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Virulence and antimicrobial resistance factors of
Enterococcusspp. isolated from fecal samples from
piggery farms in Eastern Cape, South Africa
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Abstract

Background: Enterococci have emerged as an important opportunistic pathogen causing life-threatening infections
in hospitals. The emergence of this pathogen is associated with a remarkable capacity to accumulate resistance to
antimicrobials and multidrug-resistance particularly to vancomycin, erythromycin and streptomycin have become a
major cause of concern for the infectious diseases community. In this paper, we report the prevalence of Enterococcus
in respect to species distribution, their virulence and antibiogram profiles.

Methods: Four hundred fecal samples were collected from two piggery farms in the Eastern Cape Province of South
Africa. Enterococcus species were isolated and confirmed with generic specific primers targeting the tuf gene (encoding
elongation factor). The confirmed isolates were speciated with enterococci species specific primers that aimed at
delineating them into six species that are commonly associated with infections in humans. Antibiotic susceptibility
testing was performed by disc diffusion method. Six virulence genes and antimicrobial resistance profiles of the isolates
were evaluated molecularly.

Results: Molecular identification of the presumptive isolates confirmed 320 isolates as Enterococcus spp. Attempt at
speciation of the isolates with primers specific for E. faecalis, E. durans, E. casseliflavus, E. hirae and E. faecium delineated
them as follows: E. faecalis (12.5 %), E. hirae (31.25 %), E. durans (18.75 %) and E. faecium (37.5 %) while E. casseliflavus
was not detected. All the isolates were resistant to vancomycin, streptomycin and cloxacillin, and to at least two
different classes of antibiotics, with 300 (93.8 %) isolates being resistant to five or more antibiotics. Also, three out of
the six virulence genes were detected in majority of the isolates and they are Adhesion of collagen in E. faecalis (ace)
(96.88 %), gelatinase (gelE) (93.13 %) and surface protein (esp) (67.8 %).

Conclusion: There was high prevalence of multi-resistant vancomycin Enterococcus spp. (VREs) in the fecal samples of
pigs in the farms studied, and this poses health implications as vancomycin is an important drug in human medicine.
Further studies are needed to determine the spread of vancomycin resistance among bacteria of human origin in the
communities.
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Background
Generally, antibiotic-resistant pathogens are able to cause
a major clinical challenge in both human and animals.
Enterococcus spp., ubiquitous in nature and a common
commensal of the intestinal microbiota of humans and
animals, have emerged as one of the most prevalent noso-
comial pathogens worldwide [1]. Several factors such as
their propensity and inherent ability to acquired resistance
to antimicrobials [2], putative virulence traits, biofilm
forming capability [3], and ability to horizontally transfer
antimicrobial resistance and virulence determinants to
other bacteria [4] are attributable to these abilities.
Enterococcus spp. are Gram-positive bacteria known to

possess a low level of pathogenicity and can cause urinary
tract infections, endocarditis, peritonitis, among other dis-
eases. [5, 6]. Until 1988, Vancomycin was one of the pre-
ferred antibiotics for the treatment of infections caused by
Enterococcus spp. But this seems to have changed when the
first vancomycin-resistant Enterococcus spp. (VREs) were
isolated and identified in Great Britain[7]. Also, VREs have
been detected and isolated in many countries throughout
the world thus heightening the sense of urgency regarding
the global presence of antibiotic resistant enterococci[8–
10]. As infections caused by VREs are difficult to treat, VRE
should be considered a dangerous pathogen as it could eas-
ily spread to people with compromised immune system.
The risk of death from vancomycin-resistant enterococci
(VRE) is has been reported to be about 75 %, compared
with 45 % for those infected with a susceptible strain [11].
According to the degree of resistance to vancomycin and
teicoplanin, as well as the origin and transferability of the
antibiotic resistance genotype, VREs are categorized as ex-
pressing the vanA, vanB, or vanC, vanD, vanE and vanG
phenotypes [12, 13]. The vanA phenotype shows a high
level of resistance to both vancomycin and teicoplanin,
while the vanB phenotype shows various levels of resist-
ance to vancomycin but is sensitive to teicoplanin. The
vanC phenotype can be further divided into 3 classes,
vanC-1, vanC-2, and vanC-3; vanC-2 and vanC-3 are
expressed as vanC-2/3 because of their similar genetic se-
quence [14, 15]. Vancomycin resistance among entero-
cocci spread via the dissemination of mobile genetic
elements of variants of the vanA-type element Tn1546
mostly located on conjugative plasmids [16, 17].
A variety of antibiotics are applied at both therapeutic

and sub-therapeutic levels in the management of farm
animals. Tylosin, a member of the macrolide family is
widely used as antimicrobial growth promoters (AGPs).
The use of avoparcin has been associated with high level
of vancomycin-resistant enterococci in farm animals [18].
The possibility of transmission of bacteria from animals to
humans is not limited to zoonotic diseases and the selec-
tion of a reservoir of resistant opportunistic human patho-
gens and possible transmissible resistance determinants

through the indiscriminate use of antimicrobials in farm
animal managements may have undesirable consequences
for human health [18]. The ability of Enterococcus spp. to
acquire antibiotic resistance through transfer of plasmids
and transposons, chromosomal exchange, or mutation
presents a significant challenge for therapeutic measures.
In addition to this inherent capacity of enterococci to ac-
quire resistance determinants, they possess several viru-
lence factors. The virulence of this organism is associated
with several genes such as ace (collagen binding cell wall
protein), acm (surface-exposed antigen), agg (aggregative
pheromone-inducing adherence to extra-matrix protein),
esp (enterococcal surface protein), hyl (hyaluronidase),
cad1 (pheromone cAD1 precursor lipoprotein), the
cAM373 gene (sex pheromone cAM373 precursor), the
cCF10 gene (pheromone cCF10 precursor lipoprotein), cob
(pheromone cOB1 precursor/lipoprotein, YaeC family),
cpd1 (pheromone cPD1 lipoprotein), cylABLM (hemolysin),
efaAEfs (endocarditis-specific antigen), sagA (secreted anti-
gen), and gelE (gelatinase) [19, 20]. These virulence factors
have been reported in enterococci isolated from food of
animal origin [21].
The Eastern Cape Province of South Africa is largely

rural and agrarian with many commercial piggery farms.
The use of antibiotics to manage animal productivity is a
common phenomenon and the impact of bacteria with
resistance determinant shed into the environment through
fecal materials of animal possess a huge epidemiological
problem considering the fact that the province has one of
the highest HIV/AIDS prevalence in the country. In this
paper, we report on the virulence and antimicrobial resist-
ance profiles of Enterococcus spp. isolated from fecal sam-
ples collected from piggery farms in the Nkonkonbe
municipality in the Eastern Cape Province of South Africa

Table 1 List of primers and control strains

Strain Primer Sequence 5'-3' Product size
(bp)

Ref

E. faecalis
ATCC 19433

FL1 ACTTATGTGACTAACTTAACC 360 23

FL2TAATGGTGAATCTTGGTTTGG

E. durans
ATCC 19432

DU1 CCTACTGATATTAAGACAGCG 295 23

DU2 TAATCCTAAGATAGGTGTTTG

E. casseliflavus
ATCC 25788

CA1 TCCTGAATTAGGTGAAAAAAC 288 23

CA2 GCTAGTTTACCGTCTTTAACG

E. faecium
ATCC19434

GAAAAAACAATAGAAGAATTAT 215 23

FM2 TGCTTTTTTGAATTCTTCTTTA

E. hirae
ATCC 8043

HI1 CTTTCTGATATGGATGCTGTC 187 23

HI2 TAAATTCTTCCTTAAATGTTG
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as part of our larger study on the reservoirs of antibiotic
resistance in the environment.

