

 - 1-

A Review of Integrity Constraint Maintenance

and View Updating Techniques

Enric Mayol, Ernest Teniente
Universitat Politècnica de Catalunya

E-08034 Barcelona - Catalonia
e-mail: [mayol | teniente]@lsi.upc.es

Abstract
Two interrelated problems may arise when updating a database. On one hand, when an update
is applied to the database, integrity constraints may become violated. In such case, the integrity
constraint maintenance approach tries to obtain additional updates to keep integrity constraints
satisfied. On the other hand, when updates of derived or view facts are requested, a view
updating mechanism must be applied to translate the update request into correct updates of the
underlying base facts.

This survey reviews the research performed on integrity constraint maintenance and view
updating. It is proposed a general framework to classify and to compare methods that tackle
integrity constraint maintenance and/or view updating. Then, we analyze some of these
methods in more detail to identify their actual contribution and the main limitations they may
present.

Categories and subject descriptors: H.2.4 [Database Management]: Systems---Rule-based Databases
Words and Phrases: Updates, Integrity Constraints, Integrity Constraint Maintenance, View Updating

1. Introduction

Most databases, like relational and deductive ones, allow the definition of intentional information. The

most traditional types of intentional information are views and integrity constraints. It is widely accepted

to define this intentional information in a declarative way, because it provides a uniform representation

that allows tools and techniques based on logic programming to be incorporated into database

management systems.

Views are defined by means of derivation rules that allow the definition of new facts (view or derived

facts) from other derived or stored (base) facts. The view extension is completely defined by the

application of derivation rules to the contents of the database. Views provide several advantages like

simplifying user interface, favoring logical data independence, or definition of new queries or new

intentional information. However, these advantages can only be achieved if a user does not distinguish

between derived and base facts.

Integrity constraints define, by means of rules, those conditions that each database state must satisfy.

They determine legal states and legal transitions of the database. Integrity constraints are used to prevent

the entering of incorrect data into the database and to ensure that database facts satisfy those conditions.

Therefore, an integrity constraint is a closed query that must always be true after a database update.

Integrity constraints use to be defined in denial form expressing more directly the non-legal states of the

 - 2-

database. Integrity constraints defined in other forms can be easily transformed into denials by using the

transformation defined in [LlT84].

Views are used to generate new (derived) data from stored facts of the database, while integrity

constraints are used to verify that base and derived data satisfy them without generating new data.

This survey relies on the problems of view updating and of maintaining integrity constraints satisfied.

We identify the relevant features to be considered when solving these problems. We also summarize the

achievements of several methods according to these features, and we analyze some of these methods in

more detail to identify their actual contribution and the main limitations they may present.

Early surveys on integrity constraint maintenance and view updating can be found in [FP93, GA93,

MT99b]. This survey extends a preliminary version of the survey we presented in [MT99b] by

considering new methods and new features that we did not consider there. We also extend the review

presented in [FP93] by considering alternative features and more recent methods.

This survey is structured as follows. Section 2 defines more precisely integrity constraint maintenance

and view updating problems and analyzes the relationship between both problems. Section 3 makes a

brief review of methods that tackle these problems in the relational database model. In Section 4, we

define the general framework we use to classify and compare relevant work in this field. The framework

is defined in terms of the relevant dimensions to be taken into account during view updating and integrity

constraint maintenance. Sections 5 and 6 rely on integrity constraint maintenance. In Section 5, we

analyze in more detail specific features of the framework dimensions relative to this problem. Then, in

Section 6, we classify and compare some of the best known methods in this field according to these

features. Drawbacks and individual limitations that some methods present are also discussed. Section 7

and 8 follow the same structure than sections 5 and 6, but in this case, they consider view updating and

integrity constraint maintenance problems altogether. Finally, Section 9 summarizes the main conclusions

and points out interesting aspects for further research.

2. Integrity Constraint Maintenance and View Updating

Databases are updated through the application of transactions that consist of a set of updates of base

facts. Several problems may arise when updating a database [TU95]. Some of them are directly related to

updates that involve views or integrity constraints. Therefore, database management systems must

provide mechanisms to deal with updates of view facts and mechanisms to ensure that integrity

constraints are satisfied after the application of a transaction.

2.1 Integrity Constraint Maintenance

The problem of ensuring that after the application of a transaction all integrity constraints are satisfied,

is usually known as integrity constraint enforcement. There are several approaches to ensure that a

database satisfies integrity constraints [Win90]. All of them are reasonable and the correct approach to be

 - 3-

considered depends on the semantics of the integrity constraints and of the database. The best known

approaches are integrity constraint checking and integrity constraint maintenance.

Integrity constraint checking is the classical approach to deal with integrity constraints. It is the most

conservative one because if integrity constraint becomes violated by the application of a transaction, then

the transaction is rejected and the database remains unchanged. An important drawback of this approach

is that the user may not have information about possible changes to be made to the transaction to make it

obey the integrity constraints.

An alternative approach, aimed at overcoming this limitation, is that of integrity constraint

maintenance. This approach is concerned with trying to identify additional updates (i.e. repairs) to add to

the original transaction so that the resulting transaction does not violate any integrity constraint. Usually,

there are several ways to repair an integrity constraint.

Example 2.1: Consider a database with two base facts stating that Ann is a professor and a doctor.

Additionally, there is an integrity constraint (Ic) defining that it is not possible to be a professor without

being doctor.

Prof(Ann) Doctor(Ann)

Ic � Prof(p) � ¬ Doctor(p)

Consider a transaction to delete Ann as a doctor T={delete(Doctor(Ann))}. This transaction violates

integrity constraint Ic because, in the new state database, Ann will remain as a professor but not being a

doctor. Therefore, to ensure that integrity constraint remains satisfied, we could consider any integrity

constraint enforcement approach. By considering the integrity constraint checking approach, transaction T

should be rejected, the database would remain unchanged, but the requested deletion could not be

satisfied. In contrast, with integrity constraint maintenance the requested deletion could be satisfied

without violating the integrity constraint. In this case, we should extend transaction T with the deletion of

Ann as a professor. Therefore, the extended transaction T’={delete(Doctor(Ann)), delete(Prof(Ann))}

would allow the initial request to be satisfied in the new state, without violating the integrity constraint.

Research performed in the integrity constraint checking field is mainly oriented to define mechanisms

to identify, as efficiently as possible, when an integrity constraint becomes violated by a given

transaction. In contrast to this approach, methods that follow the integrity constraint maintenance

approach are mainly concerned with the generation of alternative ways to ensure integrity constraints

satisfaction, and only a few of them explicitly consider efficiency issues.

In this survey, we do not consider methods of integrity constraint checking. Some surveys as

[CGMD94] and [Sel95] summarize the research performed in this field. The first one [CGMD94], makes

a comparison between concrete methods of integrity constraint checking, while [Sel95] includes in its

proposal an interesting comparison of different approaches to tackle the integrity constraint checking

problem.

 - 4-

The difficulty and necessary effort to tackle the integrity constraint enforcement problem depends

basically on the number of integrity constraints to enforce, on the definition of integrity constraints and on

the selected approach to enforce them. However, an additional difficulty may appear when views (or

derived information) are involved in the requested update or in the definition of integrity constraints,

since derived information must be appropriately managed.

2.2 View Updating

An update request U consists of a set of base and derived updates. Update requests are usually asked by

the user to change the database or they are demanded to repair an integrity constraint violation. When an

update request U contains updates of view/derived facts, the problem of view updating appears. View

updates can not be directly applied to the database and they must be translated into appropriate updates of

the underlying base facts. The obtained set of base fact updates is known as a translation of the view

update request. Each translation defines a possible transaction that guarantees that when applied to the

database, the requested view update becomes satisfied.

Example 2.2: Consider a database with two view predicates: Works(p,u) and Phd-Std(p,u). A person

works in a university if s/he is an employee in some department of that university. Phd students of a

university are those that work in the university, but do not have a doctor’s degree.

Emp(Cris,IS) Emp(Peter,IS) Dept(IS,UPC) Doctor(Peter)

Works(p,u) � Emp(p,d) � Dept(d,u)

Phd-Std(p,u) � Works(p,u) � ¬ Doctor(p)

Consider the update request to insert that Mercè works at the UPC: U={insert(Works(Mercè,UPC))}. A

possible way to satisfy this view update request is by the translation T={insert(Emp(Mercè,IS))}.

There are some aspects related to the process of translating a view update request that makes view

updating a difficult problem [Ten00].

I. Multiple Translations. Usually, there are several translations to a view update request. For

example, consider the update request U={delete(Works(Cris,UPC))} to apply in the database of example

2.2. There are two translations that satisfy U, these are T1={delete(Emp(Cris,IS))} and

T2={delete(Dept(IS,UPC))}. Methods for view updating should be able to obtain all alternative

translations to an update request. Furthermore, it would be desirable that these methods define some

criteria to select the “best” translation.

II. Side effects. A translation of a view update request could induce additional updates in the same or

in other views. These non-requested updates are known as side effects, and they are usually hidden to the

user. In the previous example, the application of translation T2 induces side effects

S={delete(Works(Peter,UPC)), delete(Phd-Std(Cris,UPC))}. In some cases, these side effects could be

inappropriate so, methods for view updating must provide some mechanism to prevent them.

 - 5-

III. Non-monotonic. When a view is defined by means of negated atoms, insertions (deletions) of

view facts can be satisfied by means of deletions (insertions) of base facts. In the example 2.2, a request

to insert view fact Phd-Std(Peter,UPC) may be satisfied by the deletion of base fact Doctor(Peter).

IV. Multiple view update requests. When an update request U contains more than one requested

update, all of them must be satisfied all together. However, translating each one independently and

combining the obtained translations may not always satisfy the update request at all. Consider example

2.2 and the update request U={insert(Phd-Std(Tom,UPC)), insert(Doctor(Tom))}. A translation of the

first request in U is T3={insert(Emp(Tom,IS)} and the second request one is satisfied by transaction

T4={insert(Doctor(Tom))}. Notice that transaction obtained by combining both transactions

T3�T4={insert(Emp(Tom,IS)), insert(Doctor(Tom))} does not satisfy U. The reason is that insertion of

Doctor(Tom) dismisses the desired effect of insert(Phd-Std(Tom,UPC)). Notice that in this example, it is

not possible to satisfy U by only changing extensional database.

