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Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder
for which new diagnostic and therapeutic approaches are required. Hallmarks of COPD are matrix
destruction and neutrophilic airway inflammation in the lung. We have previously described two
tri-peptides, N-α-PGP and PGP, which are collagen fragments and neutrophil chemoattractants. In
this study, we investigate if N-α-PGP and PGP are biomarkers and potential therapeutic targets for
COPD.

Methods: Induced sputum samples from COPD patients, healthy controls and asthmatics were
examined for levels of N-α-PGP and PGP using mass spectrometry and for the ability to generate
PGP de novo from collagen. Proteases important in PGP generation in the lung were identified by
the use of specific inhibitors in the PGP generation assay and by instillation of proteases into mouse
lungs. Serum levels of PGP were compared between COPD patients and controls.

Results: N-α-PGP was detected in most COPD sputum samples but in no asthmatics or controls.
PGP was detected in a few controls and in all COPD sputum samples, where it correlated with
levels of myeloperoxidase. COPD sputum samples had the ability to generate N-α-PGP and PGP
de novo from collagen. PGP generation by COPD sputum was blocked by inhibitors of matrix
metalloproteases (MMP's) 1 and 9 and prolyl endopeptidase. MMP's 1 and 9 and prolyl
endopeptidase acted synergistically to generate PGP in vivo when instilled into mouse lungs. Serum
levels of PGP were also significantly higher in COPD patients than in controls

Conclusion: N-α-PGP and PGP may represent novel diagnostic tests and biomarkers for COPD.
Inhibition of this pathway may provide novel therapies for COPD directed at the chronic,
neutrophilic, airway inflammation which underlies disease progression.
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Background
Chronic obstructive pulmonary disease (COPD) is a sig-
nificant and growing healthcare problem in the United
States and worldwide [1,2]. Currently, there are no thera-
pies for COPD that substantially alter its natural history or
improve outcomes [3]. A major impediment to COPD
research and management is the lack of readily measura-
ble biomarkers that correlate with disease severity and
outcome [4,5].

Chronic, neutrophilic airway inflammation is central to
disease pathology and progression in COPD [6] but the
mechanisms that underlie this inflammation are incom-
pletely understood. Inhibiting classic pathways, such as
interleukin-8 and leukotriene B4, blocks less than half of
the neutrophil chemotactic activity of COPD sputum [7],
indicating that other, as yet unidentified, chemoattract-
ants are likely involved. Improved understanding of the
neutrophilic airway inflammation of COPD would pro-
vide novel biomarkers and therapies directed, for the first
time, at the underlying mechanism of disease.

A hallmark of COPD is emphysema, defined as dilation
and destruction of lung parenchyma distal to the terminal
bronchiole [8]. One theory of emphysema causation is
over-activation of proteases secreted by inflammatory
cells which degrade extracellular matrix components and
destroy the alveolar epithelium [9]. Proteases implicated
in COPD include human neutrophil elastase (HNE) and
the matrix metalloproteases (MMP's), a family of zinc-
dependent metalloendopeptidases [10]. Mice deficient in
HNE or MMP-12 demonstrate decreased airspace enlarge-
ment and inflammatory cell infiltration after long-term
exposure to cigarette smoke [11,12], COPD patients dem-
onstrate increased activity of HNE and MMP's, including
MMP-1 and 9, in their lungs [13-15], and mice which
over-express MMP-1 develop adult onset emphysema
[16]. Importantly, it has been recognized for more that 20
years that fragments of matrix proteins, generated by pro-
tease activity, have chemotactic activity for neutrophils
and monocytes and may also be pro-inflammatory [17-
19]. The role of these fragments in lung inflammation in
vivo has recently become evident. For example, inhibiting
the monocyte chemotactic activity of elastin fragments
reduces experimental emphysema in mice [20].

We have recently described a potentially new pathway
that signals neutrophil infiltration followed by damage to
the airways and may represent a novel etiology as well as
diagnostic and therapeutic target for chronic airway dis-
eases [21]. In 1995, Pfister and colleagues demonstrated
that alkali degradation of whole cornea generated a tri-
peptide, N-acetyl-proline-glycine-proline (N-α-PGP) that
is chemotactic for neutrophils and likely results from
hydrolysis of collagen [22]. Injection of N-α-PGP into
normal corneas recapitulated the neutrophilic inflamma-

tion seen in alkali injury to the eye [23]. Instillation of N-
α-PGP into the lungs of mice caused a marked recruitment
of neutrophils to the airways and chronic airway exposure
caused COPD-like pathology with alveolar enlargement
and right ventricular hypertrophy [21]. The neutrophil
chemotactic activity of N-α-PGP is exerted through bind-
ing of CXC receptors and is due to a marked structural
homology to ELR-positive CXC chemokines [21]. Genera-
tion of PGP is due to the action of MMP's and prolyl
endopeptidase (PE) on collagen in a step-wise fashion
[24]. N-α-PGP and PGP, which is also a neutrophil chem-
oattractant, are biomarkers for cystic fibrosis (CF) and
increase further during exacerbations [24]