Materials and methods
Ethical clearance
Ethical clearance was obtained from the University of
Fort Hare ethics committee prior to sample collection
and cooperation was sought from farmers from whose
farms samples were collected.

Study population and sampling
Details on the study population and sampling proce-
dures are as follows. Briefly, samples were collected from
two commercial piggery farms in Nkonkonbe municipality
within the Amathole Districts of Eastern Cape Province.
A total of 400 samples from two farms were collected for
the study. Rectal fecal samples were collected from

individual breeder pigs using sterile swab sticks and to
avoid duplication of sampling, the pigs were sampled
while locked in their respective cages. After collection,
samples were shipped on ice to the University of Fort
Hare Microbiology laboratory for immediate processing.
Data on antibiotic type and treatment history were col-
lected with the purpose of describing the study popula-
tion. Inventory of the antibiotics in the farmers
refrigerators were taken during sampling. Sampling was
done between June and August, 2014 at an interval of two
samplings fortnightly.

Laboratory detection of Enterococcus spp.
The swab sticks were used to inoculate trypticase soya
broth and incubated at 37 °C for 18 to 20 h. These were
then sub-cultured onto Bile Aesculin Azide agar and in-
cubated at 37 °C for 24 h. Black dew drop colonies were
assumed presumptive for Enterococcus species. One colony
per plate was picked into a sterile trypticase soya broth and
further incubated for 18 h at 37 °C for glycerol stock prep-
aration and preservation at–80 °C for future use.

DNA Extraction
To extract genomic DNA from the previously stored
glycerol stocks, isolates were resuscitated in a 5 ml Todd
Hewitt broth at 37 °C for 20 h and cells were recovered
from 2 ml of the broth in a sterile Eppendorf and centri-
fugation was done at 5,000 rpm for 10 min. The super-
natant was discarded and the cell deposit washed with
normal saline and further centrifuged at 5,000 rpm for
3 min. The cell pellet was then re-suspended in a micro-
centrifuge tube containing rapid lysis buffer:-100 mM

Table 3 Oligonucleotides used in this study to amplify the enterococci virulence genes

Gene Virulence marker Oligonucleotide sequence(5' to 3') Product size
(bp)

Annealing
temp(C)

References

As Aggregation
substance

1 CCAGTAATCAGTCCAGAAACAACC 406 54 25

AS 2 TAGCTTTTTTCATTCTTGTGTTTGTT

Ace Adhesion colaagen
in E. faecalis

ACE 1 AAAGTAGAATTAGATCCACAC 320 56 25

Gel Gelatinase gel E1 AGTTCATGTCTATTTTCTTCAC 402 56 25

gel E2 CTTCATTATTTACACGTTTG

EfaA E. faecalis antigen A efaA1 CGTGAGAAAGAAATGGAGGA 499 56 25

efaA2 CTACTAACACGTCACGAATG

Esp Surface protein Esp 46 TTACCAAGATGGTTCTGTAGGCAC 913 58 32

Esp 47 CCAAGTATACTTAGCATCTTTTGG

CylA Cytolisin Cyl I ACTCGGGGATTGATAGGC 688 56 32

Cyl Iib GCTGCTAAAGCTGCGCTT

Hyl Hyaluronidase Cyl Iib GCTGCTAAAGCTGCGCTT 276 56

Hyl n1 ACAGAAGAGCTGCAGGAAATG Hyl n2
GACTGACGTCCAAGTTTCCAA

Table 2 Oligonucleotide primers used in this study to identify
vancomycin resistance genes

Gene(s) Size (bp) Primer sequence (5' to 3') Region Ref

vanA 314 AF-GCGCGGTCCACTTGTAGATA 105-124 7

AR-TGAGCAACCCCCAAACAGTA 399-418

vanB 220 BF-AGACATTCCGGTCGAGGAAC 844-863 7

BR-GCTGTCAATTAGTGCGGGAA 1044-1063

VanC-1 402 C1F-ATCCAAGCTATTGACCCGCT 290-309 7

C1R-TGTGGCAGGATCGTTTTCAT 672-691

VanC-2/3 582 C2F-CTAGCGCAATCGAAGCACTC 100-119 7

C2R-GTAGGAGCACTGCGGAACAA 662-681
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NaCl, 10 mM Tris–HCl pH8.3, 1 mM EDTA pH9.0; 1 %
Triton X-100, boiled for 15 min followed by centrifuga-
tion at 10,000 rpm and supernatant collected and stored
at–20 °C for future use.

Molecular confirmation of the isolates
This preliminary approach stated above was then
followed by polymerase chain reaction (PCR) identifica-
tion analysis with Enterococcus genus-specific primers
Ent 1 and Ent 2, as previously reported [22] with E.
faecium ATCC19434 serving as the positive control. The
tuf gene of the genus Enterococcus was amplified by
PCR which was performed in a 25-μl mixture of 5x buffer
(supplied with Taq polymerase), 2.5 mmol/l of MgCl2, 2.5
u of Taq DNA polymerase, 200 μmol/l of each deoxynu-
cleoside triphosphate, and 10 pmol of each primer Ent1
5′-TACTGACAAACCATTCATGATG-3′ and Ent2 R: 5′-
AACTTCGTCACCAACGCGAAC-3′. The PCR mixture
was subjected to a 4-min denaturation step at 94 °C,
followed by 35 cycles of 60 s at 94 °C, 60 s at 53 °C, and
60 s at 72 °C, and a final elongation step for 5 min at
72 °C. Verification of PCR products were performed in
a 2 % agarose gel electrophoresis at 110 V for 45 min,
visualized after staining with ethidium bromide in AL-
LIANCE.4.7 transilluminator and photographed.

Species identification
A multiplex polymerase chain reaction (PCR) was performed
for Enterococcus species identification. Amplification of the
genes related to the species-specific identification of E.
faecalis, E. faecium, E. hirae, E. durans, and E. casseliflavus
were performed as described previously by Jackson [23].