V. Translation of existential views. An existential view is defined by means of a derivation rule that

contains variables in the body that do not appear in its head. When an update on such views is requested,

there may be as many translations as different valid values can be assigned to the existential variables. For

example, given the update request of inserting the view fact Works(Joan,UPC) into database of example

2.2, there is a translation T1={insert(Emp(Joan,IS))} that satisfy the requested update, and there are also

as many translations Ti={insert(Emp(Joan,depti)), insert(Dept(depti,UPC))} as different departments

depti could have the UPC university. To obtain these translations, a method must define how to obtain

valid values for the existential variables. Note that when the domain of existential variables is infinite,

there may exist an infinite number of translations.

View updating methods must take into account the above aspects in order to properly deal with view

updates. Methods that do not explicitly consider some of these aspects may limit its effectiveness or may

suffer some drawback. Some examples of them are shown in Section 8.

2.3 Integrity Constraint Maintenance and View Updating

View updating and integrity constraint enforcement are strongly related. On one hand, a transaction

corresponding to a translation of a view update request may violate some integrity constraint. Therefore,

view updating requires integrity constraint enforcement. On the other hand, when integrity constraints are

defined in terms of views, view definitions must be considered to enforce integrity constraints, since if a

violation is detected, it may be repaired by means of a view update request. Therefore, integrity constraint

maintenance requires also view updating.

Example 2.3: Consider a database with two view predicates: Doctor(p) defining that a person p is a

doctor if s/he has written a PhD-Thesis and has passed the PhD-exam; and ResCert(p) stating that a

person has a research certificate if s/he has written a PhD-Thesis.

 - 6-

Integrity constraints Ic1, Ic2 and Ic3 state, respectively, that it is not possible to have a research

certificate without been author of some good research paper; that it is not allowed to be professor and not

to be doctor; and that it is not possible to pass satisfactorily the PhD-exam if some errors were made

during the examination.

PassEx(Bob) Ic1 � ResCert(p) � ¬ GoodPap(p)

Doctor(p) � PhD(p) � PassEx(p) Ic2 � Prof(p) � ¬ Doctor(p)

ResCert(p) � PhD(p) Ic3 � Errors(p) � PassEx(p)

Consider the update request U={insert(Prof(Bob))}. It violates integrity constraint Ic2, so it should be

repaired by requesting the insertion of Doctor(Bob). This view update request is translated to the

transaction T={insert(PhD(Bob))}. Moreover, the above insertion violates integrity constraint Ic1 since

derived fact ResCert(Bob) becomes satisfied. To repair this violation, the insertion of base fact

GoodPap(Bob) is required. In this example, we have shown that integrity constraint maintenance requires

view updating, and at the same time, translations of a view update request require to maintain integrity

constraints satisfied.

As shown in [TO95], view updating and integrity constraint checking can be successfully performed as

two separate steps. In a first step, all translations of the view update request are obtained and, in a second

step, those translations that violate some integrity constraint are discarded. In contrast, view updating and

integrity constraint maintenance cannot be performed in two separate steps, unless additional information

of the view updating process is provided to the integrity constraint maintenance process. The reason is

that, a repair of an integrity constraint violation may invalidate an already satisfied view update. If this

information is not taken into account during the integrity constraint maintenance, it is not possible to

guarantee that the obtained translations really satisfy the update request without violating integrity

constraints. In the following example, we illustrate this situation.

Example 2.4: Consider the database of example 2.3 and the update request U={insert(Doctor(Bob)),

insert(Errors(Bob))}. As in the previous example, the view update insert(Doctor(Bob)) is achieved by

insert(PhD(Bob)). Integrity constraints Ic1 and Ic3 are violated and they must be repaired with

insert(GoodPap(Bob)) and delete(PassEx(Bob)), respectively. Therefore, if view updating and integrity

constraint maintenance are considered separately, the following transaction T={insert(PhD(Bob)),

insert(GoodPap(Bob)), insert(Errors(Bob)), delete(PassEx(Bob))} maintains integrity constraints

satisfied.

Notice, however, that after applying transaction T, the initial update request U is not satisfied. The

deletion of fact PassEx(Bob) invalidates the insertion of derived fact Doctor(Bob). In this sense, during

integrity constraint maintenance, we must ensure that the insertion of the view fact Doctor(Bob) is not

dismissed by the repair of an integrity constraint.

 - 7-

3. Antecedents in Relational Databases

Relational databases allow the definition of views and integrity constraints. Although views and

integrity constraints that can be handled by most of the relational database management systems are

limited, several work has been performed in this field. In this section, we review the most significant

approaches to deal with view updating and integrity constraint enforcement in relational databases.

Two different approaches are considered to classify the different proposals that tackle the view

updating problem.

A first approach is based on considering views as an abstract data type. In this sense, definition of a

view incorporates the updates that may be requested on that view and the description how these updates

should be translated to updates of underlying relations. Methods that follow this approach are [TFC83,

FC85, MW88, SM89].

A second approach is based on the definition of a general procedure (Translator) that translates a view

update request into updates of database relations. The input of this procedure is the view update request,

the view definition and the state of the relational database. The output is the set of updates to apply to

relational tuples in order to satisfy the requested view update. Methods that follow this approach can be

classified in three groups:

�� Methods based on the complement of a view

F. Bancilhon and N. Spyratos [Ban79, Spy80, BS81] propose a method for translating view update

requests. Given a view definition V, this method defines the complementary view of V such that the

complete database can be computed from the view and its complement. Then, a view update request is

translated in such a way that only the view V is changed while its complement remains unchanged.

The main contributions of this approach consist in stating that given a view, its complement always

exists. Moreover, given a view and its complement, if there is a translation satisfying a view update

without changing the complement, this translation is unique. Given a view update request, [BS81]

proposes a mechanism to compute this translation.

Main difficulties of this approach rely on its implementation in the relational database model, since the

problem of obtaining the minimal complement to a given view is NP-complete [CP84]. Another

limitation of this approach [KU84, Kel87] is that, in some cases, the condition of not changing the

complement of a view could be too restrictive and, therefore, some valid translations may not be

obtained.

�� Methods defining a specific translator to each view

For each view definition operator (selection, projection, join, …) and for each update operator (insert,

delete, update), methods that follow this approach define a rule specifying the updates to apply to the base

relations in order to satisfy a view update request.

 - 8-

In the Table 1, we summarize several proposals that follow this approach. Translation rules for the

modification update operator [FSS79, Kel85, Dat86], for the cartesian product operator [FSS79, CA79]

and for the intersection operator [LS91] are not included in Table 1. They may be obtained from the

respective references.

View operator \ Update operator Insertion Deletion

Projection: V = R [X]
[FSS79, Mas84, Kel85, Dat86, LS91]

Insert into R Delete from R

Selection: V = R (X�Y)
[FSS79, Mas84, Kel85, Dat86, LS91]

Insert into R or
Modify select. attrib.

Delete from R or
Modify select. attrib.

Union: V = R � S
[FSS79, Mas84, Kel86, LS91]

Insert into R or
Insert into S or
Insert into both

Delete from R and
Delete from S

Difference: V = R - S
[Mas84, LS91]

Insert into R and
Delete from S

Delete from R or
Insert into S or
both of them

Join: V = R [X=Y] S
[Kel85, Dat86, LS91]

Insert into R and
Insert into S

Delete from R or
Delete from S or

both of them
Table 1. Summary of view updating methods in relational databases

Notice that the above rules are defined by considering updates of one tuple and views defined by only

one operator. In [CA79], it can be found how to manage more complex views and multiple update

requests by combining the above rules.

�� Methods based on the universal relation assumption

The universal relation assumption [Sag83] consists in viewing a relational database as only one

(universal) relation defined by all attributes of the relational database.

Y. Sagiv [Sag83] proposes to consider a representative instance of a database as a correct

representation of the stored data. This representative instance is automatically obtained from database

relations and their functional dependencies.

In this approach, methods to update the database [Sag83, BV88, Lan90] specify update requests in

terms of attributes of the representative instance. Then, update requests correspond to projections of the

representative instance.

Methods that follow this approach define algorithms to translate insertion, deletions and modifications

of the representative instance into updates of the underlying actual database relations.

Relational database management systems actually support some view updates, but in a very limited

way, since they can only handle specific types of view definitions. Limitations on view definition are the

main reasons because most recent research on the view updating field is performed by considering more

expressive definition languages and database models like first order logic and deductive databases.

 - 9-

An interesting overview of the research performed regarding the enforcement of integrity constraint in

relational database systems is proposed in [GA93]. This survey begins with the identification of the most

relevant research issues of the integrity constraint enforcement problem. Later, different RDBMS

prototypes and products that provide some support to handle integrity constraints are described and

analyzed.

The authors of this survey conclude that there is still a large gap between the theoretic approach to

constraint enforcement and the actual implementations of RDBMS. This is because most

implementations are limited to handle only some types of integrity constraints, do not support full

transaction semantics and because only little attention has been devoted to the performance of the

integrity constraint enforcement process. Although RDBMSs have improved their integrity constraint

enforcement functionality, there is still a gap between the research on relational databases in this field and

its implementation in RDBMS.

4. Relevant Dimensions of View Updating and Integrity Maintenance

In this section, we define the dimensions we have considered to classify and compare most relevant

research performed on view updating and integrity constraint maintenance. In the following sections, we

distinguish methods that tackle the integrity constraint maintenance problem from those methods that

tackle also the view updating problem. For both groups of methods, we identify the relevant features of

each dimension and we classify and compare methods with respect to them.

Given an update request, methods proposed for view updating and integrity constraint maintenance are

attempted to obtain solutions to the concrete problem they address by applying the procedure they define.

With respect to this procedure, we distinguish the basic mechanism that defines the method from the

techniques that it may incorporate to improve its efficiency. With respect to the obtained solutions, we

analyze if all solutions may be obtained and if they are sound.

Therefore, the main dimensions to take into account during the process of view updating and integrity

constraint maintenance are the following: the problem, the database, the update request, the procedure

(basic mechanism, efficiency) and the solutions (soundness, completeness). These dimensions are shown

in the following figure:

Database

Procedure
Update
Request Solutions

Soundness

Problem

Completeness

Mechanism

Efficiency

 - 10-

Figure.1 Relevant dimensions of our comparison framework

Problem: In this dimension, we take into account the problem addressed by each method and the

approach it follows. The considered problems are integrity constraint maintenance and view updating. We

differentiate between methods that tackle integrity constraint maintenance without considering view

updating from those methods that consider both problems in an integrated way.

Database: The difficulty of maintaining integrity constraints and managing view updates depends on

the definition of the intentional information and on the database model. In this dimension, we include the

most relevant features related to how views and integrity constraint are defined in the database schema.

We put special attention to the definition language and to the limitations imposed on the views and

integrity constraints handled by each method.

