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Abstract

Ramanujan’s congruence p(5k + 4) ≡ 0 (mod 5) led Dyson (Eureka 8:10–15, 1944) to
define a measure “rank”, and then conjectured that p(5k + 4) partitions of 5k + 4 could
be divided into subclasses with equal cardinality to give a direct proof of Ramanujan’s
congruence. The notion of rank was extended to rank differences by Atkin and
Swinnerton-Dyer (Some properties of partitions 4:84–106, 1954), who proved Dyson’s
conjecture. More recently, Mao (Number Theory 133:3678–3702, 2013) proved several
equalities and inequalities, leaving some as conjectures, for rank differences for
partitions modulo 10 and forM2-rank differences for partitions with no repeated odd
parts modulo 6 and 10 (Mao in Ramanujan J 37:391–419, 2015). Alwaise et al.
(Ramanujan J. doi:10.1007/s11139-016-9789-x, 2016) proved four of Mao’s
conjectured inequalities, while leaving three open. Here, we prove a limited version of
one of the inequalities conjectured by Mao.
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1 Introduction and results
A partition of a positive integer n is a way of writing n as a sum of positive integers, usually
written in non-increasing order of the summands or parts of the partition. The number
of partitions of n is denoted by p(n). For a partition λ, we denote the number of parts in
the partition as n(λ) and the largest part as l(λ).
The celebrated Ramanujan congruences for the partition function begged for a combi-

natorial interpretation:

p(5k + 4) ≡ 0 (mod 5),

p(7k + 5) ≡ 0 (mod 7),

p(11k + 6) ≡ 0 (mod 11).

Dyson [4] defined the rank of a partition λ to be l(λ)−n(λ) and conjectured that partitions
for 5k + 4 and 7k + 5 can be divided into five and seven equal sub-classes respectively
based on their rank. Specifically, he claimed that for s in each residue class modulo 5 or 7,
respectively
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N (s, 5, 5n + 4) = p(5n + 4)
5

,

N (t, 7, 7n + 4) = p(7n + 6)
7

,

where N (s,m, n) denotes the number of partitions of n with rank s modulo m. Atkin and
Swinnerton-Dyer [2] proved Dyson’s conjecture by finding the generating functions for
the rank differencesN (s,m,mk +d)−N (s,m,mk +d) for k = 5, 7. They obtained several
other interesting identities apart from Ramanujan’s congruences.
Lovejoy and Osburn [5] expanded on the work by Atkin and Swinnerton-Dyer to find

rankdifferences foroverpartitions andM2-rankdifferences forpartitionswithout repeated
oddparts, which is defined for such a partitionλ by

⌈
l(λ)
2

⌉
−n(λ).The corresponding count

for number of partitions of n with no repeated odd parts having its M2-rank congruent
to s modulo m is given by N2(s,m, n). They obtained all the rank difference formulas
corresponding tom = 3, 5.
Continuing on their work, Mao [6,7] extended the results for Dyson rank differences

modulo 10 and M2 rank differences modulo 6 and 10. He obtained several interesting
inequalities based on his results such as

N (1, 10, 5n + 1) > N (5, 10, 5n + 1),

N2(0, 6, 3n + 1) + N2(1, 6, 3n + 1) > N2(2, 6, 3n + 1) + N2(3, 6, 3n + 1).

Mao also gave some conjectures in [6,7] based on computational evidence, both for the
Dyson rank andM2-rank for partitions with unique odd parts.

Conjecture 1.1 Computational evidence suggests that

N (0, 10, 5n) + N (1, 10, 5n) > N (4, 10, 5n) + N (5, 10, 5n), (1)

N (1, 10, 5n) + N (2, 10, 5n) ≥ N (3, 10, 5n) + N (4, 10, 5n), (2)

N2(0, 10, 5n) + N2(1, 10, 5n) > N2(4, 10, 5n) + N2(5, 10, 5n), (3)

N2(0, 10, 5n + 4) + N2(1, 10, 5n + 4) > N2(4, 10, 5n + 4) + N2(5, 10, 5n + 4), (4)

N2(1, 10, 5n) + N2(2, 10, 5n) > N2(3, 10, 5n) + N2(4, 10, 5n), (5)

N2(1, 10, 5n + 2) + N2(2, 10, 5n + 2) > N2(3, 10, 5n + 2) + N2(4, 10, 5n + 2), (6)

N2(0, 6, 3n + 2) + N2(1, 6, 3n + 2) > N2(2, 6, 3n + 2) + N2(3, 6, 3n + 2). (7)

In (2), (5), and (6), n ≥ 1, whilst in the rest n ≥ 0.

Alwaise et al. [1, Theorem 1.3] proved four of these seven inequalities conjectured byMao,
namely (1), (2), (3), and (4) by using elementarymethods based on the number of solutions
of Diophantine equations solving for the exponents in the generating functions in the
corresponding rank differences. They also observed that in (2), the strict inequality holds.
However, their methods weren’t strong enough to prove the remaining three conjectures,
which are still open. Here, we prove a limited version of (7).