Two PCR master mixes consisting of different primer
sets were prepared. Group 1 was E. durans, E. faecalis,
and E. casseliflavus, and group 2 was E. faecium and E.
hirae. The Dream Taq PCR Master Mix (2X) consisting
of 4 mM MgCl2, 0.4 mM deoxynucleoside triphosphate
mix and Taq polymerase enzyme (Thermo Scientific.)
and 10pMol of each primer pair was added to consti-
tuted the reaction mixture in a PCR tube. Primers used
are indicated in (Table 1). PCRs were performed in a
final volume of 25 μl consisting of 20 μl of master mix
and 5 μl of DNA template. Following an initial de-
naturation at 95 °C for 4 min, products were amplified
in 30 cycles of denaturation at 95 °C for 30 s, annealing
at 52 °C (E.. faecalis, E. durans and E. casseliflavus) or
48 °C (for E. faecium and E. hirae) for 1 min, and
elongation at 72 °C for 1 min followed by a final exten-
sion at 72 °C for 7 min. Five microliters of product was
electrophoresed on a 2 % Tris-borate-EDTA agarose gel
containing 2 μg of ethidium bromide/ml to verify amplifi-
cation of the targeted genes at 110 V for 45 min. DNA
molecular weight marker 100 bp was used as the standard
and photographed under UV light transilluminator (ALLI-
ANCE 4.7) Molecular Imager Gel Doc.

Antibiotic sensitivity testing
The antimicrobial susceptibility of all isolates were
assessed according to the Kirby-Bauer disk-diffusion
method [24] making use of antibiotic discs (MAST
DIAGNOSTICS) which were dispensed by automated
disc dispenser on Muller Hinton agar (MHA). The
following antibiotic impregnated discs were used: clin-
damycin (2 μg), imipenem (10 μg), neomycin (30 μg),

215bp

187bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2 Gel electrophoresis of multiplex PCR product for the speciation of the isolates positive for Enterococcus genus. Lane 1 is 100 bp ladder,
lane 2 negative control and lanes 3 to 14 are E. hirae (187 bp) and E. faecium (215 bp), representatives of the positive isolates identified in this study

112bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 1 Gel electrophoresis of PCR product of amplification of tuf gene for confirmation of Enterococcus genus. Lane 1 is the 100bpMWM, lane 2
is the negative control, 3 is positive control E. faecium ATCC19434 while lanes 4 to 18 are amplicons derived from study isolates
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streptomycin (10 μg), vancomycin (30 μg), penicillin G
(10 μg), amoxicillin-clavulanic acid (10 μg), ciprofloxacin
(5 μg), cephalothin (30 μg), cloxacillin (5ug), erythromycin
(15ug) and amikacin (30ug). In the evaluation of the
results, strains displaying intermediate resistance were
regarded as resistant. All antibiotic discs contained the
CLSI [24] approved concentration. The interpretations
of zones of inhibition were carried out according to
the [24] performance standards for antimicrobial sus-
ceptibility testing guideline.

Detection of antibiotics resistance genes
Polymerase chain reaction was performed on isolates that
were resistant phenotypically to vancomycin for the pres-
ence of putative vancomycin resistance (vanA, vanB,
vanC1, and vanC2/3) genes from the previously extracted
genomic DNA. PCRs were performed in a BioRad Ther-
mal Cycler (CA, Foster City, USA). The oligonucleotide
primers for PCR amplifications were synthesized by
Inqaba Biotech (Pretoria, South Africa). Primer sequences
for vanA, vanB, vanC1, vanC2/3 genes were those previ-
ously described by Nam [7] and the list of the specific
primers and their amplification products are shown in

Table 2. The reactions were performed as singleplex in a
total volume of 25 μl, using 5 μl of cell lysate as DNA tem-
plate, 10 pMol of each of the eight primers, 12 μl of
Dream Taq master PCR mix (Inqaba Biotech, Pretoria,
South Africa) and 6 μl of PCR water grade. Amplification
conditions were as follows: a first denaturation step of 94 °C
for 3 min, 35 cycles of denaturation at 94 °C for 1 min, an-
nealing at 56.5 °C for 1 min, extension at 72 °C for 1 min,
followed by an elongation step at 72 °C for 10 min. The
PCR products were analyzed on 2 % agarose gel con-
taining 10 μl of ethidium bromide, electrophoresed at
110 V for 45 min and visualized under UV transillumi-
nator (ALLIANCE 4.7) and photographed.
The presence of erm(B) and strA genes that could have

been responsible for the observed resistance to erythro-
mycin and streptomycin were examined by using the
primers pairs erm(B) (ermBN1: 5′-CGAGTGAAAAAG
TACTCAACCA-3′, ermBN2: 5′-CGGTGAATATCCAA
GGTACG-3′) and strAF: 5′-ATCTGTCTGGAGCGGAT
TTG-3′ and strAR:5′-CCAGTTCTCTTCGGCGTTAG-3′
respectively. In each PCR tube, a reaction mixture (25 μl)
containing 5 μl bacterial DNA, 12 μl of Dream Taq Master
Mix (Thermo Scientific) 10 pMol each of primer and

Table 4 Antibiotic resistance profiles of E. faecium, E. hirae, E. durans and E. faecalis isolates obtained from pig faecal samples

Antibiotics E.faecium E.hirae E.durans E.faecalis

R S R S R S R S

VANCOMYCIN 120(100 %) 0(0 %) 100(100 %) 0(0 %) 60(100 %) 0(0 %) 40(100 %) 0(0 %)

CEPHALOTHIN 109(90.8 %) 11(9.2 %) 93(93 %) 7(7 %) 50(83 %) 10(17 %) 34(85 %) 6(15 %)

PENICILLIN G 114(95 %) 6(5 %) 98(98 %) 2(2 %) 45(75 %) 15(25 %) 35(87 %) 5(13 %)

CIPROFLOXACIN 113(94.1 %) 7(5.9 %) 87(87 %) 13(13 %) 30(50 %) 30(50 %) 18(45 %) 22(55 %)

STREPTOMYCIN 120(100) 0(0 %) 100(100 %) 0(0 %) 60(100 %) 0(0 %) 40(100 %) 0(0 %)

AMOXIL/ CLAV 20(16.7 %) 100(83.3 %) 15(15 %) 85(85 %) 15(25 %) 45(75 %) 14(35 %) 26(65 %)

AMIKACIN 117(97.5 %) 3(2.5 %) 95(95 %) 5(5 %) 40(66.7 %) 20(33.3 %) 20(50 %) 20(50 %)

CLINDAMYCIN 116(96.66 %) 4(3.44 %) 100(100 %) 0(0 %) 60(100 %) 0(0 %) 40(100 %) 0(0 %)

ERYTHROMYCIN 118(98.3 %) 2(1.7 %) 100(100 %) 0(0 %) 58(96.7 %) 2(3.3 %) 40(100 %) 0(0 %)