Update Request: An important aspect that determines the usefulness of a method is the flexibility a

user has to specify its update requests. That is, how many update operators s/he may use to specify an

update request or whether update requests are restricted to some specific request types. In this dimension,

we analyze some features related to the update request specifications.

Basic Mechanism: Most part of proposals in this research area consist in the formal definition of a

mechanism that a method uses to maintain integrity constraints and to translate view update requests.

Usually, implementation details are not considered in these definitions. In this dimension, we include the

main features related to the basic mechanism without considering implementation issues.

Efficiency: Some methods take explicitly into account efficiency issues in addition to the above basic

mechanism description. In this sense, they propose an implementation architecture, or at least, some

optimization techniques to improve the efficiency of the basic mechanism. In this dimension, we analyze

which efficiency issues are explicitly considered by each method, as well as the efficient techniques these

methods propose.

Soundness: It should be expected that solutions obtained by each method satisfy the problem addressed

by that method. However, this is not always the case. It may happen that a method is not sound since it

may obtain a “solution” that it is not really a solution because it does not satisfy the requested update or

the integrity constraints. In this dimension, we analyze whether a method is proved to be sound or, if there

are examples showing its unsoundness.

Completeness: In general, several solutions that satisfy an update request may exist. In this dimension,

we consider whether a method is able, or not, to obtain all possible solutions.

5. Relevant Features for Integrity Constraint Maintenance

In this section, we identify the main features of each dimension previously defined in Section 4 that are

specific to the problem of maintaining integrity constraints. In this sense, we detail the above framework

to compare and classify methods that tackle integrity constraint maintenance and that do not explicitly

 - 11-

deal with view update requests. These features will be considered again in section 7 when comparing

methods for view updating and integrity constraint maintenance.

The relevant features of each dimension that we have taken into account are:

Problem:

Since all the methods considered in this section tackle the same problem, we take into account only one

feature of the problem.

�� Run/Compile-Time Approach: Methods differ in the way they identify violations and propose repairs

of integrity constraints. Run-time approach knows the actual requested update and the contents of the

database. Therefore, it determines the actual repair when actual violations are detected. In contrast,

Compile-time approach only knows the database schema and a parameterized update request. In this

sense, Compile-time approach is intended to generate a program that executed at run-time, when actual

values are given to the formal parameters, will provide the desired solutions. However, several

methods combine both approaches by performing some preparatory work at compile time before

determining actual repairs.

Database Schema:

Methods for integrity constraint maintenance differ considerably with respect to the integrity

constraints they may deal with. In this dimension, we have considered four features relative to the

expressive power of the database and, more concretely, of the integrity constraints definition.

�� Definition Language: Several languages can be used to define the database schema and, in particular,

to specify integrity constraints. It is important to know the nature of the language used to define a

database schema in order to determine the expressive power of the database and, in particular, of

integrity constraints. In tables 2 and 3, we indicate for each method the database definition language

they use.

�� View definition: This feature refers to whether view or derived predicates can be defined in the

database schema. Some methods define views to improve expressive power of integrity constraints,

although they do not directly handle repairs through view updates. In tables 2 and 3, we indicate with

Yes the methods that allow the use of read-only views.

�� Integrity Constraint Definition: With this feature, we analyze in more detail the syntactic restrictions

that each method imposes on the definition of the integrity constraints. These particular restrictions

limit the integrity constraints that a method can handle. In tables 2 and 3, we indicate with Limited

those methods that impose some restriction on integrity constraints; with Yes those that do not impose

any restriction and with Flat those that do not allow view predicates to appear in integrity constraint

definitions.

 - 12-

�� Integrity Constraint Types: This feature states whether a method may handle static integrity constraints

only or if it can handle also dynamic integrity constraints. Static integrity constraints impose

conditions involving only a certain state of the database. Dynamic integrity constraints impose

conditions involving more than one state. In tables 2 and 3, we distinguish methods by means of the

Static and Dynamic label.

Update Request:

All methods considered in this section allow the definition of multiple update requests, that is, update

requests that involve more than one update. A distinguished feature as far as the update request is

concerned is the following:

�� Update Operators: Three different kinds of update operators are usually considered: insertions,

deletions and modifications. We distinguish those methods that, in addition to insertions and deletions

of facts, allow specify also modification requests. In tables 2 and 3, update operators are indicated with

labels � for insertions, � for deletions and � for modifications.

Basic Mechanism:

Two different features are considered in this dimension.

�� Technique: It refers to the specific technique used by each method to propose repair actions under an

integrity constraint violation.

�� User Participation: It defines whether the method requires the user/designer participation during the

process of obtaining solutions. This feature is important because it prevents the method to be

completely automatic. We do not consider as user participation the fact that, at the end, the user may

choose among several obtained solutions.

Efficiency:

Few methods take explicitly into account efficiency issues. In this sense, this dimension let us

distinguish between methods that define techniques to improve the efficiency of the basic mechanism,

or not. In tables 2 and 3, we indicate with No the methods that do not consider explicitly efficiency

issues; and for each method that considers it, we indicate which issue is considered.

Soundness and Completeness:

In both dimensions, we indicate for each method, if soundness and/or completeness of the method are

proved (Yes) or not (Not Proved). Additionally, we indicate with label No the methods that provide

non-valid solutions or that it do not obtain some existing correct solutions.

6. Review of Integrity Constraint Maintenance Methods

In this section, we classify and review the most relevant methods [ML91, CFPT94, Ger94, ED98,

Sch98, Maa98, ST99] for integrity constraint maintenance with respect to the features identified in

 - 13-

Section 5. In Table 2, we summarize the result of our analysis and, in the rest of this section, we describe

each method and we also comment main contributions and limitations they have.

6.1 Moerkotte and Lockemann’s Method [ML91]

One of the former proposals for integrity constraint maintenance in deductive databases is the method

for reactive consistency control of G. Moerkotte and C. Lockemann [ML91]. This method is completely

defined at Run-time and it proposes how to obtain the repairs of an integrity constraint when the actual

integrity constraint violation is detected. It distinguishes clearly three steps to obtain these repairs. In a

first step, a set of symptoms is obtained from violated integrity constraints. These symptoms correspond

to base and derived facts that violate some integrity constraint. In a second step, a set of causes is

obtained from the symptoms. These causes correspond to base facts that raise a symptom. Finally, causes

are transformed into repairs by syntactic modification.

 Moerkotte’s method is restricted to a particular case of databases where view predicates and integrity

constraints are defined by means of rules with only positive literals. This method introduces also some

techniques to improve the efficiency of the process of checking integrity constraints to identify causes. It

also suggests alternative ways to help the user in the selection of the more appropriated solution of the

update request.

6.2 Etzion’s Method [Etz93, Etz94, ED98]

The method of O. Etzion [Etz93, Etz94, ED98] proposes the Self-Stabilization approach as an

alternative to the active approach to maintain integrity constraints. At definition level, this approach is

based on defining data-driven derivations (rules) instead of event-driven (active) rules. The approach is

based on defining stabilizer types, which correspond to high-level abstractions of the repair behavior. A

difference between stabilizers and active rules is that, stabilizers are more focused on the semantics of

integrity constraint than the syntactic information of integrity constraints considered by active rules.

However, at implementation level, stabilizer types are automatically translated to active rules.

This method allows also definition of derivation constraints, which state semantic value dependencies

between derived information, by aggregation or some kind of functions, and base information.

6.3 Schewe and Thalheim’s Method [ST99, Sch96, Sch00]

Another proposal to formalize integrity constraint maintenance is the work of K-D. Schewe and B.

Thalheim [ST99, Sch96, Sch00]. This work deals with the problem of integrity constraint maintenance

following a pure Compile-Time approach. They propose a method that, given a program specification

(predefined transaction), obtains an extension of it, called greatest consistent specialization (GCS), that

must ensure the initial program intention and must preserve integrity constraint satisfaction. An

alternative to the GCS, the maximal consistent effect preserver (MCE) is also defined for some specific

cases of program specifications. In [ST99] the authors propose a theory-based solution to the problem of

 - 14-

integrity constraint maintenance. In [Sch00], three alternative strategies to enforce database consistency

using GCS and/or MCE are proposed.

 - 15-

C
om

pl
et

e

N
ot

 P
ro

ve
d

N
o

N
o

N
o

N
o

N
o

N
ot

 P
ro

ve
d

So
un

d

N
ot

 P
ro

ve
d

N
o

N
o

N
ot

 P
ro

ve
d

N
o

N
ot

 P
ro

ve
d

N
ot

 P
ro

ve
d

E
ff

ic
ie

nc
y

D
B

 A
cc

es
s

IC
 C

he
ck

in
g

Ic
 O

rd
er

in
g

Ic
 O

rd
er

in
g

Ic
 O

rd
er

in
g

N
o

N
o

N
o

U
se

r
Pa

rt
ic

ip
.

N
o

Y
es

Y
es

Y
es

N
o

N
o

Y
es

B
as

ic
 M

ec
ha

ni
sm

T
ec

hn
iq

ue

--
--

A
ct

iv
e

A
ct

iv
e

Se
lf-

St
ab

ili
za

tio
n

A
ct

iv
e

A
ct

iv
e

Pr
ed

ef
in

ed

Pr
og

ra
m

s

R
eq

ue
st

O
pe

ra
to

rs

��
�
�

��
�
��
�

��
�
��
�

��
�
��
�

��
�
�

��
�
�

��
�
�

T
yp

e
of

 IC

St
at

ic

St
at

ic

St
at

ic
,

D
yn

am
ic

St
at

ic

St
at

ic
,

D
yn

am
ic

St
at

ic

St
at

ic
,

D
yn

am
ic

Ic
 d

ef
in

iti
on

Li
m

ite
d

Li
m

ite
d

Fl
at

, L
im

ite
d

D
er

iv
at

io
n,

Li

m
ite

d

Fl
at

, L
im

ite
d

Fl
at

, L
im

ite
d

Li
m

ite
d

V
ie

w
s

Y
es

Y
es

N
o

N
o

N
o

N
o

Y
es

D
at

ab
as

e
Sc

he
m

a

D
ef

in
iti

on

L
an

gu
ag

e

Lo
gi

c

Lo
gi

c,

R
el

at
io

na
l

Lo
gi

c,

R
el

at
io

na
l

Lo
gi

c,
 O

O

Lo
gi

c

Lo
gi

c,

R
el

at
io

na
l

Lo
gi

c

Pr
ob

le
m

C
om

p
/ R

un

R
un

C
om

p
/ R

un

C
om

p
/ R

un

C
om

p
/ R

un

C
om

p
/ R

un

C
om

p
/ R

un

C
om

p

M
et

ho
d

M
L

91

C
FP

T
94

G
er

94

E
D

98

M
aa

98

Sc
h9

8

ST
99

Table 2. Summary of integrity constraint maintenance methods

 - 16-

6.4 Methods based on Active Rules [CFPT94, Ger94, Sch98, Maa98]

The active approach is one of the most frequent to maintain integrity constraints. Methods considered

in this group are [CFPT94, Ger94, Sch98, Maa98].