Theorem 1.2 Mao’s conjecture (7) is true when 3 � n + 1. Specifically, we have that the
following inequalities are true for all n ≥ 0:

N2(0, 6, 9n + 2) + N2(1, 6, 9n + 2) > N2(2, 6, 9n + 2) + N2(3, 6, 9n + 2), (8)

N2(0, 6, 9n + 5) + N2(1, 6, 9n + 5) > N2(2, 6, 9n + 5) + N2(3, 6, 9n + 5). (9)
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2 Preliminaries
The standard q-series notation is employed which is defined as

(a; q)n :=
n−1∏
i=0

(1 − aqi),

(a; q)∞ :=
∞∏
i=0

(1 − aqi),

where n ∈ N and a ∈ C. The empty product (a; q)0 is defined to be 1.
The following elementary identities are used inmanipulation of q-series to prove equal-

ities between expressions. For a, b ∈ Z, c ∈ C, and for k ∈ N, we have

(−q; q)∞ · (q; q2)∞ = 1, (10)

(qa; qb)∞(−qa; qb)∞ = (q2a; q2b)∞, (11)

(cqa; q2b)∞(cqa+b; q2b)∞ = (cqa; qb)∞, (12)

(cqa; qkb)∞ · · · (cqa+(k−1)b; qkb)∞ = (cqa; qb)∞. (13)

Further, we make use of the shorthand notation as employed by both Mao [6,7] and
Alwaise et al. [1].

(a1, . . . , ak ; q)n := (a1; q)n · · · (ak ; q)n,
(a1, . . . , ak ; q)∞ := (a1; q)∞ · · · (ak ; q)∞,

Jb := (qb; qb)∞,

Ja,b := (qa, qb−a, qb; qb)∞.

We will also use Mao’s M2-rank difference generating function to prove our result The-
orem 1.2. Mao proved the following theorem which encapsulates the pertinent rank dif-
ferences.

Theorem 2.1 (Mao [7])We have
∑
n≥0

(N2(0, 6, n) + N2(1, 6, n) − N2(2, 6, n) − N2(3, 6, n)) qn

= 1
J9,36

∞∑
n=−∞

(−1)nq18n2+9n

1 − q18n+3 + q
J26,36J18,36J

3
36

J23,36J9,36J
2
15,36

+ J6,36J218,36J
3
36

2qJ23,36J9,36J
2
15,36

− 1
J9,36

∞∑
n=−∞

(−1)nq18n2+9n−1

1 + q18n
.

Apart from this, an identity of Ramanujan theta function is also used. The Ramanujan’s
general theta function f (a, b) is defined as

f (a, b) :=
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 = (−a,−b, ab; ab)∞

with |ab| < 1 where the equality follows from (and is equivalent to) the Jacobi triple
product identity. We will use the following two special cases of the theta function and the
function χ (q) which are defined as

ϕ(q) := f (q, q) = (−q,−q, q2; q2)∞, (14)

ψ(q) := f (q, q3) = (q2; q2)∞
(q; q2)∞

, (15)
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χ (q) := (−q; q2)∞. (16)

The following theta function identity is used in the proof of our main result.

Theorem 2.2 (Baruah and Barman [3])We have

ϕ2(q) + ϕ2(q3) = 2ϕ2(−q6)
χ (q)ψ(−q3)
χ (−q)ψ(q3)

.

3 Proof of Theorem 1.2
We denote d(n) := N2(0, 6, n) + N2(1, 6, n) − N2(2, 6, n) − N2(3, 6, n) for simplicity. We
will show that the generating function

∑
n≥0 d(3n+ 2)qn has strictly positive coefficients

for all n �≡ 2 (mod 3). We first compute the generating function
∑

n≥0 d(3n+ 2)qn using
Theorem 2.1.

Proposition 3.1 We have

∑
n≥0

d(3n + 2)qn = 1
qJ3,12

(
J2,12J26,12J

3
12

2J21,12J
2
5,12

−
∞∑

n=−∞

(−1)nq6n2+3n

1 + q6n

)
. (17)

Proof From the expression in Theorem 2.1, one can see that the first summand is a series
in q3n, the second only has q-powers which are 1 modulo 3, and the third and fourth
only have q-powers which are 2 modulo 3. Now, including only exponents congruent to
2 modulo 3 in the original generating function, and then letting q �→ q

1
3 , we deduce that

∑
n≥0

d(3n + 2)q3n+2 = J6,36J218,36J
3
36

2qJ23,36J9,36J
2
15,36

− 1
J9,36

∞∑
n=−∞

(−1)nq18n2+9n−1

1 + q18n

=⇒
∑
n≥0

d(3n + 2)q3n = J6,36J218,36J
3
36

2q3J23,36J9,36J
2
15,36

− 1
J9,36

∞∑
n=−∞

(−1)nq18n2+9n−3

1 + q18n

=⇒
∑
n≥0

d(3n + 2)qn = J2,12J26,12J
3
12

2qJ21,12J3,12J
2
5,12

− 1
J3,12

∞∑
n=−∞

(−1)nq6n2+3n−1

1 + q6n
.