NEOMYCIN 120(100 %) 0(0 %) 98(98 %) 2(2 %) 42(70 %) 18(30 %) 40(100 %) 0(0 %)

IMIPENEM 10(8.3 %) 110(91.7 %) 9(9 %) 91(91 %) 20(33 %) 40(77 %) 13(32.5 %) 27(68.5 %)

CLOXACILLIN 120(100 %) 0(0 %) 100(100 %) 0(0 %) 60(100 %) 0(0 %) 40(100 %) 0(0 %)

360bp

299bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 3 Gel electrophoresis of PCR product multiplex PCR detection of E. faecalis, E. durans species isolated in this study. Lane 1 is 100 bp ladder, lane 2
negative control and lanes 3 to 13 are E. faecalis (360 bp) and E. durans (299 bp), representatives of the positive isolates identified in this study
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6ul of water of PCR grade was prepared. The reaction
mixture in the tube was subjected to 35 PCR cycles of
denaturation at 94 °C (1 min), annealing at 55 °C and
56.5 °C respectively for erm (B) and strA (1 min), and
elongation at 72 °C (1 min) in a BioRad thermal cycler
with a final elongation at 72 °C for 7 min. PCR prod-
ucts with specific sizes of the resistance genes were
detected by agarose gel electrophoresis at 110 V for
45 min, stained with ethidium bromide and visualized
under UV light in a transilluminator (ALLIANCE 4.7).

Screening for virulence genes in Enterococcus spp.
The presence of virulence genes were investigated from
the previously extracted genomic DNA for all the con-
firmed isolates. Specific primers for the following five
virulence genes: ace, efaA, cylA, gelE, esp and hylE were
used as previously described by [25]. The list of the
primers used and their amplification products are re-
ported in Table 3. The reactions were performed in a
total volume of 25 μl using 5 μl of DNA, 10 pmol of
each primer, 12 μl of PCR Dream Taq Master Mix
(Thermo Scientific). PCR conditions for ace and gelE
genes were denaturation at 94 °C for 1 min, annealing at
50 °C for 1 min, extension at 72 °C for 1 min for 35 cy-
cles and final extension at 72 °C for 10 min while those
for the amplification of the efaA, esp, cylA and hylE
genes were as follows: denaturation at 94 °C for 1 min,
annealing at 56.5 °C for 1 min, extension at 72 °C for
1 min, for 35 cycles with a final extension at 72 °C for
10 min. The PCR products were analyzed on 2 % agar-
ose gel containing ethidium bromide, electrophoresed at
110 V for 45 min, visualized under UV transilluminator
(ALLIANCE 4.7) and photographed.

Results
A total of 320 presumptive isolates were recovered from
the 400 fecal samples collected from the breeder pigs in
a 600 and 3,000 sizes heard that have been exposed to
tylosin, advocin (danofloxacin), ampicillin, and penicillin
G antibiotics. Molecular identification of the presump-
tive isolates based on the tuf gene specific primers con-
firmed them to be Enterococcus spp. Representatives of
the confirmed isolates are shown in Fig. 1. Attempt at
speciation of the isolates with primers specific for E. faeca-
lis, E. durans, E. casseliflavus, E. hirae and E. faecium

delineated them as follow: E. faecalis (12.5 %), E. hirea
(31.25 %), E. durans (18.75 %) and E. faecium (37.5 %) while
E. casseliflavus was not detected as shown in Figs. 2 and 3.

Antibiotic susceptibility
A very high multi-resistance to antibiotics tested was ob-
served among the isolates. All the isolates were resistant
to most of the drugs tested against them with vancomycin,
streptomycin and cloxacillin have 100 % resistance re-
spectively. Among the 12 antimicrobial agents tested, the
frequencies of resistances to penicillin G (91 %), clinda-
mycin (98.72 %), ciprofloxacin (77.5 %), erythromycin
(98.72 %), neomycin (93.8 %), amikacin (85 %), cephalo-
thin (86.3 %) were among the highest while those of
imipenem (16.3 %) and amoxicillin/clavulanate (20 %)
were least frequent. The phenotypic multi-resistance
patterns of the isolates are shown in Table 4 while the
percentage resistance is in Fig. 4. All Enterococcus iso-
lates were resistant to at least two different classes of
antibiotics, with 300 (93.8 %) isolates being resistant to
five or more antibiotics. Overall, all the isolates recov-
ered demonstrated relatively high resistance levels to
agents that are used in the farms which includes peni-
cillin, erythromycin that is selected by tylosin and quin-
olones (advocin).

Correlation between antibiotic resistance phenotype and
genotype
Specific resistance genes were detected in corresponding
phenotypic antibiotic-resistant isolates (Table 5) and some
of the detected resistance genes are shown in Figs. 5 and
6. The detected genes include those conferring resistance

Table 5 Predominant multi-resistance pattern observed among
the isolates

No. of isolates Multiple antimicrobial resistance pattern (phenotypic)

320 V/CD/S/E/-/CX/PG/NE/INI/CIP

7 V/CD/S/E/AK/CX/PG/NE/KF/CIP/AUG

2 V/IMI/CD/S/E/-/CX/PG/NE/KF

12 V/CX/E/S/PG/CD/CIP/KF/NE

250 V/CD/S/E/AK/CX/PG/NE/KF

V = Vancomycin, CD = Clindamycin; S = Streptomycin, E = Erythromycin; CIP =
Ciprofloxacin; PG = Penicillin G; NE = Neomycin; IMI = Imipenem; KF =
Cephalothin; AK = Amikacin; AUG = Amoxicillin/Clavulanic acid

1 2 3 4 5 6 7 8 9 10 11 12 13

360bp

299bp

Fig. 4 Phenotypic antibiotic resistance of the Enterococcus isolates recovered from this study
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to streptomycin an aminoglycosides (strA), erythromycin
a macrolides (ermB), and vancomycin a glycopeptide
(vanB, vanC1, vanC2/3). The vanB, vanC1, vanC2/3,
ermB, and strA genes were present in majority of the iden-
tified species of Enterococcus that exhibited phenotypic
resistance.

Genetic prevalence of virulence genes among the isolates
Among the virulence genes tested, only ace, gelE and esp
genes were detected in all almost all the isolates that
were genetically profiled. The other virulence genes (cylA,
hylA, and efaA) were not detected. The prevalence of the
virulence genes detected among the isolates is shown in
Table 6. The frequencies of the virulence genes are; ace
(96.88 %), gelE (93.13 %) and esp (67.8 %). Fig. 7 represents
the gel picture of the ace and gylE detected while esp was
not shown.