This approach is aimed at maintaining integrity constraints through the generation at compile time of a

set of active rules. When at run-time a certain transaction violates some integrity constraint, active rules

are executed to guarantee that all integrity constraints remain satisfied. Active rules are generated by

taking only into account the information provided by the database schema. Two types of active rules may

be considered. Condition-Action Rules (Production Rules) specify those conditions on database contents

such that when they are satisfied, an integrity constraint has been violated and, in the Action part, they

specify the updates needed to repair this integrity constraint violation. Event-Condition-Action Rules also

specify the update (event) that triggers the active rule execution when the event initiates an integrity

constraint violation.

Although all these methods present different particularities regarding the generated rules or the

language used to define the constraints, they share the same limitations. This is why we explain these

common drawbacks together. We also comment some alternative strategies to enforce integrity

constraints that these methods allow.

Integrity Constraints Definition

The most typical restriction of integrity constraint maintenance methods is that of dealing only with

flat integrity constraints [Ger94, Maa98, Sch98]. An integrity constraint is flat if it is defined only in

terms of base and/or evaluable predicates, i.e. integrity constraint definition does not contain any view

literal. This is an important restriction since, as shown in the following example, not every possible

condition can be defined as flat integrity constraint.

Example 6.1: Assume that we want to state that all people of working age must be employed, where

people employed is defined as people that work in some company. With non-flat integrity constraints, this

constraint can be defined as follows:

Employed(x) � Works-in (x, y) � Company(y)

Ic1 � Working-age(x) � ¬ Employed(x)

Notice that it is not possible to reduce integrity constraint Ic1 to a flat integrity constraint expressing

the same restriction.

Some methods like [CFPT94] avoid this drawback by allowing the definition of derived information

(views) in the database schema. However, the limitation they have is that, when an integrity constraint

becomes violated, they are not able to repair it by requesting updates on derived information. Since they

do not explicitly define any mechanism to translate the repair request (view update request) into base fact

updates. The same situation appears in non-active methods like [ML91, ST99].

 - 17-

Soundness

As pointed out in [Sch98], the methods [CFPT94, Ger94, Maa98] may obtain solutions that do not

preserve the effect of the requested update. The reason is that they do not take into account the history of

database updates needed to enforce database consistency and, thus, they cannot know whether the

requested update is undone by the joint effect of these updates.

Example 6.2: (adapted from [Sch98]) Assume the following database and the update request

U={insert(Wire(Id1, HB, A, 2, 0))}:

Tube(Id1, HB, 4) Wire(Id5, HB, A, 2, 0)

Wire(wire_id, conn, w_typ, volt, pwr) � Tube(tube_id, conn, t_typ)

Wire(wire_id, conn, w_typ, volt, pwr) � Tube(tube_id, conn, t_typ) � wire_id�tube_id

In this example, methods like [CFPT94, Ger94, Maa98] may obtain T={insert(Wire(Id1,HB,A,2,0)),

delete(Tube(Id1,HB,4)), delete(Wire(Id1,HB,A,2,0)), delete(Wire(Id5,HB,A,2,0))} as solution to the

update request U, but it does not satisfy the original request.

In this sense, the work of Schewe and Thalheim [Sch98, ST98] analyzes the main limitations of rule

triggering systems for integrity maintenance. One of these limitations relies in the side effect preservation

that appears when triggered (active) rules re-establish satisfactorily integrity constraints, but undo the

initial update request. This method [Sch98, ST98] is aimed at generating active rules such that do not

present this problem. Therefore, in this example, this method does not obtain the above transaction T as a

solution to the initial request U.

Completeness

Methods that follow an active approach may not obtain all valid solutions that satisfy an update

request. The main reason is that, they do not always consider all active rules during the integrity

constraint maintenance process. In this way, they discard some potential repairs of integrity constraint

violations and thus, they do not obtain all existing solutions.

For instance, [CFPT94, Ger94, Sch98] define a graph that expresses whether the execution of a certain

rule that repairs an integrity constraint could violate another integrity constraint. The presence of cycles in

this graph indicates that the process of integrity maintenance may not terminate. In order to guarantee

termination, the database designer may remove some active rules or may define priorities among them.

Therefore, at this moment completeness of the method is given up in front of termination.

Example 6.3: The same update request and database of example 6.2 may be used to show

incompleteness of methods [CFPT94, Ger94, Maa98, Sch98]. Any of these methods is not able to obtain

the transaction S=	insert(Wire(Id1,HB,A,2,0)), delete(Tube(Id1,HB,4)), insert(Tube(Id9,HB,9))
�that

satisfies the initial update request and that maintains integrity constraints satisfied.

 - 18-

Efficiency

Methods that tackle the problem of maintaining integrity constraints are basically oriented to the

procurement of all alternative ways to repair integrity constraints without putting special attention to

obtain solutions efficiently. Nevertheless, there are few proposals like [CFPT94, Ger94, ED98] that

explicitly consider efficiency issues.

The main cause of inefficiency during integrity constraint maintenance is that, to ensure that all

integrity constraints are satisfied, each constraint can be checked and repaired several times. Concretely,

each time a constraint is repaired, all integrity constraints are checked again for consistency although they

were already satisfied prior to the repair and they could not become violated by the repair. This situation

is illustrated in the following example.

Example 6.4: Assume a database that contains the following three integrity constraints Ic1, Ic2 and Ic3,

and the update request to insert fact Employee(Ann).

Ic1(p) � Worker(p) � ¬ HasSalary(p)
Ic2(p) � Contracted(p) � ¬ Worker(p)
Ic3(p) � Employee(p) � ¬ Contracted(p)

Consider a method that handles integrity constraints in a sequential order (i.e. Ic1, Ic2, Ic3). This

method checks integrity constraints {Ic1, Ic2, Ic3} until a violation of Ic3 is detected. Ic3 is repaired by

inserting Contracted(Ann). After that, integrity constraints {Ic1, Ic2} are checked again and Ic2 must be

repaired with the insertion of Worker(Ann), which violates integrity constraint Ic1. It is repaired by

inserting HasSalary(Ann) and the rest of integrity constraints are checked again. Finally, by checking

integrity constraints in this order the method has checked eight integrity constraints.

If we take into account the interaction among repairs and possible violations of constraints, it is not

difficult to see that it is enough to maintain integrity constraints in this order {Ic3, Ic2, Ic1} to obtain the

previous solution. The idea is that there is an implicit order Ic3 -> Ic2 -> Ic1 to deal with these integrity

constraints. The insertion of Employee(Ann) can only violate Ic3 and its repair can only violate Ic2. The

repair of Ic2 can only violate Ic1 and its repair does not violate neither Ic2 nor Ic3. Finally, we check only

three integrity constraints.

In order to reduce the number of times that each integrity constraint is considered, methods like

[CFPT94, Ger94, ED98] define an explicit order to maintain them. Therefore, efficiency is provided by

defining a graph that expresses whether the execution of a certain active rule Ri that repairs an integrity

constraint Icj could violate another integrity constraint Ick.

A more elaborated technique, than the proposed in [CFPT94], to define a stratified order of handling

active rules is proposed in [FP97]. However, it shares with previous work the loose of completeness

because not all possible repairs are considered.

 - 19-

More recently, S. Jurk and M. Balaban [JB01] have proposed a technique to improve rule-triggering

methods for integrity constraint maintenance. This technique tackles termination control, effect

preservation and efficiency problems in a uniform way. The authors propose to use Dependency Graphs

to determine an order to enforce the integrity constraints. Such order is defined: 1) to differentiate finite

cyclic rule activation from non-terminating ones; 2) to prevent side effects like undoing the requested

update by further integrity constraint repairs and; 3) to avoid the computational overhead of rollback

operations.

Additional Approaches to Integrity Constraint Enforcement

Some of the analyzed methods in this section are not restricted to follow an integrity constraint

maintenance approach to enforce integrity constraints. Methods like [Ger94, ED98, Maa98] are able to

apply different strategies to enforce integrity constraints.

The method proposed by M. Gertz [Ger94] allows to explicitly specify what kind of reaction to apply

depending on the update that violates an integrity constraint. In addition to the maintenance approach, this

method deals with partial rollbacks of the violating updates instead of all the transaction; it allows to

modify the transaction updates that produce the violation; and it also may accept violated integrity

constraint as exceptions.

The method of S. Maabout [BM97, Maa98] does not require that in the current state all integrity

constraints are satisfied. Therefore, the method could be used indistinctly to maintain integrity constraints

or to restore integrity constraints depending on whether in the current state, integrity constraints are

satisfied or not.

7. Relevant Features for View Updating

In this section, we extend the features identified in Section 5 to classify integrity constraint

maintenance methods with some specific features relative to the view updating problem. The additional

features of each dimension we take into account are the following:

Database Schema:

�� Views: Obviously, all methods that tackle the problem of view updating must allow the definition of

views or derived information. However, some methods may impose restrictions on the views they

handle. In Table 3, we explicitly indicate those restrictions. Methods with label Yes do not restrict view

definitions.

Basic Mechanism:

Two additional features are considered in this dimension.

 - 20-

�� Base Facts: When an update request is translated into a set of transactions, it is necessary to consider

the current contents of the database. If a method does not consider it, the method could be inefficient,

incomplete and/or it could obtain redundant solutions.

�� Loop Control: Update requests on recursive views may cause a method to enter in an infinite loop. In

Table 3, we distinguish those methods that define a mechanism to handle updates on recursive views

(Yes) from those that do not define it (No) or that do not handle recursive views (n.a.).

Solutions:

A requirement that many methods impose to solutions of a view update request is that they must be

minimal.

�� Minimal solutions: When several alternative solutions exist, methods use to define a criterion to obtain

the more representative ones. A common criterion is that solutions must be minimal, but not all

methods consider the same definition of minimal solution. In Table 3, we indicate the criterion of

minimality that each method considers, and whether the obtained solutions fulfill (or not) this

requirement.

8. Survey on Methods for View Updating and Integrity Constraint Maintenance

Methods dealing with view updating and integrity constraints maintenance that we have considered in

this survey are [KM90, Wüt93, CHM95, CST95, PO95, TO95, Dec97, LT97, IS99, MT00]. In Table 3,

we summarize the analysis of these methods with respect to the features identified in sections 5 and 7.

