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Abstract
Background: Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen
exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in
the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature.
How estrogen may support or promote vascular lesions is not clear. We have examined in this study
whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species
(ROS), and estrogen-induced ROS is involved in the growth of endothelial cells.

Methods: The effect of estrogen on the production of intracellular oxidants and the role of estrogen-
induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by
monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was
measured by a colorimetric immunoassay based on BrdU incorporation into DNA.

Results: Physiological concentrations of estrogen (367 fmol and 3.67 pmol) triggered a rapid 2-fold
increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal
levels by cotreatment with the mitochondrial inhibitor rotenone (2 µM) and xanthine oxidase inhibitor
allopurinol (50 µM). Inhibitors of NAD(P)H oxidase, apocynin and DPI, did not block E2-induced ROS
formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS.
These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated
vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which
was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 µM) and NAC (1 mM)
inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The
observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown to be dose
dependent.

Conclusion: We have shown that estrogen exposure stimulates the rapid production of intracellular ROS
and they are involved in growth signaling of endothelial cells. It appears that the early estrogen signaling
does not require estrogen receptor genomic signaling because we can inhibit estrogen-induced DNA
synthesis by antioxidants. Findings of this study may further expand research defining the underlying
mechanism of how estrogen may promote vascular lesions. It also provides important information for the
design of new antioxidant-based drugs or new antioxidant gene therapy to protect the cardiovascular
health of individuals sensitive to estrogen.
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Background
In contrast to previous findings indicating cardioprotec-
tive effects of estrogen [1], recent primary and secondary
trials of combined oral contraceptives and hormone
replacement therapy have found no benefit for coronary
heart disease, instead they showed an increase risk for
stroke and venous thrombosis [2]. Estrogen increases
inflammation and it may trigger coronary events in
advanced atherosclerotic lesions [3]. At the average age of
menopause, a substantial proportion of women have ele-
vated atherosclerotic lesions, and a smaller proportion
already has advanced lesions. The use of synthetic estro-
gens can produce thromboembolic disorders. An
increased incidence of deep vein phlebitis and pulmonary
embolism has been reported in young women who use
oral contraceptives [4]. Intracranial venous thrombosis
and secondary increases in the risk of stroke have also
been noted. In experimental animal studies, estrogen has
been shown to promote stroke in hypertensive rats [5],
produce severe degenerative atherosclerotic effects on cor-
onary arteries [6], and increase susceptibility to early
atherosclerosis in male mice via the estrogen receptor-
(ER) α [7]. Human studies have implicated the dysregula-
tion of the ERα signaling pathway in the development of
cardiovascular disease in men. The Framingham Heart
Study showed that a higher risk of myocardial infarction
was common to males with ERα gene (ESR1) variant [8].
Men with the ESR1 variant also showed more complex
atherosclerotic plaque pathology [9]. Whether there is an
association of myocardial infarction in women with the
ESR1 variant and if there is a significant interaction with
elevated estrogen exposure has yet to be determined.
These findings suggest that estrogen is harmful to the car-
diovascular system, but how exposure to excess or ele-
vated level of estrogen produces adverse effects to the
cardiovascular system is not clear.

Elevated estrogen exposure is known to increase inflam-
mation [10] which is implicated in the development of
vascular lesions [11]. Advanced atherosclerotic lesions are
characterized by abnormal cell proliferation that can lead
to vascular blockage, myocardial infarction, and stroke
[12]. Although several different cell types, including vas-
cular smooth muscle cells, inflammatory cells, and fibrob-
lasts are involved in this vasculoproliferative process; we
recognize endothelial cells to be the initial site of injury
because it reacts with physical and chemical stimuli
within the circulation. Atherosclerotic lesions have been
proposed to occur as a result of the monoclonal expan-
sion of a mutated vascular cell [13]. Estrogen is known to
increase vascular endothelial cell proliferation [14].
Therefore elevated estrogen exposure from hormone
replacement therapy or oral contraceptives has the poten-
tial to promote the expansion of abnormal proliferative
vascular lesions and subsequent thickening of the vascula-

ture. At the molecular level how estrogen supports or pro-
motes these atherosclerotic lesions is not clear. Therefore,
the aim of this study was to investigate whether 17β-estra-
diol (E2)-induced ROS signaling is involved in the stimu-
lation of the growth of endothelial cells.

Methods
Cell culture conditions and treatments
Human umbilical vein endotheilial cells (HUVECs) were
obtained from American Type Culture Collection (Manas-
sas, VA). Cells were grown in endothelial cell basal
medium-2 (EBM-2) supplemented with EGM 2-MV Sin-
gle-Quots (Cambrex/BioWhittaker, Walkersville, MD).
Target tissue levels of 17β-estradiol (E2) are reported to
range from 69.8 fmol/g to 679.9 fmol/g of tissue among
postmenopausal women [15]. We will focus our study
using concentrations of E2 (367 fmol and 3.67 pmol per
ml medium) which are equivalent to physiological and
pharmacological levels found in the target tissues. The
effects of E2 treatments (367 fmol and 3.67 pmol/ml
medium) on oxidant formation and DNA synthesis were
studied under the following culture conditions: 70–80%
confluent cultures were washed and serum starved in phe-
nol red-free medium (mammary epithelium basal
medium; Cambrex/BioWhittaker) for 3 h. Thereafter, the
cells were treated with E2 for the indicated time periods.
The effect of chemical inhibitors (rotenone, allopurinol,
apocynin, DPI, L-NAME) and antioxidants (N-acetyl-
cysteine and ebselen) was studied by pretreating the cells
for 3 h prior to E2 exposure.