In this study, we demonstrate that N-α-PGP and PGP are
biomarkers for COPD and are generated by an enzymatic
cascade involving MMP's and PE. PGP generation by
COPD sputum is blocked by inhibitors of MMP's and PE,
which could provide the basis for novel therapies directed
at COPD neutrophilic, airway inflammation.

Methods
Patient Populations and Sputum Collection
COPD patients were recruited from the UAB Lung Health
Center database of COPD patients and had irreversible air-
flow obstruction (FEV1/FVC < 70%). COPD patients had
FEV1 values ranging from 27% to 83% predicted with a
median of 47% predicted. The majority had severe disease
(FEV1 < 50% predicted) according to the GOLD criteria [3].
COPD patients were clinically stable and had not experi-
enced an exacerbation of their disease for at least three
months prior to recruitment. Asthmatic sputum samples
were kindly provided by Dr A. Hastie (Wake Forest Univer-
sity, North Carolina, USA) and were obtained from subjects
participating in the Severe Asthma Research Study
(National Institutes of Health, Bethesda, Maryland, USA).
Patients with severe asthma met the criteria for the consen-
sus definition for refractory asthma of the American Tho-
racic Society, which requires signs of ongoing poor asthma
control (daily symptoms, additional medication use, high
health care utilization, abnormal lung function) despite
treatment with high doses of corticosteroids [25]. Normal
controls were non-smokers with no history of lung disease.
Approval was obtained from the Institutional Review board
at UAB prior to conducting these studies. All subjects pro-
vided informed consent. Samples and health information
were labeled using unique identifiers to protect subject con-
fidentiality. Sputum was obtained by induction using 3%
saline according to standard methodology [26]. Sputum
samples were collected on ice, diluted 1:1 with 0.9% saline
and stored at -80°C for later analysis.

Electrospray ionization-liquid chromatrography-mass 
spec/mass spec (ESI-LC-MS/MS)
Sputum and serum samples were prepared for analysis by
mass spectrometry as previously [24,27]. PGP and N-α-
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PGP were measured simultaneously using a MDS Sciex
API-4000 spectrometer (Aplied Biosystems) equipped
with a Shimadzu HPLC. HPLC was performed using a 2.1
× 150 mm Develosi C30 column (buffer A: 0.1% formic
acid, buffer B: acetonitrile plus 0.1% formic acid; 80%
buffer A/20% buffer B from 0 to 0.6 min, 0% buffer A/
100% buffer B from 0.6 to 5 min). Background was
removed by flushing with 100% isopropanol/0.1% for-
mic acid. Positive electrospray mass transitions were at
270-70 and 270-116 for PGP and 312-140 and 312-112
for N-α-PGP. The R2 value for the calibration curves for
PGP was 0.988 and the detection limit was 10 pg/ml. The
intra- and inter-assay variabilities were 7.8% and 12.6%,
respectively.

Myeloperoxidase (MPO) assay
This was performed using a commercially available activ-
ity assay (Calbiochem, San Diego, California, USA). Sam-
ples and standards were added to wells coated with a
polyclonal antibody to human MPO and incubated for
two hours. Detection reagent (tetramethylbenzidine and
hydrogen peroxidase) was added for one hour and
absorbance read at 450 nm. Activity was converted to ng/
ml active MPO using a standard curve.

Ex Vivo Collagen Assay
One hundred microliters of saline-diluted sputum was
incubated with extensively dialyzed, intact type I collagen
(50 μl, 1 mg/ml, Sigma Aldrich) for 24 h at 37°C and 5%
CO2. After incubation, samples were filtered through a 10-
kDa filter, washed with 20 μl of 1 N HCl, and analyzed
using ESI- LC-MS/MS for levels of PGP and N-α-PGP.
Amounts of PGP and N-α-PGP generated by each sputum
sample from collagen were determined by comparison
with sputum incubated with PBS. For inhibitor studies,
the six most active sputum samples were incubated with
selected protease inhibitors or with azithromycin, a mac-
rolide antibiotic, before collagen was added. Inhibitors
are listed in Table 1.