Discussion
Enterococcus, which exist commensally in the gut of
warm-blooded animals and humans, are opportunistic
pathogens that cause a variety of community-acquired
and health care–associated infections, such as urinary
tract and intra-abdominal infections, bacteremia, and
endocarditis [26]. Previous reports have shown that epi-
demiologically distinct Enterococcus spp. possess viru-
lence genes that enable them to establish infections in
their host [27] as well as demonstrate high antimicrobial

resistance occasioned by their ability to genetically acquire
and transmit antimicrobial drug resistant determinants
among themselves and other bacteria in their environ-
ment [28]. Therefore, we characterized all isolates with re-
spect to these traits. Out of a total of 400 fecal samples
collected from breeder pig farms, presumptive isolates re-
covered from bile aesculine azide medium were 320 and
were confirmed as Enterococcus spp.by PCR targeting the
tuf gene of the genus Enterococcus. Further characterization
of the confirmed 320 isolates by species specific primers de-
lineated them into four species; E. faecium, E. hirae, E.
durans and E. faecalis in order of their prevalence. Our
findings are in partial agreement with those of Hwang[29]
who reported a preponderance of E.feacium and E.feacalis
in fecal samples of poultry and swine collected at slaughter-
houses in South Korea and [30].
The presence of 6 virulence-associated genes (gelE,

hylA, ace, esp, efaA and cylA) was investigated by using
gene specific primers that have been described elsewhere
[25]. Out of the 6 virulence genes investigated, only
three; ace, gelE and esp were detected among the 320
isolates. Our findings are in near agreement with that of
Diarra [31] who reported the presence of glyE in all iso-
lates they studied in broiler chicken but quite different
from that of Mannu [25] who did not detect gelE and
ace in meat, cheese and vegetable samples that they ana-
lyzed. The main role of both gelatinase and serine prote-
ase in enterococcal pathogenesis is thought to be in

582bp

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6 Gel image of amplicons obtained from erythromycin resistant isolates. Lane 1 is 100 bp ladder, lane 2 negative control and lanes 3 to 11
are ermB (320 bp) positive samples
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providing nutrients to the bacteria by degrading host
tissue and also functions in biofilm formation [32].
Gelatinase (GelE) is an extracellular zinc metallo-
endopeptidase secreted by E. faecalis [33, 34]. It is able
to hydrolyse gelatin, casein, haemoglobin and other bio-
active peptides. The gene (gelE) encoding GelE is located
on the chromosome and is regulated in a cell-density-
dependent manner. Zou [35] reported also a moderately
high presence of efa, gelE and ace virulence genes
among E. faecalis isolated from swine in China.
The isolates were generally homogenous in terms of

presence of virulence-associated genes and it appears
from our study that the incidence of known virulence
factors in Enterococcus is generally high with majority of
the strains carrying more than one virulence determinant.
The genes encoding efaA, hylA and cylA were how-

ever not detected. According to Shankar [32], the esp
gene encodes an enterococcal surface protein (Esp),
which contributes to the colonization and infection of
the urinary tract by increasing attachment to epithelial
surfaces and biofilm production.
Besides having a huge arsenal of insusceptibilities to

physicochemical and environmental stresses [13], En-
terococcus generally possess a broad spectrum of natural
antibiotic resistances [26]. The propensity for multiple
antibiotic resistances is a hallmark of Enterococcus. All
Enterococcus are naturally (intrinsically) resistant to many
antimicrobial agents such as semisynthetic penicillins (e.g.,
oxacillin), cephalosporins of all classes, monobactams and
polymyxins [37]. Notably, most of the isolates in our study

were resistant to the antimicrobials in the panel. Multiple
drug resistances were observed among the isolates with
the commonest patterns being those of vancomycin,
erythromycin and streptomycin. In a study conducted by
Diarra [31] on the distribution of antimicrobial resistance
of Enterococcus spp. in broiler chicken in Canada, they
reported a very high level of antimicrobial resistances
among their isolates. However, they did not detect vanco-
mycin resistance among their isolates except in few species
of E. gallinarum where vanC gene was present making our
finds differ a bit from theirs. Similarly, Peters [38] also re-
ported a similar pattern of occurrence of multidrug resist-
ant strains in a study on assessment of species distribution
and antibiotic resistance patterns of enterococcal from
food of animal origin in Germany. Brown [39] has reported
that if glycopeptide resistant enterococci (GRE) are present
in an infected patient rather than an antibiotic-susceptible
strain, clinical treatment failure is increased by 20 % and
mortality is increased from 27 % to 52 %.
The very high level of resistance among the isolates

against ciprofloxacin is quite alarming as this is the drug
of choice in the treatment of several bacterial infections.
It is useful for treating chest, urinary tract, prostatitis,
gastroenteritis, bone and joint infections, and some sexu-
ally transmitted diseases. Our findings are also in agree-
ment with those of Zou [35] who reported a high level of
resistances to erythromycin and ciprofloxacin among En-
terococcus spp. isolated from swine in China.
The high prevalence of ciprofloxacin resistance could be

attributed to the use of advocin a veterinary approved drug
that has danofloxacin as it active ingredient. Danofloxacin
is a synthetic fluoroquinolone with broad spectrum anti-
bacterial activity and it is commonly used in the treatment
of respiratory disease in chickens, cattle and pigs. Since
there is similarity in structure and mode of action be-
tween ciprofloxacin and danofloxacin, the possibility of
cross resistance arising is very high. Genetic investiga-
tion of the isolates for the presence of resistance genes
yielded amplicons for the ermB, strA, vanB and vanC1/
2/3 respectively. The findings in this study are in agree-
ment with previously reported cases of high prevalence of
multiple resistances among enterococcal strains of animal
origin [40–50]. Noble [51] reported that the genes

320bp

1 2 3 4 5 6 7 8 9 10 11

Fig. 7 Agarose gel image of amplicons obtained from a multiplex PCR performed with four Primers specific for the ace and gelE virulent genes of
Enterococcus species isolated in this study. Lane 1 is 100 bp ladder, lane 2 negative control and lanes 3 to 13 (ace 320 and gelE 402) are
representatives of the positive isolates identified in this study

Table 6 Prevalence of virulent genes amplified from the study
isolates

Virulent genes Number of positive

ace 310(96.88 %)

ge/E 298(93.13 %)

efaA 0

hylE 0

cylA 0

esp 217(67.8 %)

efaA = E.faecalis antigen A; gelE = gelatinase Ace = Adhesion of collagen
in E.faecalis
Eesp = surface protein; cylA = cytolysin; hylE = hyaluronidase
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responsible for vancomycin resistance have the poten-
tial to be transferred to other gram-positive pathogens
such as Staphylococcus aureus thus intensifying the
public health threat associated with vancomycin and
methicillin-resistant S. aureus [52–54, 57–59]. Our find-
ings are also in line with those of Jackson [55] that
reported a very high level of aminoglycosides among en-
terococcal isolated from swine.
The prevalence of antimicrobial resistance among the

isolates according to species distribution appears homoge-
neous as no one species showed disparity with regards to
the antimicrobials tested. The high-level resistances among
the isolates to neomycin and streptomycin which are the
drugs of choice in therapeutic regiments for enterococcal
endocarditis should be a major cause of concerns.
Antibiotics may be disseminated into the environment