Measurement of reactive oxygen species (ROS)
Cells were seeded at a concentration of 20 × 103 cells per
well in black 96-well plates. Cells were pretreated with
various antioxidants or inhibitors in Hank's balanced salt
solution (HBSS) followed by incubation with 10 µM of
2'7'-dichlorofluorescin-diacetate (DCFH-DA) (Molecular
Probes, Oregon) for 15 min. DCFH-DA stock solution was
diluted at a 1:1 ratio with Pluronic® F-127 (20% w/v).
Cells were then rinsed with HBSS followed with various
treatments described in the figure legends. DCFH-DA is a
non-fluorescent cell-permeable compound, which is
acted upon by endogenous esterases that remove the ace-
tate groups generating DCFH. In the presence of intracel-
lular ROS, DCFH is rapidly oxidized to the highly
fluorescent 2', 7'-dichlorofluorescein (DCF). The oxida-
tive products were measured with a Tecan Genios micro-
plate reader using 485 nm and 535 nm as excitation and
emission filters, respectively. In addition, DAF-FM diace-
tate (4-amino-5 methylamino-2',7'-difluorofluorescein
diacetate) and dihydroethidium (Molecular Probes) were
used to specifically measure nitric oxide and superoxide
anion.
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BrdU cell proliferation assay
HUVECs were plated in 96-well plates at a density of
7,500 cells/well and incubated at 37°C with 5% CO2
overnight for attachment. In each experimental set, cells
were plated in triplicates and were washed and incubated
for 3 h prior to treatments in serum-free mammary epithe-
lium basal medium devoid of phenol red. Cells were
treated with E2 in the presence or absence of antioxidants
for 18 h. Cellular proliferations were measured by colori-
metric immunoassay based on BrdU incorporation into
the cellular DNA by following the instructions recom-
mended by the vendor (Cell Proliferation ELISA, BrdU
Kit; Roche Molecular Biochemical, Indianapolis, IN).
Briefly, cells were pulsed with BrdU labeling reagent for 3
h followed by fixation in FixDenat solution for 30 min at
room temperature. Thereafter, cells were incubated with
1:100 dilution of anti- BrdU-POD for 1 h at room temper-

ature. Finally, the immunoreaction was detected by add-
ing the substrate solution and the color developed was
read at 370 nm with a Tecan Genios microplate reader.

Statistical analysis
Results are expressed as mean ± S.D. Differences between
means were evaluated by two-tailed Student's t-test.
ANOVA was used to determine differences between
groups.

Results
E2-induced ROS production
To evaluate whether E2 can trigger the rapid formation of
intracellular oxidants, HUVECs were seeded in 96-well
plates and pre-incubated with the redox-sensitive fluores-
cent dye DCFH-DA. Estrogen treated HUVECs showed a
dose-dependent rapid production of ROS when exposed
to E2 (Figure 1). The similar increase was not observed in
cells exposed to vehicle. The E2-induced ROS formation
continued beyond 90 min (data not shown). This is in
agreement with our previous finding in breast epithelial
cells [16]. To identify the source of intracellular ROS, we
tried to suppress E2 triggered ROS production using selec-
tive chemical blockers. In HUVECs that were co-treated
with the mitochondrial complex I inhibitor rotenone, we
observed a significant reduction of E2-induced ROS to the