MMP-1 and MMP-9 assays
These were performed using commercially available activ-
ity assays (R and D systems, Minneapolis, Minnesota,
USA). Samples and standards were added to wells coated
with a monoclonal antibody to MMP-1 or MMP-9 and
incubated for two hours at room temperature. A fluoro-

genic substrate (Fluor-Pro-Leu-Gly-Leu-Ala-Arg-NH2) was
added and the plate incubated for 18 hrs at 37°C. Activity
was quantified using a spectrophotometer with excitation
and emission wavelengths of 320 and 450 nm respectively
and converted to ng/ml active MMP using a standard
curve.

Administration of proteases to mice
The animal protocol for protease administration was
approved by the University of Alabama, Birmingham
Institutional Animal Care and Use Committee. MMP-1
(55.6 μg/kg) and/or MMP-9 (55.6 μg/kg) with or without
PE (18.4 mg/kg) were administered intra-tracheally to 4–
6 week old Balb/c mice in a total volume of 50 μl. MMP's
were preactivated with 1 mM aminophenylmercuric acid
for 2 hrs at 37°C before administration. After 24 hrs, mice
were euthanized with phenobarbital and broncho-alveo-
lar lavage was performed with four 1 ml aliquots of cold
PBS. PGP was quantified in BAL fluid by ESI-LC-MS/MS.

Statistical Analysis
Descriptive statistics (mean and standard error of the
mean) were computed for all study variables of interest.
Spearman's rank correlation coefficient (r) was used to
test for relationships between variables in sputum sam-
ples. The two group t test was used for comparisons
between groups. Statistical analyses were performed using
SAS software (version 9.3; SAS Institute Inc., Cary, North
Carolina, USA). P values < 0.05 were considered statisti-
cally significant.

Results
N-α-PGP and PGP are detected in sputum from COPD 
patients
Induced sputum from ten controls, ten asthmatics and 16
COPD patients was examined for N-α-PGP by ESI-LC-MS/
MS. Sputum from 13 of 16 COPD patients (81%) was
positive for N-α-PGP above our limit of detection of 10
pg/ml but all asthmatic and control sputum samples were
negative (Fig. 1). N-α-PGP levels in COPD sputum were
163 ± 41 pg/ml. Non-acetylated PGP was detected in all
COPD sputum samples (16/16) and in a minority of con-
trols (3/10) but levels were higher in the COPD patients
(58 ± 12 ng/ml vs. 22 ± 12 ng/ml, p < 0.05). Conse-
quently, N-α-PGP and PGP may be biomarkers that dis-
tinguish COPD patients from asthmatics and healthy

Table 1: Protease Inhibitors used in ex vivo collagen assay

Enzyme Inhibited Chemical Composition(Source) Efficacy Ref.

PE Z-prolyl prolinal (Calbiochem) Ki = 500 pM [36]
MMP-9 C27H33N3O5S (Calbiochem) IC50 = 5 nM [37]
MMP-1 (4-(4-(Methanesulfonamido)phenoxy)phenylsulfonyl) methyloxirane (Calbiochem) Ki = 45 μM [38]
HNE N-(2-(4-(2,2-dimethylpropionyloxy)phenylsulfonylamino)benzoyl)

aminoacetic acid N-(o-(p-pivaloyloxybenzene)sulfonylamino benzoyl)glycine (Calbiochem)
IC50 = 50 nM [39]
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controls. There was no correlation between lung function
(% predicted FEV1) and N-α-PGP or PGP levels in the
COPD patients. PGP levels in COPD sputum correlated
with MPO activity, an index of neutrophilic inflamma-
tion, at lower levels of PGP (Fig. 2). This supports a role
for PGP as a neutrophil chemoattractant in COPD. Of
note, asthmatic samples were obtained from severe asth-
matics and contained significant amounts of neutrophils
(0.07 – 1.8 × 106/ml), which must be recruited to the air-
ways by chemotactic factors other than N-α-PGP.