from both human and agricultural sources, including
excretion, flushing of old and out-of-date prescriptions,
medical waste, discharge from wastewater treatment fa-
cilities, leakage from septic systems and agricultural
waste-storage structures [56].
Any use of antibiotics will most likely select for drug-

resistant bacteria especially when applied at subtherapeutic
levels as in animal feed. Among the various uses for antibi-
otics, low-dose, prolonged courses of antibiotics among
food animals have the capacity of creating ideal selective
pressures for the evolution and selection of resistant
strains. Spread of resistance may occur by direct contact or
indirectly through food, water, and animal waste applica-
tion to farm fields. It could also be augmented greatly by
the horizontal transfer of genetic elements such as plas-
mids via bacterial mating (conjugation). For example,
Alexander [60], showed that drug-resistant Escherichia coli
was present on beef carcasses after evisceration and after
24 h in the chiller and in ground beef stored for 1 to 8 days.
Equally ciprofloxacin-resistant Campylobacter spp. have
been isolated from 10 % to 14 % of consumer chicken
products [61, 62] while de Boer [63], have reported the
presence of MRSA in 12 % of beef, veal, mutton, pork,
turkey, fowl, and game samples purchased in the consumer
market in the Netherlands as well as in cattle dairy prod-
ucts in Italy [64]. Equally disturbing are the reports of ex-
tensive antibiotic resistance among bacteria isolates,
including human pathogens, from farmed fish and market
shrimp [65–66].

Conclusion
The prevalence of multiple antibiotic resistance entero-
cocci from fecal samples of pigs is reported here. The
data presented showed that the Enterococcus strains that
were profiled have the capacity to cause infection as well
as having a wide genetic repertoire to survive under
antimicrobial pressure. These findings are relevant to
public health and contribute to future risk assessment of

antimicrobial resistance in zoonotic bacteria. A high-
level rate of resistance to aminoglycosides, macrolides
and vancomycin might pose a serious risk in hospitals,
as antimicrobial therapy in human medicine could be-
come more limited. These findings suggest that Entero-
coccus spp. from swine should be treated with utmost
caution as they could be reservoirs for antimicrobial re-
sistance and virulence genes.

Abbreviations
VREs: vancomycin-resistant Enterococcus spp; AGPs: antimicrobial growth
promoters; ace: collagen binding cell wall protein; acm: surface-exposed
antigen; agg: aggregative pheromone-inducing adherence to extra-matrix
protein; esp: enterococcal surface protein; hyl: hyaluronidase; gelE: gelatinase;
HIV: human immunodeficiency virus; AIDS: acquired immune deficiency
syndrome; PCR: polymerase chain reaction; DNA: deoxyribonucleic acid.

Authors’ contribution
BCI collected the fecal samples and performed the experiments,
BCI, LCO and AIO analyzed data of the study as well as wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
The authors wish to thank the University of Fort Hare and the South Africa
Medical Research Council for financial support. The managements of the
farms used in this study are appreciated.
Disclosure Statement/Conflict of interest statement
Authors declare that no competing financial interests exist.

Author details
1SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare,
Alice 5700Eastern Cape, South Africa. 2Applied and Environmental
Microbiology Research Group, Department of Biochemistry and
Microbiology, University of Fort Hare, Alice 5700Eastern Cape, South Africa.
3Academic and Research Division, University of Fort Hare, Alice 5700Eastern
Cape, South Africa.

Received: 17 January 2015 Accepted: 18 June 2015

References
1. Liliana L-M, Diana M, Bessa LJ. A^ ngelo Mendes,Augusto J. de Matos, and

Paulo Martins da Costa. Spread of multidrug-resistant Enterococcus faecalis
within the household setting. microbial drug resistance. 2014. doi:10.1089/
mdr.2013.0217.

2. Werner G: Current Trends of Emergence and Spread of Vancomycin-Resistant
Enterococci. http://www.ecdc.europa.eu/en/publications/Publications/
1011_SUR_Annual_Epidemiological_Report_on_Communicable_Diseases_
in_Europe.pdf Accessed 20/10/2014. 3)

3. Ghosh A, KuKanich K, Brown CE,and Zurek L: Resident Cats in Small Animal
Veterinary Hospitals Carry Multi-Drug Resistant Enterococci and are Likely
Involved in Cross-Contamination of the Hospital Environment Front Microbiol.
2012; 3: 62. doi: 10.3389/fmicb.2012.00062

4. Coburn PS, Baghdayan AS, Dolan GT and Shankar N: Horizontal transfer of
virulence genes encoded on the Enterococcus faecalis pathogenicity island.
Mol Microbiol. 2007; 63: (2), 530–544 DOI: 10.1111/j.1365-2958.2006.05520.

5. Nallapareddy SR, Singh KV, Silanpaa J, Garsin DA, Hook M, Erlandsen SL, et
al. Endocarditis and biofilm associated pili of Enterococcus faecalis. J Clin
Invest. 2006;116:2799–807.

6. Willems RJ, van Schaik W. Transition of Enterococcus faecium from commensal
organism to nosocomial pathogen. Future Microbiol. 2009;4:1125–35.

7. Nam S, Kim MJ, Park C, Park JG, Lee GC. Detection and genotyping of
vancomycin-resistant Enterococcus spp. by multiplex polymerase chain
reaction in Korean aquatic environmental samples. Int J Hygiene Environ
Health. 2012;216(4):421–7. doi:10.1016/j.ijheh.2012.12.004.

8. Ballard SA, Grabsch EA, Johnson PD, Grayson ML. Comparison of three PCR
primer sets for identification of vanB gene carriage in feces and correlation
with carriage of vancomycin-resistant enterococci: interference by

Iweriebor et al. BMC Microbiology  (2015) 15:136 Page 9 of 11

http://dx.doi.org/10.1089/mdr.2013.0217
http://dx.doi.org/10.1089/mdr.2013.0217
http://www.ecdc.europa.eu/en/publications/Publications/1011_SUR_Annual_Epidemiological_Report_on_Communicable_Diseases_in_Europe.pdf
http://www.ecdc.europa.eu/en/publications/Publications/1011_SUR_Annual_Epidemiological_Report_on_Communicable_Diseases_in_Europe.pdf
http://www.ecdc.europa.eu/en/publications/Publications/1011_SUR_Annual_Epidemiological_Report_on_Communicable_Diseases_in_Europe.pdf
http://dx.doi.org/10.3389/fmicb.2012.00062
http://dx.doi.org/10.1111/j.1365-2958.2006.05520
http://dx.doi.org/10.1016/j.ijheh.2012.12.004


vanB-containing anaerobic bacilli. Antimicrob Agents Chemother.
2005;49:77–81.