We have classified the above methods in two different groups depending on the applied technique. The

first group includes methods that incorporate the information provided by the integrity constraints into the

update request and then unfold the resulting expression [Wüt93, CST95, LT97]. The second group

includes methods that take into account the integrity constraints every time that a new update is

considered [KM90, CHM95, PO95, TO95, Dec97, IS99, MT00]. These groups are described and

analyzed in more detail, respectively, in Sections 8.1 and 8.2.

We have considered also two methods for view updating [LLS93, AB99]. They have been included in

Table 3, but we have not described them in more detail since they are not able to handle integrity

constraints.

8.1 Methods that Extend the Update Request

Methods of this group [Wüt93, CST95, LT97] distinguish clearly two steps to obtain solutions to an

update request. Given an update request U, the first step is aimed at obtaining a formula F, defined only in

terms of base predicates, that characterizes all solutions to the update request. This formula is obtained by

incorporating information of integrity constraints in U and by unfolding derived predicates by their

corresponding view definitions until no more unfolding can be performed. In the second step, the

 - 21-

obtained formula is analyzed to determine the insertions and deletions of base facts that satisfy the update

request and do not violate integrity constraints. Methods that follow this approach differ in how they

integrate information of integrity constraints into the update request U.

 - 22-

C
om

pl
et

e

N
o --
-

N
o

N
o

N
ot

 P
ro

ve
d

N
o

Y
es

N
o

N
ot

 P
ro

ve
d

Y
es

Y
es

Y
es

So
un

d

N
o

N
o

N
ot

Pr

ov
ed

Y
es

Y
es

Y
es

Y
es

N
ot

Pr

ov
ed

N
o

Y
es

Y
es

Y
es

M
in

im
al

So

lu
tio

n

Su
bs

et

N
o

Y
es

Su
bs

et

N
o

N
ot

R

eq
ui

re
d

Su
bs

et

N
o

Su
bs

et

N
o

Su
bs

et

Y
es

N
ot

R

eq
ui

re
d

P-
or

de
r

Y
es

Su
bs

et

Y
es

H
itt

in
g

Se
t

Y
es

Su
bs

et

Y
es

E
ff

ic
ie

nc
y

N
o

N
o

D
B

 A
cc

es
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ic
 O

rd
er

in
g

V
ie

w

U
pd

at
in

g

L
oo

p
C

on
tr

ol

N
o

N
o

Y
es

n.
a.

Y
es

N
o

N
o

N
o

Y
es

n.
a.

n.
 a

.

N
o

B
as

e
Fa

ct
s

N
o

Y
es

N
o

Y
es

Y
es

n.
 a

.

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

U
se

r
Pa

rt
.

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

B
as

ic
 M

ec
ha

ni
sm

T
ec

hn
iq

ue

A
bd

uc
tio

n
(S

LD
N

F)

--
-

U
nf

ol
di

ng

A
ct

iv
e

A
bd

uc
tio

n
(U

nf
ol

di
ng

)

Pr
og

ra
m

Sy

nt
he

si
s

SL
D

N
F

A
bd

uc
tio

n
(S

LD
N

F)

U
nf

ol
di

ng

A
bd

uc
tio

n
(F

ix
po

in
t)

H
yp

er
-

Ta
bl

ea
u

SL
D

N
F

R
eq

ue
st

O
pe

ra
to

r

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

�
�

��
�
��
�

K
in

d
of

 IC

St
at

ic

n.
 a

.

St
at

ic

St
at

ic

St
at

ic

St
at

ic
,

D
yn

am
ic

St
at

ic
,

D
yn

am
ic

St
at

ic

St
at

ic

St
at

ic

n.
 a

.

St
at

ic
,

D
yn

am
ic

Ic

de
fin

iti
on

Y
es

n.
 a

.

Y
es

Li
m

ite
d

Fl
at

,
Li

m
ite

d

Y
es

Y
es

Y
es

Fl
at

,
Li

m
ite

d

Li
m

ite
d

n.
 a

.

Y
es

V
ie

w
s

Y
es

Y
es

Y
es

C
la

ss
,

A
ttr

ib
ut

e

Y
es

Y
es

Y
es

Y
es

Y
es

A
cy

cl
ic

C

ov
er

ed

G
ro

un
d

D
ef

in
ite

Y
es

D
at

ab
as

e
Sc

he
m

a

D
ef

in
iti

on

L
an

gu
ag

e

Lo
gi

c

Lo
gi

c

Lo
gi

c

O
O

Lo
gi

c

Lo
gi

c

Lo
gi

c

Lo
gi

c

Lo
gi

c

Lo
gi

c

Lo
gi

c

Lo
gi

c

Pr
ob

le
m

C
om

p
/

R
un

R
un

R
un

R
un

C
om

p
/

R
un

R
un

C
om

pi
le

C
om

p
/

R
un

R
un

R
un

R
un

R
un

C
om

p
/

R
un

M
et

ho
d

K
M

90

L
L

S9
3

W
üt

93

C
H

M
95

C
ST

95

PO
95

T
O

95

D
ec

97

L
T

97

IS
99

A
B

00

M
T

00

Table 3. Summary of view updating and integrity constraint maintenance methods

 - 23-

Wüthrich’s Method [Wüt93]

This method characterizes an update request as a conjunction of insertions and deletions of base and/or

derived facts. A solution is then characterized by the set of base facts to be inserted (I) and base facts to

be deleted (D) from the extensional database in order to satisfy the requested update and the integrity

constraints.

The general approach to draw the solutions follows the two step approach outlined before. The first

step is completely automatic. In this step, integrity constraints are incorporated into the update request.

Moreover, the unfolding process makes an explicit control when recursive views are involved. In the

second step, the solutions (transactions) are obtained. When alternative ways to generate a solution exist,

the user is requested to solve possible ambiguities.

This method has two main limitations: it is not complete and it does not necessarily generate minimal

solutions.

Completeness

Wüthrich’s method implicitly assumes that there is an ordering for dealing with the deductive rules and

integrity constraints involved in the update request that will lead to the generation of a solution. However,

this ordering does not always exist. The following example shows that this assumption may impede this

method to obtain all valid solutions.

Example 8.1: Given the database:

Node (A) Node (B) Edge (A, B) Edge (B, A)

Ic1 ��Node (x) � � �y Edge (x, y) Ic2 ��Node (x) � � �z Edge (z, x)

Ic3 ��Edge (x, y) � � Node (x) Ic4 ��Edge (x, y) � � Node (y)

and the update request insert(Edge(A,C)), Wüthrich's method could not obtain the solution

characterized by the sets I={Edge(A,C), Node(C), Edge(C,D), Node(D), Edge(D,B)} and D=
. This

problem will mainly appear when the knowledge base contains referential integrity constraints, such as

the above ones.

Minimal Solutions

Wüthrich’s method is defined to obtain only minimal solutions. A solution S is not minimal if there is a

subset of S that it is also a solution. However, this method does not necessarily generate minimal

solutions because it does not check whether a base or view fact is already present in the database when

suggesting to insert or delete it. This is shown in the following example.

Example 8.2: Given the database:

S(A, B) P(x) ��Q(x) � R(x) R(x) ��S(x, y)

Given the request insert(P(A)), Wüthrich’s method could only obtain the non-minimal solution

I={Q(A), S(A,C)}, where C is a value given by the user or assigned by default. There exists another

solution I={Q(A)} which is a subset of the previous one that is not obtained by this method.

 - 24-

Console, Sapino and Theseider’s Method [CST95]

The method proposed in [CST95] follows an abductive approach. The two steps of this method proceed

as follows. In the first step, it is obtained a formula F* in disjunctive normal form by considering the

update request � and the integrity constraints. The update request � is unfolded until a formula F without

derived literals is obtained. Afterwards, F* is obtained by incorporating into F the syntactical residues of

integrity constraints potentially violated by literals of F.

In the second step, F* is instantiated and simplified by considering the contents of the extensional

database and values given by the user. At the end, a ground formula in disjunctive normal form F** is

obtained characterizing all solutions to the update request.

This method presents two main limitations: it only deals with restricted integrity constraints and in

some cases, it can obtain solutions that are not minimal.

Integrity Constraints Definition

As shown in Table 3, the method can only handle flat integrity constraints. We already have

commented in section 6.1 how this limitation restricts the expressive power of integrity constraints.

Moreover, this limitation is more significant in methods that deal with view updates than in methods that

do not.

However, this method considers only two particular types of flat integrity constraints:

�� Integrity constraints defined as �(P(x) � Q(y)) where P and Q are base predicates.

�� Non-cyclic referential integrity constraints of the form P(x) � �y Q(x,y).

The above restrictions limit considerably the expressive power of integrity constraints since they are

not able to specify restrictions that are usually find in real-world situations.

Minimal Solutions

In some cases, the formula F** may characterize solutions that are not minimal. This situation occurs

when F** has disjunctands that are subsumed by other disjunctands.

Example 8.3: Consider the update request ��= �P to delete the view fact P in the following database:

R(1) R(2) S(2)

P � R(x) � � S(x)

The formula we obtain is F** = [�R(1) � �R(2)] � [�R(1)] � [S(1) � �R(2)] � [S(1)] where each

disjunctand characterize a correct solution. Notice that the first and third disjuncts do not characterize

minimal solutions because literal �R(2) is unnecessary to satisfy the update request �. In this example,

minimal solutions are T1={delete(R(1))} and T2={insert(S(1))}.

Lobo and Trajcevsky’s Method [LT97]

In a similar way, this method unfolds the update request to obtain also a disjunctive normal formula F.

This formula is then extended with residues of the integrity constraints potentially violated by F. At the

 - 25-

end, non-ground variables are instantiated by considering facts of the extensional database. The method

also analyzes and formalizes the process of how to give values to existential variables.

Given an update request, the purpose of the method is to obtain only one solution that must be minimal.

The criterion of minimal solution is not based on the set inclusion as other methods do. They define a

Prevention order (P-order) between solutions. In the sense, given two solutions, the minimal one is that

has few deletions, and in case both solutions have the same number of deletions, the minimal solution is

such that it has few insertions.

This method presents two different drawbacks:

Integrity Constraints Definition

This method also restricts the integrity constraints to be flat. Moreover, integrity constraints must be

resolution complete. That is, it must not be possible to derive new (implicit) integrity constraints from

given set of integrity constraints. For instance, Ic1 ��Q(x) � � R(x) and Ic2 ��R(x) � S(x) are not

resolution complete since a third integrity constraint can be deduced from them: Ic3 ��Q(x) � S(x). The

problem is that, as far as we know, there is no mechanism to derive sets of integrity constraints that are

resolution complete.

