (LFNR),

which was introduced by Singh H et al. [25], consists of
7824 B-cell epitopes and 7853 non-epitopes. Originally,
total of experimentally validated 49694 B-cell epitopes and
50324 non B-cell epitopes were obtained from the IEDB
in Jan 2012. After truncation and extension, sequences
with fixed length were created. Then identical epitopes
and common patterns in both types of patterns were
removed. Finally, after 80% non-redundant process by
CD-HIT [29], 7824 B-cell epitopes and 7853 non-epitopes
were kept. This non-redundant and fixed length dataset
was named Lbtope_Fixed_non_redundant.
Algorithm
In this study, we constructed an epitope prediction
model based on primary sequence information. The
modeling trial was performed as follows.
Each 20-mer epitope (or non-epitope) was scanned

step by step using a sliding window of n residues. We
use ωi to represent the epitope state of a window Ai: if a
window is from an epitope input, its ωi is epitope,
otherwise is non-epitope. Defining I(ωi) as the epitope
indicator of the window, the value of I(ωi) is taken as 1
when the window is being in the state of epitope, other-
wise as 0. We assumed that I(ωi) is a function of the linear
combination of features derived from the sequence and
physical-chemical properties of the window. Therefore,
for a window we have equation (1):

I ωið Þ ¼
Xn
j¼1

αð1; 2…19jωÞRj þ
Xn−1
j¼1

Xn
k¼jþ1

βj;k ωð ÞBjBk

þ
Xn−1
j¼1

Xn
k¼jþ1

γ j;k ωð ÞSjSk þ
Xn−1
j¼1

Xn
k¼jþ1

δj;k ωð ÞV RjRk
� �

þC ωð Þ
ð1Þ

Here, subscripts j and k denote position j and k in the
window. Rj is a 19-D vector with the component for the
residue at position j as 1 and the others as 0. α(1, 2…
19|ω) is the coefficient vector for 19 amino acids (with

one omitted).
Xn
j¼1

α 1; 2…19 ωÞRj

���
represent the features

of occurrence of amino acid type from the first position
to the last position for an n-mer window sequence. Bj

and Bk are the normalized hydrophilicity values of resi-
dues at positions j and k, while βj,k(ω) is the coefficient

combining the residue pair.
Xn−1
j¼1

Xn
k¼jþ1

βj;k ωð ÞBjBk repre-

sent the features of autocorrelation of the hydrophobi-
city index of residue pair (residue Rj at position j and
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residue Rk at position k) for an n-mer window sequence.
Similarly, Sj and Sk are the normalized side chain mass
values of residues at positions j and k, while γj,k(ω) is the

coefficient combining the residue pair.
Xn−1
j¼1

Xn
k¼jþ1

γ j;k ωð ÞSj

Sk represent the features of autocorrelation of the side
chain mass of residue pair for an n-mer window sequence.
V(RjRk) is a 500-D vector whose components refer to 500
most important position specific residue pairs RjRk, while
δj,k(ω) is the coefficient combining the residue pair. In
model training, we compared the 500 RjRk with all RjRk
(n × (n − 1)/2 in total) existed in a window, the value of a
component of V(RjRk) is set as 1 if the RjRk to which the
component referred exists in the window, otherwise as 0.
Xn−1
j¼1

Xn
k¼jþ1

δj;k ωð ÞV RjRk
� �

represent the feature of occur-

rence of selected residue pairs in an n-mer window
sequence.
The 500 residue pairs were selected according to the

following procedures: we firstly calculated the occur-
rence frequency for all RjRk (20 × 20 × n × (n − 1)/2 in
total) in the training dataset and eliminated RjRk with
occurrence frequency less than the average value (about
50%) for statistic stability. We then calculated the infor-
mation value D(RjRk) of the remaining RjRk. D(RjRk) is
defined as equation (2):

D RjRk
� � ¼ X1

t¼0

f t RjRk
� �� log

f t RjRk
� �
Pt

� �
ð2Þ

where ft(RjRk) represents the occurrence frequency of a
RjRk derived from the epitope (t = 1) and non-epitope (t
= 0) in the training dataset, respectively. Pt represents
the naturally occurring probability of a RjRk based on
the relative sizes of the epitope and non-epitope datasets
in the training dataset (for example, P1 = P2 = 0.5 if the
size of the epitope dataset is equal to the size of the
non-epitope dataset). All D(RjRk) values were ranked by
the descending orders. Finally, 500 RjRk with the largest
value of D(RjRk) were selected. Here, we selected 500
components because the curve of all D(RjRk) values by
descending order shows as exponential decay and the
point of inflection is about 500 (Additional file 1).
On the training dataset, all the fitting coefficients in

Equation (1) were determined by the MLR method [30].
Once the coefficient matrix is obtained, we adopted the
same sliding window procedure with the 20-mer peptides
on the testing dataset. Each of the n-sized window ωi of
the 20-mer peptide was predicted to be an epitope or not
with an epitope propensity score Q(ωi). For any 20-mer
peptide, there are 21 − n windows and the epitope propen-
sity score of the 20-mer peptide was calculated by taking
the average of all 21 − n Q(ωi) scores. In this representa-
tion, every 20-mer peptide in the testing dataset is scored
for its propensity to be an epitope or a non-epitope.

Performance Measures
In 10-fold cross-validation test, the original dataset is ran-
domly partitioned into 10 equal size subsets. Of the 10
subsets, a single subset is retained as the validation data
for testing the model, and the remaining 10-1 subsets are
used as training data. The cross-validation process is then
repeated 10 times, with each of the 10 subsets used exactly
once as the validation data. The 10 results can then be
averaged to produce a single estimation.
Sn, P, F-measure and accuracy (Acc), are defined in

the following equations:

Sn ¼ TP
TP þ FN

� 100%

P ¼ TP
TP þ FP

� 100%

F ¼ 2� P � Sn
P þ Sn

� 100%

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

� 100%

where TP, TN, FP, and FN represent the number of true
positive, true negative, false positive, and false negative
cases, respectively.

Additional file

Additional file 1: Information of selcted 500 RjRk.
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