COPD sputum generates PGP de novo from collagen
We examined the ability of COPD sputum to generate
PGP from collagen ex vivo. Induced sputum from eight
COPD patients and ten controls was incubated overnight
with type I collagen which contained no PGP. The
amount of PGP generated by each sputum sample was
determined by comparison with sputum incubated with
PBS. Type I collagen was used as it is the predominant col-
lagen found in the airways [28]. Figure 3 shows that spu-
tum from COPD patients generated much greater
amounts of PGP from collagen than sputum from con-
trols, which generated small amounts of PGP. This indi-
cates that COPD sputum contains the enzymatic activity
necessary to generate PGP de novo from intact collagen.
Much smaller amounts of N-α-PGP were generated (data
not shown), indicating that acetylation is the likely rate-
limiting reaction for N-α-PGP formation.

MMP and PE activity underlies PGP generation by COPD 
sputum
We sought to identify the proteases responsible for PGP
generation from collagen by COPD sputum. We focused

on MMP-1, MMP-9 and HNE, which have been detected
in elevated amounts in COPD sputum and can degrade
matrix proteins, and on PE, which to our knowledge is the
only enzyme that can generate PGP from collagen [24]. As
PE is an oligopeptidase, it must act on substrates previ-

N-α-PGP may be a sputum biomarker for COPDFigure 1
N-α-PGP may be a sputum biomarker for COPD. 
Sputum from 13 of 16 COPD patients but from no asthmat-
ics (0/10) or controls (0/10) contains N-α-PGP. N-α-PGP 
was measured by ESI-LC-MS/MS with a limit of detection of 
10 pg/ml (dashed line).

PGP correlates with MPO activity in COPD sputumFigure 2
PGP correlates with MPO activity in COPD sputum. 
MPO activity in sputum from six COPD patients was meas-
ured using an activity ELISA and correlated with PGP. The 
Spearman rank correlation coefficient of PGP with MPO was 
0.89 (p = 0.02). The neutrophil chemoattractant activity of 
PGP approaches a maximum at 30 ng/ml of PGP.

COPD sputum generates PGP de novo from collagenFigure 3
COPD sputum generates PGP de novo from collagen. 
Sputum from eight COPD patients and ten controls was 
incubated with Type I collagen for 24 hrs at 37°C. PGP in 
samples was measured using ESI-LC-MS/MS and expressed as 
amount of PGP generated (ng/ml) compared to sputum incu-
bated with PBS. COPD sputum samples generated signifi-
cantly greater amounts of PGP than control samples (* p < 
0.05). Results are presented as mean ± SEM. Comparison 
between COPD and control sputum was performed using 
the two group t test.
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ously generated from collagen by the action of other pro-
teases.

We included inhibitors of MMP-1, MMP-9, HNE and PE
in our ex vivo PGP generation assay. We also included azi-
thromycin, a macrolide antibiotic, because of its known,
anti-inflammatory properties in chronic, respiratory dis-
eases [29]. The MMP-9 inhibitor was most effective at
reducing PGP generation (Fig. 4). Inhibition of MMP-1
and PE also reduced PGP generation but inhibition of
HNE had no effect. The lower efficacy of the MMP-1
inhibitor at inhibiting PGP production may be explained
by its lower affinity (Table 1). These data support a role for
MMP's and PE in PGP generation in COPD. Azithromycin
also reduced PGP generation from collagen by COPD spu-
tum.

MMP-1 and MMP-9 act synergistically to increase PGP 
production in the lung
We measured MMP-1 and MMP-9 activity in sputum from
eight COPD patients and correlated them with levels of
PGP. MMP-1 and MMP-9 were detected in all samples
(Table 2). MMP-9 activity was much higher than MMP-1
activity (186 ± 107 ng/ml vs. 6 ± 0.6 ng/ml). PGP levels
did not correlate significantly with MMP-9 (r = 0.14, p =

0.74) or MMP-1 (r = 0.62, p = 0.10) activity. However,
when we adjusted for MMP-9, the correlation coefficient
of PGP with MMP-1 activity approached statistical signif-
icance (r = 0.72, p = 0.065 by partial Spearman correlation
using n – 3 degrees of freedom). This suggests that total
rather than individual MMP activity is important in PGP
generation in COPD. To test the idea that MMP-1 and
MMP-9 combine to increase PGP generation in the lung,
we administered MMP-1 and/or MMP-9 to mice intratra-
cheally with and without PE and measured PGP 24 hours
later in BAL fluid. MMP-1, MMP-9 and PE alone generated
small amounts of PGP. PGP production was greatly
increased by the addition of PE to either MMP-1 or MMP-
9. Combining MMP-1 and MMP-9 together with PE sig-
nificantly increased PGP generation over either MMP-1 or
MMP-9 with PE (Fig. 5). These data support the idea that
total MMP-1 and MMP-9 activity together with PE is
important in generation of PGP from collagen in the lung
and concur with our results in COPD sputum.