Soundness

This method is not always correct since the formula F does not always characterize valid solutions, as

shown in the following example.

Example 8.4: Given the update request insert(Q(B,2)) to apply to the database:

S(A, 1) Q(x, y) � � P � S(x, y) P � S(x, y) � � T(y)

this method would obtain two minimal solutions: T1={delete(S(A,1)), insert(S(B,2))} and

T2={insert(T(1)), insert(S(B,2))}. However, none of them satisfies the requested update since

insert(S(B,2)) induces P and, hence, it falsifies insert(Q(B,2)).

Moreover, there exist two correct solutions: S1={delete(S(A,1)), insert(S(B,2)), insert(T(2))} and

S2={insert(T(1)), insert(S(B,2)), insert(T(2))} that are not obtained by this method.

8.2 Methods that Consider Integrity Constraints Dynamically

The methods analyzed in this second group are [KM90, CHM95, PO95, TO95, Dec97, IS99, MT00].

These methods take into account integrity constraints every time a new update is proposed to be included

in the solution. Therefore, only those integrity constraints that could be violated by the proposed update

are taken into account.

The mechanisms used by these methods to generate solutions of an update request are different. Some

of them [KM90, TO95, Dec97, MT00] are based on extensions of SLD or SLDNF proof procedure,

[CHM95] follows an active approach, while [IS99] is based on the computation of the fixpoint of a

program. The method [PO95] follows a compile approach and it is based on the generation of programs

specifications.

 - 26-

Kakas and Mancarella’s Method [KM90]

This method follows an abductive approach to translate view update requests and maintain integrity

constraint consistency. It clearly defines two steps: in the first one, the update request (U) is translated

into different sets (�i). Each set �i specifies the requirements of the extensional database that should be

fulfilled to satisfy the update request U. Therefore, each �i must provide a correct solution to the update

request U. In the second step, each set �i is used to obtain a transaction to update the extensional

database.

This method has two limitations.

Unnecessary work

 The first problem of the method relies on the fact that, during the first step, extensional database is not

explicitly considered when requirements of sets �i are obtained. Therefore, a set �i could define some

requirement that has already been satisfied by the current contents of the EDB. In this sense, at the end of

the first step, some of the obtained sets �i have redundant requirements that are not useful to the

generation of transactions in the second step. This is shown in the following example.

Example 8.5: Consider the update request to delete derived fact P from this database:

Q R
P ��Q � R P ��S � T
S ��A � B T ��C � D

At the end of the first step, this method obtains the following sets of database requirements:

�1 = {� P, � Q, � A} �5 = {� P, � R, � A}
�2 = {� P, � Q, � B} �6 = {� P, � R, � B}
�3 = {� P, � Q, � C} �7 = {� P, � R, � C}
�4 = {� P, � Q, � D} �8 = {� P, � R, � D}

Notice that requirements � A, � B, � C, � D are satisfied by the current database contents. Therefore,

instead of generating and evaluating the above eight sets, it is enough to define the sets �10 = {��P, ��Q }

and �11 = {��P, ��R } to obtain, in the second step, transactions T1 = {delete(Q)} and T1 = {delete(R)}.

Soundness

In some cases, this method does not detect all integrity constraint violations.

Example 8.6: Consider the update request of inserting base fact S(A) in the following database:

S(x) ��Q(x)
P(x) ��Q(x)
Ic ��P(x) � �R(x)

At the end of the firs step, the method obtains only one set of requirements � = {Q(A)}. This

requirement can be satisfied in the second step by the transaction T={insert(Q(A)}. Notice that, although

 - 27-

this transaction satisfies the update request of inserting S(A), the integrity constraint remains violated.

Therefore, this transaction can not be considered a valid solution to the update request.

Chen, Hull and Mcleod’s Method [CHM95]

This method is based on the execution of active rules to update derived data in a semantic object-

oriented database model. It follows an integrity constraint checking approach to enforce integrity

constraints, although for a few types of integrity constraints it proposes how to repair an integrity

constraint violation.

Active rules are described by means of Limited Ambiguity Rules (LAR), a kind of condition-action rules

that are automatically obtained from the database schema at compile time. Two kinds of LAR rules are

considered: the upward rules that propagate changes from base classes to derived classes, while the

downward rules propagate changes in the opposite direction.

At run time, given an update request (�), LAR rules are executed according to the Principle of Down-

Up Propagation, which determines the execution order of LAR rules. The main idea is that downward

rules must be always executed before upward rules. The execution of LAR rules corresponds to a breath-

first search of all alternative completions of the initial update request ��that will satisfy � and all integrity

constraints. Therefore, all solutions to � are obtained.

The derived information is restricted to derived attributes and classes. Derived attributes are defined by

means of arithmetic or aggregate expressions. Derived classes are restricted to be subclasses or defined as

the union/difference/intersection of other classes. Recursive class/attribute definitions are not allowed.

Integrity constraint definition is very restrictive. This method can only handle structural integrity

constraints (type domains, ISA hierarchies) and user-defined integrity constraints of attributes and their

values (cardinality, no overlapping values, inclusion, …). It follows an integrity constraint checking

strategy. Nevertheless, it maintains constraints on univalued attributes, on no-overlapping values and on

implicit range/domain attributes by including the repairing actions in the corresponding LAR definition.

This method requires solutions to be minimal, with respect the set inclusion criterion. Moreover, a

solution can not include the insertion and deletion of the same fact. Both conditions are checked after the

execution of all the upward and downward rules. Therefore, some of the obtained completions do not

correspond to actual solutions. In this sense, this method can perform some unnecessary work due to the

fact that the above conditions are not checked as soon as possible.

The Events Method [TO95]

The Events Method models updates by means of events, which are used to generate transition and

event rules. Transition rules defines the contents of the new state of the database in terms of the old

database state and the updates, while event rules define the events induced during the transition to the

new state. Both sets of rules, together with the original database, form the Augmented Database[Oli91].

 - 28-

The Events Method is based on an extension of SLDNF and it uses the Augmented Database to obtain the

solutions that satisfy a request.

Given an update request u and the Augmented Database A(D), the Events Method obtains all minimal

solutions Ti to u. Each Ti is obtained by having some failed SLDNF derivation of A(D) � { �u � ��Ic1}

succeed. This is achieved by including in the transaction Ti each positive base event fact (base update)

selected during the failed derivation. At the end, we have that there is an SLDNF refutation of �u � ��Ic

by considering A(D) � Ti as input set. Different ways to make failed derivations succeed, correspond to

different solutions of u.

The main contribution of the Events Method is to be sound and complete. That is, all obtained

solutions satisfy the update request and do not violate any integrity constraint, and it obtains all possible

solutions. Moreover, this method can also be used to maintain dynamic integrity constraints, to insert and

delete views and integrity constraints, to request qualified updates and to prevent side effects on other

views.

The main drawback of the Events Method is that it does not consider efficiency issues. Therefore,

trying to obtain all solutions of an update request, this method explores all branches of the associated

SLDNF derivation tree and, for each obtained solution all integrity constraint may be checked, and

possibly repaired, several times. Moreover, if the update is requested on an existential view, this method

must consider all possible instantiations of a given variable. This method may also enter in an infinite

loop trying to obtain all solutions of an update request on a recursive view since it does not keep under

control these situations.

Pastor and Olivé’s Method [PO95]

This work proposes a method for view updating and integrity constraint maintenance following a

compile time approach. Given a predefined update request specified by the designer, this method

automatically derives a program specification. At run time, formal parameters of the program are

instantiated to actual values and the program is executed. Execution of this program generates a

transaction that satisfies the update request without violating any integrity constraint.

The mechanism this method uses to synthesize a program specification is based on the use of the

Augmented Database like the Events Method [TO95]. However, since this method follows a compile

time approach, base facts stored in the database and actual values of the update request are not available

during the program synthesis.

The main contribution of this work is to be the first compile-time proposal that tackles, in an integrated

way, view updating and integrity constraint maintenance in deductive databases. Moreover, this method is

1 Literal ��Ic corresponds to the prevention of violating any integrity constraint.

 - 29-

sound in the sense that transactions obtained by execution of a program specification always satisfy the

user request without violating integrity constraints.

The main limitations of this method are that it is not complete and that it may generate non-minimal

solutions. In some cases, the execution of a program specification could not be able to provide some

alternative correct transaction and it could provide transactions containing base fact updates that are not

strictly necessary to satisfy the update request. This is because the actual update request and database

contents are not available during the program synthesis.

Decker’s Method [Dec96, Dec97]

This method is based on the SLDAI resolution procedure, which is an abductive extension of the SLD

resolution procedure. The SLDAI procedure is an interleaving of refutation and consistency derivations.

Given an update request, the refutation derivation pursues the empty clause by considering the database

contents. During this derivation, new hypotheses are included in the solution set H. Every time a

hypothesis is included in H, its consistency is verified by a consistency derivation.

The main limitation of this method is that it cannot manage appropriately update requests that involve

rules with existential variables. The reason is that refutation derivations flounder when a literal

corresponding to a non-ground base predicate is selected, thus impeding to reach the empty clause.

Example 8.7: Given the update request to insert P into a database with only one rule P ��S(x), the

Decker’s method obtain the following refutation:

��P
 |
��S(x)
 |
flounders

In this case, the method flounders and it is not able to obtain any solution even though there are as

many correct solutions as possible values of x for which to insert S(x).

The same problem appears in the consistency derivations, because this method does not take into

account base facts during the consistency derivations.

Example 8.8: Consider the update request to insert derived fact P in the following database:

R(A, B) P ��Q(A) ��Q(x) � R(x, y) � � S(y)

The main refutation and consistency derivations of the update request are the following:

REF. CONS.
��P Q(A) �� H={Q(A)}
 | |
�� Q(A) � R(A, y)�� � S(y) (*)
 | |
flounders flounders

 - 30-

In the derivation step (*), both literals are not ground. Since the method does not take into account

extensional database, it can not be resolved by considering the base fact R(A, B). Therefore, the method

flounders and does not obtain any solution to the update request. Notice, however, that there are two

minimal solutions to the update request T1={insert(Q(A)), delete(R(A,B))} and T2={insert(Q(A)),

insert(S(B))}.

Inoue and Sakama Method [IS99]

Inoue and Sakama propose a method that follows an abductive approach, in which two steps are

differentiated. Given an abductive program <P, A>, where P is an acyclic normal logic program (with or

without integrity constraints) and A is the set of abducible atoms, in the first step, an automatic

transformation is applied to P to obtain a transaction program��P of P with respect to A. A transaction

program �P specifies in a declarative way requests to add/delete hypotheses to/from P by means of literals

in(A)/out(A), respectively.