9. Lester CH, Hammerum AM. Transfer of vanA from an Enterococcus faecium
isolate of chicken origin to a CC17 E. faecium isolate in the intestine of
cephalosporin-treated mice. J Antimicrob Chemother. 2010;65:1534–6.

10. Top J, Willems R, Bonten M. Emergence of CC17 Enterococcus faecium:
from commensal to hospital-adapted pathogen. FEMS Immunol Med
Microbiol. 2008;52:297–308.

11. Bearman GML, Wenzel RP. Bacteraemias: a leading cause of death. Arch
Med Res. 2005;36:646–59.

12. Woodford N, Adebiyi AM, Palepou MF, Cookson BD. Diversity of VanA
glycopeptide resistance elements in enterococci from humans and
nonhuman sources. Antimicrob Agents Chemother. 1998;42:502–8.

13. Facklam RR, Carvalho MGS, Teixeira LM. History, taxonomy, biochemical
characteristics, and antibiotic susceptibility testing of enterococci. In:
Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB, editors.
The enterococci: pathogenesis, molecular biology, and antibiotic resistance.
Washington, DC: ASM Press; 2002. p. 1–54.

14. Dutka-Malen S, Molinas C, Arthur M, Courvalin P. Sequence of the vanC
gene of Enterococcus gallinarum BM4174 encoding a D-alanine: D-alanine
ligase-related protein necessary for vancomycin resistance. Gene. 1994;112:53–8.

15. Leclercq R, Derlot E, Weber M, Duval J, Courvalin P. Transferable vancomycin
and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents
Chemother. 1989;33:10–5.

16. Werner G, Serr A, Schütt S, Schneider C, Klare I, Witte W, et al. Comparison
of direct cultivation on a selective solid medium, polymerase chain reaction
from an enrichment broth, and the BD GeneOhm™ VanR Assay for
identification of vancomycin-resistant enterococci in screening specimens.
Diagnos Microbiol Infect Dis. 2011;70:512–21.

17. Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, et al.
Human and swine hosts share vancomycin-resistant Enterococcus faecium
CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring
Tn1546 on indistinguishable plasmids. J Clin Microbiol. 2011;49:925–31.

18. Boerlin P, Wissing A, Aarestrup FM, Frey J, Nicolet J. Antimicrobial growth
promoter ban and resistance to macrolides and vancomycin in enterococci
from pigs. J Clin Microbiol. 2001;39:4193–5.

19. Hancock LE, Gilmore MS. Pathogenicity of enterococci. In: Fischetti VA,
Novick RP, Ferretti JJ, Portnoy DA, Rood JI, editors. Gram-positive pathogens.
2nd ed. Washington, DC: ASM Press; 2006.

20. Klibi NK, Slama B, Saenz Y, Masmoudi A, Zanetti S, Sechi LA, et al. Detection
of virulence factors in high-level gentamicin-resistant Enterococcus faecalis
and Enterococcus faecium isolates from a Tunisian hospital. Can. J. Microbiol.
2007;53:372–9.

21. Valenzuela AS, Omar NB, Abriouel H, Lo’pez RL, Veljovic K, Can˜amero MM,
et al. Virulence factors, antibiotic resistance, and bacteriocins in enterococci
from artisan foods of animal origin. Food Cont. 2009;20:381–5.

22. Danbing K, Picard FJ, Martineau F, Ménard C, Roy PH, Ouellette M, et al.
Development of a PCR Assay for Rapid Detection of Enterococci. J Clin
Microbiol. 1999;37(11):3497–503.

23. Jackson CR, Fedorka-Cray PJ, Barrett JB. Use of a Genus-and Species-Specific
Multiplex PCR for Identification of Enterococci. JClin Microbiol.
2004;42(8):3558. doi:10.1128/JCM.42.8.3558-3565.

24. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial
Susceptibility Testing; Twenty-Fourth Informational Supplement 2014.

25. Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, et al. Comparison
of the incidence of virulence determinants and antibiotic resistance
between Enterococcus faecium strains of dairy, animal and clinical origin.
Int J Food Microbiol. 2003;88:291–304.

26. Arias CA, Murray BE. Enterococcus species, Streptococcus bovis group and
Leuconostoc species. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell,
Douglas and Bennett’s principles and practice of infectious diseases. 7th ed.
Philadelphia: Elsevier; 2010. p. 2643–53.

27. Larsen J, Schønheyder HC, Lester CH, Olsen SS, Porsbo LJ, Garcia-Migura L.
Porcine-origin gentamicin-resistant Enterococcus faecalis in humans,
Denmark. Emerg Infect Dis. 2010;16:682–71.

28. Fisher K and Phillips C. The ecology, epidemiology and virulence of
Enterococcus. Microbiol. 2009;. 155: 1749–1757 DOI 10.1099/mic.0.026385-0.

29. Hwang IY, Ho K, Lim SK, Park CK, Jung GS, Jung SC, et al. (2009). Species
distribution and resistance patterns to growth-promoting antimicrobials of
enterococci isolated from pigs and chickens in Korea. J Vet Diag Invest.
2009;21(6):858–62. doi:10.1177/104063870902100616.

30. Dang Son Thi Thanh Andreas P, Dung Van T, Huong Thi Thanh C, Anders D.
Impact of medicated feed on the development of antimicrobial resistance
in bacteria at integrated Pig-fish farms in Vietnam. Appl Environ Microbiol.
2011;77(13):4494–8.

31. Diarra MS, Champagne J, Rempel H, Topp E, Greer CW, Harel J, et al.
Distribution of antimicrobial resistance and virulence genes in Enterococcus
spp. and characterization of isolates from broiler chickens. Appl Environ
Microbiol. 2010;76:8033–43.

32. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS,
Johnson DE. Role of Enterococcus faecalis surface protein Esp in the
pathogenesis of ascending urinary tract infection. Infect Immun. 2011;69:4366–72.

33. Nallapareddy SR, Singh KV, Okhuysen PC, Murray BE. A functional collagen
adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates
with the recent success of this emerging nosocomial pathogen. Infect
Immun. 2008;76:4110–9.

34. Sifri CD, Mylonakis E, Singh KV, Qin X, Garsin DA, Myurray BE, et al. Virulence
effect of Enterococcus faecalis protease genes and the quorum-sensing locus
fsr in Caenorhabditis elegans and mice. Infect Immun. 2002;70:5647–50.

35. Zou LK, Wang HN, Zeng B, Li JN, Li XT, Zhang AY, et al. Erythromycin
resistance and virulence genes in Enterococcus faecalis from swine in
China. New Microbiol. 2011;234(1):73–80.

36. Garcia-Migura L, Pleydell E, Barnes S, Davies RH, Liebana E. Characterization
of Vancomycin-Resistant Enterococcus faecium Isolates from Broiler Poultry
and Pig Farms in England and Wales. J Clin Microbiol.
2005;43(Suppl7):3283–9.