PGP is detected in serum of COPD patients
We explored the potential of PGP to be a serum biomarker
for COPD which would greatly increase its clinical useful-
ness. To this end, we adapted our ESI-LC-MS/MS protocol
to quantify PGP in serum of COPD patients and healthy
controls [27]. We found that PGP levels were more than
twice as high in serum of COPD patients as in controls
(Fig. 6). We measured levels of PGP in sputum and serum
obtained simultaneously from six COPD patients. The
correlation coefficient (Spearman) of sputum with serum
PGP in this small group was 0.71 (p = 0.11). Altogether,
these data suggest the potential for PGP to be a serum
biomarker for COPD that reflects inflammation in the
lung.

Discussion
N-α-PGP and non-acetylated PGP are breakdown prod-
ucts of collagen generated by proteases and are neutrophil
chemoattractants. Here we report that N-α-PGP and PGP
may be biomarkers for COPD which is characterized by
chronic, neutrophilic, airway inflammation and extensive
matrix remodeling. N-α-PGP was detected in most COPD
patients but in no asthmatics or controls whereas PGP was
detected in all COPD patients and a minority of controls.
This suggests that PGP may be present in the healthy lung
as a result of normal collagen turnover whereas N-α-PGP
is always a biomarker of disease. Acetylation of PGP might
represent an important step in the pathogenesis of COPD
and other chronic neutrophilic lung diseases. This is not
surprising as N-α-PGP is the more potent neutrophil che-
moattractant [30]. However, PGP is present in much
greater amounts in sputum (ng vs. pg) and may be respon-
sible for as much neutrophil chemotactic activity in vivo.
The correlation between PGP and MPO in COPD sputum
(Fig. 2) could mean that PGP is acting as a neutrophil che-

MMP's and PE but not HNE underlie PGP generation by COPD sputumFigure 4
MMP's and PE but not HNE underlie PGP generation 
by COPD sputum. Inhibitors of MMP-1, MMP-9, PE and 
HNE and azithromycin, a macrolide antibiotic, were included 
in the assay of PGP generation by COPD sputum. MMP inhib-
itors were used at 50 μM, PE inhibitor and azithromycin at 
100 μM and HNE inhibitor at 1 μM. MMP-1, MMP-9 and PE 
inhibitors and azithromycin reduced PGP generation by 
COPD sputum whereas inhibition of HNE had no effect. 
Experiments were performed twice using pooled sputum 
from six COPD patients. Results are shown as percent inhi-
bition of PGP production compared to sputum without 
inhibitors and are presented as mean ± SEM (n = 2).
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moattractant or, alternatively, that it is generated by neu-
trophilic inflammation. This is possible as neutrophils
contain many of the proteases involved in generation of
PGP, including MMP's [31], and neutrophils were
required for PGP production in a mouse model of LPS-
induced keratitis [32]. In this way, N-α-PGP and PGP
could potentially feed back to stimulate their own produc-
tion.

Levels of N-α-PGP and PGP detected in this study were
much lower than we previously detected in CF sputum
[24]. However, our subjects were stable outpatients
whereas the CF patients were experiencing exacerbations.
It is likely that N-α-PGP and PGP levels would increase

further during exacerbations of COPD. Also, our COPD
patients had advanced disease and most PGP generation
might occur early when matrix destruction is most active.
This might explain our inability to correlate levels of N-α-
PGP/PGP with pulmonary function in our COPD group.
COPD is a heterogeneous disease with degrees of airway
inflammation and emphysema differing greatly between
individual patients. Definitive answers to these questions
will await a larger study of COPD patients at different
stages of disease and with different phenotypes.

Sputum from COPD patients has the ability to generate
PGP de novo from collagen. Through the use of specific
inhibitors, we demonstrate a role for MMP's-1 and 9 and
PE in this process. As PE is an oligopeptidase, we believe
it likely acts on substrates generated from MMP digestion
of intact collagen to generate PGP. Our data suggest that
MMP's-1 and 9 act together to generate this substrate.
Consistent with this idea, MMP-1 and MMP-9 had an
additive effect on PGP generation in mouse lungs (Fig. 5).
Although MMP-12 and NE are prominently associated
with COPD in cigarette smoke-exposed mice, they are not
involved in the generation of PGP. We have recently
found that PGP causes neutrophils to degranulate and
release activated MMP-9 and NE (our data not shown).
NE, in turn, has been shown to be required for neutrophil
and macrophage recruitment and expression of active
MMP-12 in the lungs of cigarette smoke-exposed mice
[12]. In this way, PGP may be an upstream regulator of
MMP-12 and NE expression, which contribute to mono-