In the second step, to obtain explanations of an observation G, the method computes a fixpoint of the

transaction program �P � G in a bottom-up manner. As a result, several minimal explanations <E, F> can

be obtained. The set E specifies the hypothesis (abducible atoms) to add to program P, while the set F

specifies the hypothesis (abducible atoms) to be removed from P.

Relating this approach to the view updating and integrity maintenance problems, an observation G

corresponds to the update request, abductive atoms correspond to base predicates, program P corresponds

to the database and minimal explanations <E,F> correspond to minimal solutions.

This method is sound and complete for covered and acyclic programs. However, this method has two

important drawbacks. The first one relies in the fact that this method can not deal with programs with

existential rules. The second one is related to efficiency, since to obtain valid explanations it may perform

some unnecessary work.

Existential case

This method can only be applied to covered normal logic programs. That is, for every rule of program

P, all variables that appear in the body of a deductive rule, must also appear in its head.

Integrity constraints are defined by rules with an empty head (�). Therefore, this method can only

handle ground integrity constraints. Notice that this restriction limits considerably the integrity constraints

that this method can deal with. For example, this method can not handle integrity constraints like:

� � Professor(p)�� � Doctor(p)

� � P(k, x)�� P(k, y)�� x�y

In a similar way, definition of derived or view predicates is also restrictive. For example, view

predicates defined as projections can not be defined and thus handled by this method:

Contracted(p) � Has-Contract-in(p, c)

 - 31-

Unnecessary Work

All obtained solutions to an update request G must be coherent. That is, a solution can not add and

delete the same base fact. That is, for each solution <E, F> sets E and F must be disjoint (E�F=
).

Moreover, solutions must be also minimal. That is, a solution <E’, F’> is not minimal if there is another

solution <E, F> (E�E’ and F�F’) such that E�E’ and F�F’.

The coherency and minimality conditions of the obtained solutions are not checked during the process

of computing the fixpoint. They are checked after obtaining the fixpoint. Therefore, the obtained fixpoint

may contain transactions that should be rejected because they can not provide coherent and minimal

solutions. In this sense, this situation may cause to perform some unnecessary work. In the following

example, we show this extra work when integrity constraints are not affected by the requested update G.

Example 8.10: Consider the update request of inserting base fact B in the following deductive database

where base predicates are W, S, C, E and B:

� � W�� � S � � C�� � W � � E�� � C

The obtained transaction program (�P) of P with respect to A is the following:

out(�) � out(W) |�in(S) out(W)���� out(S)����
out(�) � out(C) |�in(W) out(C)���� out(E)����
out(�) � out(E) |�in(C) out(B)����

The fixpoint obtained of the update request to insert B without violating any integrity constraint G =

{in(B), out(�)} is the following:

T={{in(B)}, {in(B), in(S)},
 {in(B), out(W), out(C), in(C)}, {in(B), in(S), out(C), in(C)},
 {in(B), out(W), in(W), out(E)}, {in(B), in(S), in(W)},
 {in(B), out(W), in(W), in(C)}, {in(B), in(S), in(W), in(C)}

Notice that in this case, the insertion of fact B does not violate any integrity constraint. However, the

fixpoint computation obtains eight alternative transactions. Four of them are not coherent but only the

first one is minimal. Therefore, the unique minimal solution of the update request G is So = ({B},
).

Mayol and Teniente’s Method [MT99a, MT00]

The method proposed by E. Mayol and E. Teniente is an extension of the Events Method [TO95] and it

is also sound and complete for hierarchical databases.

The main contributions of this method rely on the update operators considered and on incorporating

specific techniques to improve efficiency of view updating and integrity constraint maintenance.

As far as the update operators are concerned, this method considers the modification as a single update

operator both at the derived and base fact definition levels. By considering modifications explicitly, key

integrity constraints are implicitly enforced by the own definition of this method.

 - 32-

Efficiency is provided at two different moments. On the one hand, this method defines a graph, the

Precedence Graph, which explicitly defines the relationships between repairs and potential violations of

integrity constraints. Then, the Precedence Graph allows this method to deal with the integrity constraints

into a proper order to reduce the number of times each integrity constraint must checked and repaired. On

the other hand, this method analyses the view update request to discard all potential ways to translate it

that do not lead to a correct translation. These techniques are described in detail in [MT99a].

The main drawbacks of this method are dealing with existential rules, since in general either all

possible instantiations of a given variable must be considered (which is clearly unpractical) or this

instantiation is requested to the user (which may lead to not obtain some valid solution). Moreover, this

method does not deal with recursive views properly, since it may loop infinitely trying to obtain some

solution.

9. Conclusions and Further Work

We have reviewed in detail the most relevant methods that deal with integrity constraint maintenance

and with view updating.

In this sense, we have defined a general framework to classify and to compare these methods. As a

relevant dimensions of this framework, we have considered: the problem each method tackles; the

database schema it can handle; what kind of update operators a method manages; the basic mechanism

that defines the method; the specific techniques used to improve the efficiency; and, finally, the solutions

each method obtains evaluating its soundness and completeness. Moreover, for the analyzed methods, we

have described the approach they follow, their contributions and the main limitations they may have.

Taking into account the problem that each method tackles, we have distinguished two groups of

methods. The first group comprises integrity constraint maintenance methods like [ML91, CFPT94,

Ger94, ED98, Maa98, Sch98, ST99]. The second group of methods includes methods like [KM90,

Wüt93, CHM95, CST95, PO95, TO95, Dec97, LT97, IS99, MT00] that tackle the integrity constraints

maintenance and view updating problems in an integrated way.

After our analysis, we state that the main limitations of these methods are related to the kind of

integrity constraints they can handle; if they can obtain all correct solutions of an update request and, that

in general, efficiency issues are not always taken into account.

With respect to the integrity constraint definition, we have noticed that methods like [Ger94, CST95,

LT97, ED98, Maa98, Sch98, ST99] can only handle flat integrity constraints. Moreover, some methods

impose additional restrictions to the integrity constraint definition.

With respect to solutions obtained to satisfy an update request, we have noticed three main lacks. First

one refers to the minimality of solutions. Some view updating methods [KM90, Wüt93, CST95, PO95]

may provide solutions that do not satisfy the requirement to be minimal. The second one is related to the

 - 33-

completeness of the method. In some cases, methods like [KM90, Wüt93, CFPT94, Ger94, CHM95,

PO95, Dec97, ED98, Maa98, Sch98] can not obtain correct solutions that other methods obtain. The third

drawback refers to soundness. In some cases, methods like [KM90, CFPT94, Ger94, LT97, Maa98, IS99]

obtain incorrect solutions. They are solutions that violate some integrity constraint or that, although they

satisfy all integrity constraint, they do not satisfy the requested update.

One important open research topic in this field is efficiency of the process to translate view updates and

maintain integrity constraints. This situation contrasts with the research on the integrity constraint

checking approach, where efficiency is the main topic of interest. There are few proposals that define

specific techniques to translate view updates or to perform database accesses in an intelligent and

efficient way [Wüt93, ML91, MT00]. Moreover, there are also very few proposals that consider

efficiency issues during the process of maintaining integrity constraints [CFPT94, Ger94, ED98, MT00].

In general, they are based on the definition of a proper order to repair integrity constraints reducing, in

this way, the number of times each integrity constraint must be checked and repaired.

Although we have encountered several promising proposals, we may conclude after our analysis, there

is a need for further research in view updating and integrity maintenance. As far as effectiveness is

concerned, there is no method yet that handles recursive rules satisfactorily. Moreover, with respect to

efficiency issues, the current methods are not able to handle efficiently view updates though deductive

rules with existential variable. We believe that these limitations should be overcome, at least the second

one, if we want to incorporate the treatment of these problems into commercial database systems.

Acknowledgements

The description and performance of the methods considered in this survey are based on our

understanding of the related papers, hence any error is entirely our own. However, we would like to thank

authors of most of these methods for their comments about our analysis.

We are grateful also to D. Costal, C. Farré, A. Olivé, J. A. Pastor, C. Quer, M. R. Sancho, J. Sistac and

T. Urpí for many useful comments and discussions.

References

[AB00] Aravindan, Ch.; Baumgartner, P. “Theorem Proving Techniques for View Deletion in Databases“ Journal of Symbolic

Computation, Vol. 29(2), Feb. 2000, pp. 119-147.

[Ban79] Bancilhon, F. “Supporting View Updates in Relational Data Bases“ In Data Base Architecture (Bracci and Nijssen

Eds.), North Holland, Amsterdam, 1979.

[BM97] Bidoit, N.; Maabout, S. “A Model Theoretic Approach to Update Rule Programs“ Proc. of the Int. Conference of

Database Technology ICDT’97, Delphi, Greece, January, 97, LNCS-1186, pp. 173-187.

[BS81] Bancilhon, F.; Spyratos, N. “Update Semantics of Relational Views“ ACM Transactions on Database Systems

Vol.6(4), Dec. 1981, pp.557-575.

[BV88] Brosda, V.; Vossen, G. “Update and Retrieval in a Relational Database through a Universal Schema Interface“ ACM

Transactions on Database Systems Vol.13(4), Dec. 1988, pp.449-485.

 - 34-

[CA79] Carlson, C.R.; Arora, A.K. “The Updatability of Relational Views Based on Functional Dependencies“ Proc. of the 3rd

International Computer Software and Applications Conference (COMPSAC’79), IEEE Computer Society,

Chicago,1979, pp. 415-420.

[CFPT94] Ceri, S.; Fraternali, P.; Paraboschi, S.; Tanca, L. "Automatic Generation of Production Rules for Integrity

Maintenance" ACM Transactions on Database Systems Vol.19(3), Sept. 1994, pp.367-422.

[CGMD94] Celma, M.; García, C; Mota, L.; Decker, H. “Comparing and Synthesizing Integrity Checking Methods for

Deductive Databases”, 10th Int. Conf. on Data Engineering (ICDE), Houston, USA, 1994, pp. 214-222.

[CHM95] Chen, I.A.; Hull, R.; McLeod, D. "An Execution Model for Limited Ambiguity Rules and Its Application to Derived

Data Update", ACM Transactions on Database Systems, Vol. 20(4), Dec. 1995, pp. 365-413.

[CP84] Cosmadakis, S.; Papadimitriou, C. “Updates in Relational Views“ Journal of the Association for Computer Machinery

Vol.31(4), Oct. 1984, pp. 742-760.