This completes the proof of the proposition. 
�

Remark 3.2 Note that the while there is a q in the denominator of the common factor
above, it is canceled because the constant term of the expression inside the parentheses
in (17) is zero.

We will also need the following lemma which will tie together the proof.

Lemma 3.3 We have
J2,12J26,12J

3
12

J21,12J
2
5,12

= ϕ2(q) + ϕ2(q3)
2

.

Proof We first write the expression in its constituent q-series and then use (11) to cancel
common factors in both numerator and denominator. We find that

J2,12J26,12J
3
12

J21,12J
2
5,12

= (q2, q10, q12; q12)∞(q6, q6, q12; q12)2∞(q12; q12)3∞
(q, q11, q12; q12)2∞(q5, q7, q12; q12)2∞

= (q2, q10; q12)∞(q6, q6, q12; q12)2∞
(q, q7; q12)2∞(q5, q11; q12)2∞
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= ϕ2(−q6)
(q, q5; q6)∞(−q,−q5; q6)∞

(q; q6)2∞(q5; q6)2∞

= ϕ2(−q6)
(−q,−q5; q6)∞
(q, q5; q6)∞

.

We next use (13) to reduce the q-series by multiplying the missing factors in both numer-
ator and denominator, and simplify the expression using (15) and Theorem 2.2 as follows:

J2,12J26,12J
3
12

J21,12J
2
5,12

= ϕ2(−q6)
(−q,−q5; q6)∞
(q, q5; q6)∞

= ϕ2(−q6)
(−q,−q5; q6)∞(−q3; q6)∞(q3; q6)∞
(q, q5; q6)∞(q3; q6)∞(−q3; q6)∞

= ϕ2(−q6)
(−q; q2)∞(q6; q6)∞(q3; q6)∞
(q; q2)∞(−q3; q6)∞(q6; q6)∞

= ϕ2(−q6)
χ (q)ψ(−q3)
χ (−q)ψ(q3)

= ϕ2(q) + ϕ2(q3)
2

.


�
We now prove our result Theorem 1.2.

Proof of Theorem 1.2 We use Lemma 3.3 and Proposition 3.1, and note that all the expo-
nents of the q-series inside the parentheses in (17) are 0 (mod 3). Hence,

∑
n≥0

d(3n + 2)qn = 1
qJ3,12

(
J2,12J26,12J

3
12

2J21,12J
2
5,12

−
∞∑

n=−∞

(−1)nq6n2+3n

1 + q6n

)

= 1
qJ3,12

⎛
⎝ϕ2(q) + ϕ2(q3)

4
− 1

2
+

∑
n≥1

a3nq3n
⎞
⎠ ,

where a3n ∈ Z.
Now let 3 � n + 1, then

d(3n + 2) = [qn]
1

qJ3,12

⎛
⎝ϕ2(q) + ϕ2(q3)

4
− 1

2
+

∑
n≥1

a3nq3n
⎞
⎠

= [qn+1]

⎛
⎝ϕ2(q) + ϕ2(q3)

4J3,12
− 1

2J3,12
+ 1

J3,12

∑
n≥1

a3nq3n
⎞
⎠

= [qn+1]
ϕ2(q) + ϕ2(q3)

4J3,12
− [qn+1]

1
2J3,12

+ [qn+1]
1

J3,12

∑
n≥1

a3nq3n

= [qn+1]
ϕ2(q) + ϕ2(q3)

4J3,12
where [xk ]f (x) denotes the coefficient of xk in the generating function f (x). It now suffices
to show that all coefficients of ϕ2(q)+ϕ2(q3)

J3,12 are positive. This follows as

ϕ2(q) + ϕ2(q3)
J3,12

= 2 + 4q + 4q2 + ∑
n≥3 bnqn

(1 − q3)(q9, q12, q15; q12)∞

=
⎛
⎝2 + 4q + 4q2 +

∑
n≥3

bnqn
⎞
⎠

⎛
⎝∑

n≥0
q3n

⎞
⎠

⎛
⎝1 +

∑
n≥1

cnqn
⎞
⎠
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where bi and ci are non-negative. We can generate q3n+k using the above factors by qk

from first, q3n from second, and 1 from the last, where k = 0, 1, 2. Due to the structure of
the product, each q power generated in the way describedmust have a positive coefficient,
and so additional terms that arise with the same power would only add to the size of the
coefficient. This completes our proof for Theorem 1.2 
�

4 Conclusion and remarks
The method employed by Alwaise et al. [1] doesn’t work for this inequality because the
expression inside the parentheses in Proposition 3.1 does seem to have negative coeffi-
cients for an infinite number of coefficients.
This result is limited to 3n + 2 when 3 � n + 1, but computational evidence suggests

that 1
1−q12

(
J2,12J26,12J

3
12

2J21,12J
2
5,12

− ∑∞
n=−∞

(−1)nq6n2+3n

1+q6n

)
has non-negative coefficients, and given the

simplificationwith help of Lemma 3.3, a stronger version of themethod used in alongwith
using properties of ϕ2(q), in which the coefficient of qn counts number of Diophantine
solutions to a2 + b2 = nmight aid in proving the inequality when 3 | n + 1.
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