37. Peters J, Mac K, Wichmann-Schauer H, Klein G, Ellerbroek L. Species distribution
and antibiotic resistance patterns of enterococci isolated from food of animal
origin in Germany. Int J Food Microbiol. 2003;88:311–4.

38. Brown DFJ, Brown NM, Cookson BD, Duckworth G, Farrington M, French GL,
et al. National glycopeptide-resistant enterococcal bacteraemia surveillance
Working Group report to the Department of Health. J Hosp Infect. 2006;62
Suppl 1:1–27.

39. Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the
nature of the problem and an agenda for the future. Emerg Infect Dis.
1998;4:239–49.

40. Bager F, Madsen M, Christensen J, Aarestrup FM. Avoparcin used as a
growth promoter is associated with the occurrence of vancomycin resistant
Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med.
1997;31:95–112.

41. Bates J, Jordens JZ, Griffiths DT. Farm animals as a putative reservoir for
vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother.
1994;34:507–14.

42. Bates J. Epidemiology of vancomycin-resistant enterococci in the community and
the relevance of farm animals to human infection. J Hosp Infect. 1997;37:89–101.

43. Berchieri A. Intestinal colonization of a human subject by vancomycin
resistant Enterococcus faecium. Clin Microbiol Infect. 1999;5:97–100.

44. Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why
are they here, and where do they come from? Lancet Infect Dis. 2001;1:314–25.

45. Borgen K, Wasteson Y, Kruse H, Willems RJ. Vancomycin resistant
Enterococcus faecium (VREF) from Norwegian poultry cluster with VREF from
poultry from the United Kingdom and The Netherlands in an amplified
fragment length polymorphism genogroup. Appl Environ Microbiol.
2002;68:3133–7.

46. Boyd DA, Willey BM Fawcett D, Gillani N, Mulvey MR. “Molecular
characterization of Enterococcus faecalis N06-0364 with low-level vancomycin
resistance harboring a novel D-Ala-D-Ser gene cluster, vanL,”. Antimicrob
Agents Chemother. 2008;52 Suppl 7:2667–72.

47. Cetinkaya Y, Falk P, Mayhall CG. “Vancomycin resistant enterococci,”. Clin
Microbiol Rev. 2000;13(4):686–707.

48. Spigaglia P, Barbanti F, Mastrantonio P. on behalf of the European Study
Group on Clostridium difficile (ESGCD): Multidrug resistance in European
Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011;66:2227–34.

49. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y, et al. vanM, a new glycopeptide
resistance gene cluster found in Enterococcus faecium. Antimicrob Agents
Chemother. 2010;54:4643–7.

50. Noble WC, Virani Z, Cree RG. Co-transfer of vancomycin and other resistance
genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus.
FEMS Microbiol Lett. 1992;72:195–8.

51. Iversen A, Kuhn I, Franklin A, Mollby R. High prevalence of vancomycin-resistant
enterococci in Swedish sewage. Appl Environ Microbiol. 2002;68:2838–42.

Iweriebor et al. BMC Microbiology  (2015) 15:136 Page 10 of 11

http://dx.doi.org/10.1128/JCM.42.8.3558-3565
http://dx.doi.org/10.1099/mic.0.026385-0
http://dx.doi.org/10.1177/104063870902100616


52. Aarestrup FM, Hasman H, Jensen LB, Moreno M, Herrero IA, Dominguez L, et al.
Antimicrobial resistance among enterococci from pigs in three European
countries. Appl Environ Microbiol. 2002;68:4127–9.

53. Aarestrup FM, Kruse H, Tast E, Hammerum AM, Jensen LB. Associations
between the use of antimicrobial agents for growth promotion and the
occurrence of resistance among Enterococcus faecium from broilers and
pigs in Denmark, Finland, and Norway. Microb Drug Resist. 2000;6:63–70.

54. Jackson CR, Fedorka-Cray PJ, Barrett JB, Ladely SR. 2005. High-level aminoglycoside
resistant enterococci isolated from swine. Epidemiol Infect. 2005;133:367–71.

55. Sarmah AK, Michael T, Meyer MT, Boxall ABA. A global perspective on the
use, sales, exposure pathways, occurrence, fate and effects of veterinary
antibiotics (VAs) in the environment. Chemosph. 2006;65:725–59.

56. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister
S, et al. Vancomycin-resistant Staphylococcus aureus isolate from a patient in
Pennsylvania. Antimicrob Agents Chemother. 2004;48:275–80.

57. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, et al.
Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus
aureus. Sci. 2003;302:1569–71.

58. Lebreton F, Depardieu F, Bourdon N. D-Ala-D-Ser VanN-type transferable
vancomycin resistance in Enterococcus faecium. Antimicrobial Agents and
Chemother. 2011;55 Suppl 10:4606–12.

59. Alexander TW, Inglis GD, Yanke LJ, Topp E, Read RR, Reuter T, et al. Farm-to-fork
characterization of Escherichia coli associated with feedlot cattle with a known
history of antimicrobial use. Int J Food Microbiol. 2010;137:40–8.

60. Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP, Friedman CR, et al.
Antimicrobial resistance among Campylobacter strains, United States, 1997–2001.
Emerg Infect Dis. 2004;10:1102–9.

61. Smith KE, Besser JM, Hedberg CW. Quinolone-resistant Campylobacter jejuni
infections in Minnesota, 1992–1998. N Engl J Med. 1999;340:1525–32.

62. de Boer E, Zwartkruis-Nahuis JT, Wit B, Huijsdens XW, de Neeling AJ, Bosch
T, et al. Prevalence of methicillin-resistant Staphylococcus aureus in meat.
Int J Food Microbiol. 2009;134:52–6.

63 Normanno G, Corrente M, Salandra GL, Dambrosio A, Quaglia NC, Parisi A, et al.
Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin
product in Italy. Int J Food Microbiol. 2007;117:219–22.

64. Duran GM, Marshall DL. Ready-to-eat shrimp as an international vehicle of
antibiotic-resistant bacteria. J Food Prot. 2005;68:2395–401.

65. Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ. Human
health consequences of use of antimicrobial agents in aquaculture. Clin
Infect Dis. 2009;49:1248–53.

66. Sorum H. Antibiotic resistance in aquaculture. Acta Vet Scand. 1999;92:29–36.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Iweriebor et al. BMC Microbiology  (2015) 15:136 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Ethical clearance
	Study population and sampling
	Laboratory detection of Enterococcus spp.
	DNA Extraction
	Molecular confirmation of the isolates
	Species identification
	Antibiotic sensitivity testing
	Detection of antibiotics resistance genes
	Screening for virulence genes in Enterococcus spp.

	Results
	Antibiotic susceptibility
	Correlation between antibiotic resistance phenotype and genotype
	Genetic prevalence of virulence genes among the isolates

	Discussion
	Conclusion
	Abbreviations
	Authors’ contribution
	Acknowledgments
	Author details
	References