[CST95] Console, L.; Sapino, M.L.; Theseider,D. "The Role of Abduction in Database View Updating", Journal of Intelligent

Information Systems, Vol. 4(3), 1995, pp.261-280.

[Dat86] Date, C.J. “Updating Views“ in Relational Databases: Selected Writings, Addison Wesley, 1986, pp. 367-395.

[Dec96] Decker, H. "An Extension of SLD by Abduction and Integrity Maintenance for View Updating in Deductive

Databases", Joint Int. Conference and Symposium on Logic Programming, September 1996, Bonn, pp.157-169.

[Dec97] Decker, H. " One Abductive Logic Programming Procedure for two kind of Updates", Proc. Workshop

DINAMICS'97 at Int. Logic Programming Symposium (ILPS), September 1997, Port Jefferson, N.Y.

[ED98] Etzion, O.; Dahav, B. "Patterns of self-stabilization in database consistency maintenance", Data & Knowledge

Engineering, Vol. 28(3), 1998, pp.299-319.

[Etz93] Etzion, O. "A Reflective Approach for Data-Driven Rules", Int. Journal of Intelligent and Cooperative Information

Systems, Vol. 2(4), 1993, pp.399-424.

[Etz94] Etzion, O. "An Alternative Paradigm for Active Databases", Fourth Int. Workshop on Research Issues in Data

Engineering: Active Database Systems, Houston, Texas, February 1994, pp.39-45.

[FC85] Furtado, A.L.; Casanova, M.A. “Updating Relational Views“ in Query Processing in Database Systems (W. Kim et al.

Eds.), Springer-Verlag, 1985, pp. 127-142.

[FP93] Fraternali, P.; Paraboschi, S. "A Review of Repairing Techniques for Integrity Maintenance" First Int. Workshop on

Rules in Database Systems (RIDS'93), Edinburg 1993, pp. 333-346.

[FP97] Fraternali, P.; Paraboschi, S. "Ordering and Selecting Production Rules for Constraint Maintenance: Complexity and

Heuristic Solution" Transactions on Knowledge and Data Engineering, Vol. 9(1), 1997, pp. 173-178.

[FSS79] Furtado, A.L.; Sevcik, K.C.; dos Santos, C.S. "Permitting Updates through Views of Databases", Information

Systems, Vol. 4(4), 1979, pp.269-283.

[GA93] Grefen, P.; Apers, P. "Integrity Control in Relational Database Systems: An Overview" Data & Knowledge

Engineering, Vol. 10, 1993, pp. 187-223.

[Ger94] Gertz, M. "Specifying Reactive Integrity Control for Active Databases", Proceedings of RIDE'94, Houston, Texas,

1994, pp. 62-70.

[IS99] Inoue, K.; Sakama, Ch. "Computing Extended Abduction through Transaction Programs" Annals of Mathematics and

Artificial Intelligence, Vol. 25(3-4), 1999, pp. 339-367.

[JB01] Junk, S.; Balaban, M. "Improving Integrity Constraint Enforcement by Extended Rules and Dependency Graphs",

12th International Conference on Database and Expert Systems Applications (DEXA’01), Munich, Germany,

September 2001, pp. 501-516.

 - 35-

[Kel85] Keller, A.M. "Algorithms for Translating View Updates to Database Updates for Views Involving Selection,

Projections and Joins", Proc. of the 4th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems

(PODS’85), Portland, Oregon, 1985, pp. 154-163.

[Kel86] Keller, A.M. "The Role of Semantics in Translating View Updates", IEEE Computer, Vol. 19(1), January 1986, pp.

63-73.

[Kel87] Keller, A.M. "Comments on Bancilhon and Spyratos: ‘Update Semantics of Relational Views’", Technical Note,

ACM Transactions on Database Systems Vol. 12(3), Sept. 1987, pp.521-523.

[KKT92] Kakas, A.C.; Kowalsky, R.A.; Toni, F. "Abductive Logic Programming", Journal of Logic and Computation, Vol 2,

1992, pp. 719-770.

[KM90] Kakas, A.C.; Mancarella,P. "Database Updates Through Abduction", Proc. of the 16th VLDB Conference, Brisbane,

Australia, 1990, pp. 650-661.

[KU84] Keller, A.M.; Ullman, J.D. "On Complementary and Independent Mappings", Proc. of ACM SIGMOD International

Conference of Data, Boston, SIGMOD Record Vol. 14(1), 1984, pp. 143-148.

[Lan90] Langerak, R. "View updates in Relational Databases with Independent Schema Interface", ACM Transactions on

Database Systems Vol. 15(1), March 1990, pp.40-66.

[LLS93] Laurent, D.; Luong, V.P.; Spyratos, N. “Updating Intensional Predicates in Deductive Databases” Proc. 9th

International Conference on Data Engineering (ICDE’93), Vienna, Austria, April 1993, pp. 14-21.

[LS91] Larson, J.; Sheth, A. "Updating Relational Views Using Knowledge at View Definition and View Update Time"

Information Systems, Vol. 16(2), 1991, pp. 145-168.

[LT97] Lobo, J.; Trajcevski, G. "Minimal and consistent evolution in knowledge bases" Journal of Applied Non-Classical

Logics, 7(1-2), 1997, pp. 117-146.

[LlT84] Lloyd, J. W.; Topor, R. W. “Making Prolog More Expressive”, Journal of Logic Programming, 1984, Vol. 1(3), pp.

225-240.

[Maa98] Maabout, S. "Maintaining and Restoring Database Consistency with Update Rules" Workshop DYNAMICS’98 (post-

conf. Work. JICSLP’98), Manchester, 1998, pp. 59-74.

[Mas84] Masunaga, Y. “A Relational Database View Update Translation Mechanism”, Proc. 10th. International Conference on

Very Large Data Bases (VLDB’84), Singapore, 1984, pp. 309-320.

[ML91] Moerkotte, G.; Lockemann, P.C. "Reactive Consistency Control in Deductive Databases" ACM Transactions on

Database Systems, 16(4), 1991, pp.670-702

[MT99a] Mayol, E.; Teniente, E. “Addressing Efficiency Issues During the Process of Integrity Maintenance”, 10th

International Conference on Database and Expert Systems Applications (DEXA’99), Florence, Italy, September 1999,

LNCS-1677, pp. 270-281.

[MT99b] Mayol, E.; Teniente, E. “A Survey of Current Methods for Integrity Constraint Maintenance and View Updating”,

Advances in Conceptual Modelling (LNCS-1727), Proc. of the First Workshop on Evolution and Change in Data

Management (ECDM’99), Post-ER’99 Conference Workshops, Paris, November 1999, pp. 62-73.

[MT00] Mayol, E.; Teniente, E. “Dealing with Modification Requests during View Updating and Integrity Constraint

Maintenance”, Proc. of the International Symposium on Foundations of Information and Knowledge Systems

(FoIKS’00), LNCS-1762, Burg (Spreewald), Germany, Feb. 2000, pp. 192-212.

[MW88] Manchanda, S.; Warren, D.S. “A Logic-based Language for Database Updates”, In Foundations of Deductive

Databases and Logic Programming (J. Minker Ed.), Morgan-Kaufmann Publications, 1988, pp. 363-394.

[Oli91] Olivé, A. “Integrity Checking in Deductive Databases”, Proc. of the 17th VLDB Conference, Barcelona, Catalonia,

1991, pp. 513-523.

 - 36-

[PO95] Pastor, J.A.; Olivé. A. "Supporting Transaction Design in Conceptual Modeling of Information Systems", 7th Int.

Conf. on Advanced Information Systems (CAiSE’95), Jyväskylä, Finland, June 1995, pp.40-53.

[Sag83] Sagiv, Y. "A Characterization of Globally Consistent Databases and Their Correct Access Path" ACM Transactions

on Database Systems, Vol. 8(2), June 1983, pp. 266-286.

[Sch96] Schewe, K.D. "Tailoring Consistent Specializations as a Natural Approach to Consistency Enforcement", 6th Int.

Workshop on Foundations of Models and Languages for Data and Objects: Integrity in Databases (FMLDO’96),

Dagstuhl, Sept. 1996, pp. 73-85.

[Sch98] Schewe, K.D. "Consistency Enforcement in Entity-Relationship and Object-Oriented Models", Data & Knowledge

Eng., Vol. 28(1), 1998, pp.121-140

[Sch00] Schewe, K.D. "Controlled Automation of Consistency Enforcement", 15th IEEE Int. Conf. On Automated Software

Engineering (ASE’00), Grenoble, France, September 2000, pp.265-268.

[Sel95] Seljée, R. “A New Method for Integrity Constraint Checking in Deductive Databases” Data & Knowledge

Engineering Vol. 15(1), 1995, pp.63-102.

[SM89] Subieta, K.; Missala, M. "View Updating Through Predefined Procedures" Information Systems, Vol. 14(4), 1989,

pp. 291-305

[Spy80] Spyratos, N. "Translation Structures of Relational Views", Proc. 6th. Int Conf. On Very Large Databases (VLDB’80),

Montreal, 1980, pp. 411-416.

[ST98] Schewe, K.D.; Thalheim, B. “Limitations of Rule Triggering Systems for Integrity Maintenance in the Context of

Transition Specifications “, Acta Cybernetica, Vol. 13(3), 1998, pp. 277-304.

[ST99] Schewe, K.D.; Thalheim, B. “Towards a theory of consistency enforcement “, Acta Informatica, Vol. 36(2), 1999, pp.

97-141.

[Ten00] Teniente, E. "Deductive Databases", In Advanced Database Technology and Design (M.Piattini, O.Díaz Editors),

Artech House Inc., 2000, pp. 91-136.

[TFC83] Tucherman, L.; Furtado, A.L.; Casanova, M.A. "A Pragmatic Approach to Structured Database Dessign", Proc. 9th Int

Conf. On Very Large Databases (VLDB’83), Florence, 1983, pp. 219-231.

[TO95] Teniente, E.; Olivé, A. "Updating Knowledge Bases while Maintaining their Consistency", The VLDB Journal, Vol.

4(2), 1995, pp. 193-241.

[TU95] Teniente, E.; Urpí, T. “A Common Framework for Classifying and Specifying Deductive Database Updating

Problems”, 11th Int. Conf. on Data Engineering (ICDE), Taipei (Taiwan), 1995, pp. 173-183.

[Win90] Winslett, M. "Updating Logical Databases", Cambridge Tracts in Theoretical Computer Science Nº 9, 1990.

[Wüt93] Wüthrich, B. "On Updates and Inconsistency Repairing in Knowledge Bases", Int. Conference on Data Engineering

(ICDE'93), Vienna 1993, pp.608-615.