MMP-1, MMP-9 and PE act synergistically to generate PGP in vivoFigure 5
MMP-1, MMP-9 and PE act synergistically to gener-
ate PGP in vivo. Protease combinations were administered 
intratracheally to mice (4 to 7 per group) and BAL fluid col-
lected 24 hours later. PGP levels in BAL fluid were measured 
by ESI-LC-MS/MS. Addition of PE to MMP's greatly increased 
PGP production over MMP's alone (* p < 0.05 vs. MMP-1, 
MMP-9 or MMP-1 + MMP-9). MMP-1 and MMP-9 combined 
with PE generated more PGP than either MMP-1 or MMP-9 
alone with PE (p < 0.05). Results are presented as mean ± 
SEM. Comparisons between groups were performed using 
the two group t test.

Table 2: PGP and MMP levels per subject

Subject # PGP ng/ml MMP-1 ng/ml MMP-9 ng/ml

1 4.28 5.75 12
2 7.2 4.74 85.8
3 9.48 4.41 61.4
4 18.16 4.51 286.4
5 19.64 5.16 82.2
6 29.2 8.83 36
7 130 5.88 903.6
8 145.2 8.72 22

PGP may be a serum biomarker for COPDFigure 6
PGP may be a serum biomarker for COPD. PGP levels 
in serum were measured in serum of eight COPD patients 
and five controls by ESI-LC-MS/MS. Levels were higher in the 
COPD patients (* p < 0.01). Results are presented as mean ± 
SEM. Comparison between COPD and control serum was 
performed using the two group t test.
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cyte and neutrophil recruitment and damage to cigarette
smoke-exposed lungs.

COPD is greatly under-diagnosed and most patients are
detected at an advanced stage when irreversible lung
destruction has already occurred. As N-α-PGP and PGP
are generated by matrix destruction in the lung, they
might identify those smokers at risk of developing COPD
many years before clinical, spirometric or radiographic
signs appear. This would permit therapeutic and preven-
tive measures to be instituted much earlier. In support of
this idea, we have found that a subgroup of healthy smok-
ers contain N-α-PGP in their exhaled breath condensate
[33]. A biomarker that could distinguish COPD patients
from severe asthmatics, many of whom have irreversible
airflow obstruction and neutrophilic airway inflamma-
tion, would be of benefit. Although PGP did not correlate
with FEV1, it correlated with MPO, an index of neu-
trophilic airway inflammation, which correlates with dis-
ease severity and rate of decline in pulmonary function in
COPD. Such a biomarker would be of benefit as an end-
point in clinical trials, permitting them to be conducted
faster and with fewer subjects than endpoints such as
exacerbation frequency or FEV1 decline. PGP is detected in
serum, where it is elevated in COPD patients compared to
healthy controls. If serum PGP correlates with inflamma-
tion in the lung, this would greatly increase its usefulness
as a biomarker

As N-α-PGP and PGP are neutrophil chemoattractants,
reducing neutrophil recruitment to the airways by antago-
nizing them becomes an attractive therapeutic approach.
In support of this idea, PGP antagonists prevented the
induction of pulmonary emphysema and right ventricular
hypertrophy in mice caused by chronic administration of
LPS [34]. The therapeutic effect of azithromycin in
chronic, neutrophilic lung diseases may in part be
explained by effects on PGP generation (Fig. 4). We sus-
pect that this is due to inhibition of MMP-9 and perhaps
other MMP's, which is a known property of macrolide
antibiotics [35]. Additional MMP and PE inhibitors have
potential to be therapeutics for COPD given their role in
PGP generation.

Conclusion
These findings support the idea that N-α-PGP and PGP are
novel biomarkers and therapeutic targets for COPD. Nec-
essary future directions include measuring N-α-PGP and
PGP in a larger cohort of COPD patients and controls, cor-
relating them with clinical parameters such as smoking
history, severity of airflow obstruction and degree of
emphysema and establishing the reproducibility of N-α-
PGP and PGP measurements over time. Inhibition of N-
α-PGP and PGP or their generating enzymes could pro-
vide the basis for novel therapeutics directed at the neu-

trophilic, airway inflammation that underlies COPD
pathogenesis and progression.
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