Antioxidant N-acetylcysteine suppresses the level of estro-gen-induced ROS in endothelial cellsFigure 2
Antioxidant N-acetylcysteine suppresses the level of estro-
gen-induced ROS in endothelial cells. DCF intensity was 
measured in endothelial cells co-treated with antioxidants to 
verify E2-induced oxidant production. Human umbilical vein 
endothelial cells pretreated with the antioxidant N-acetyl-
cysteine (NAC) showed a significant reduction of E2-induced 
oxidants to the level of control. Data from three independ-
ent experiments are presented as ROS production with con-
trols set at 100% (± SD). Values that are significantly different 
from E2 treatment alone (P < 0.05) are indicated with an 
asterisk (*).
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Estrogen stimulates the formation of reactive oxygen species in endothelial cellsFigure 1
Estrogen stimulates the formation of reactive oxygen species 
in endothelial cells. Intracellular reactive oxygen species 
(ROS) production was determined by measuring the intensity 
of DCF. Human umbilical vein endothelial cells showed a 
dose dependent increase in oxidant production after 5 min of 
17β-estradiol (E2) exposure. Pretreatment with the mito-
chondrial chemical inhibitor, rotenone (ROT), significantly 
reduced the level of E2 stimulated oxidant formation. Xan-
thine oxidase inhibitor, allopurinol (ALP), also showed a sig-
nificant reduction of oxidant production in E2 treated 
endothelial cells. Co-treatments with the NADPH oxidase 
inhibitors, apocynin and DPI, did not decrease the produc-
tion of oxidants in E2 treated cells. An inhibitor of nitic oxide 
synthase, L-NAME, also did not show any inhibitory effect on 
oxidant production in E2 treated endotheial cells. Concen-
trations of chemical inhibitors were as follows: rotenone (2 
µM), allopurinol (50 µM), apocynin (30 µM), DPI (2.5 µM), 
and L-NAME (50 µM). Data from three independent experi-
ments are presented as ROS production with controls set at 
100% (± SD). Values that are significantly different from E2 
treatment alone (P < 0.05) are indicated with an asterisk (*).
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level of control (Figure 1). The level of ROS in rotenone
only treated cells was similar to cells exposed to only vehi-
cle (data not shown). We also observed a significant
decrease in E2-induced oxidants when HUVECs were co-
treated with the xanthine oxidase inhibitor allopurinol
(Figure 1). Allopurinol only treated cells showed a level of
ROS equal to basal intracellular levels of vehicle alone
(data not shown). Thus, both rotenone and allopurinol
counteracted the increase of E2-induced ROS without
affecting the basal intracellular level. Our results excluded
the involvement of NAD(P)H oxidase since the selective
inhibitors diphenylene iodonium (DPI) and apocynin
did not prevent E2-induced oxidant formation. In addi-
tion, E2 stimulated ROS production remained unaffected
in the presence of the nitric oxide synthase blocker L-
NAME (Figure 1). To confirm the production of ROS by
E2, we pretreated HUVECs with the antioxidant N-acetyl-
cysteine (NAC) and the glutathione peroxidase mimic
ebselen for 3 h prior to estrogen treatment. A significant
reduction in E2-induced ROS was shown by the antioxi-
dant NAC (Figure 2) and ebselen (Figure 3). Based on
these findings we conclude that E2 can stimulate a rapid
production of intracellular ROS in endothelial cells by
mitochondria and xanthine oxidase.

Antioxidants suppress E2-induced DNA synthesis
We have shown that E2-induced ROS act as signal-trans-
ducing messengers that control the early G1/S transition of

G0-arrested estrogen dependent cells [17]. Therefore, we
tested the influence of antioxidants on E2-induced DNA
synthesis in vascular endothelial cells which is not consid-
ered to be an estrogen dependent tissue. E2-induced DNA
synthesis at 18 h was evaluated by BrdU incorporation. E2
produced a significant 2-fold induction of BrdU incorpo-
ration (Figure 4). The similar increase was not observed in
cells exposed to vehicle. We also evaluated the influence
of the glutathione peroxidase mimic ebselen on E2-
induced DNA synthesis. Cotreatment with ebselen (20
µM) significantly inhibited E2-induced DNA synthesis
compared to E2 alone. This inhibitory effect was shown to
be dose-dependent and suppressed E2-induced DNA syn-
thesis by as much as 60% (Figure 4). The co-treatment of
antioxidant NAC (1 mM) significantly decreased E2-
induced DNA synthesis by as much as 100% (Figure 5).
The NAC (1 mM) cotreatment with E2, which is equal to
the basal control level, did not inhibit DNA synthesis
which showed that NAC completely counteracted the E2-
induced BrdU incorporation without affecting the basal
levels of DNA synthesis. The inhibitory effect of NAC on
E2-induced DNA synthesis was shown to be dose depend-
ent.

Discussion
Until recently, only nuclear ER signaling has been consid-
ered to be the major mechanism for regulating the growth
of endothelial cells. High concentrations of E2 (10 µM)
have been shown to act as antioxidants in vitro [18]. In
contrast, our study used physiological concentrations of
E2 (367 fmol and 3.67 pmol per ml medium) which do
not act as antioxidants. Here we present data leading to
the major novel findings that: (i) physiological concentra-
tions of E2 trigger a rapid production of intracellular ROS
in endothelial cells and (ii) E2-induced DNA synthesis is
mediated by ROS signaling in endothelial cells. In our
model, cells were blocked at the G1/S phase boundary by
serum starvation and then pushed into S phase by the
addition of estrogen. We demonstrated that the antioxi-
dants ebselen and NAC block E2-induced DNA synthesis
or S phase progression. Like several growth factors such as
platelet-derived growth factor, epidermal growth factor,
and nerve growth factor that are known to stimulate ROS
and cell growth [19], our findings suggest that this under-
lying mechanism of cell growth is also shared with estro-
gen. Furthermore, the antioxidants NAC and ebselen,
which are not ER antagonist, prevented E2-induced ROS
mediated DNA synthesis and suggests that this signaling
mechanism does not rely on ER genomic signaling. The
conventional paradigm of estrogen action is based on
binding to its receptors, ERα/β, which initiates transcrip-
tion by binding to estrogen response elements of genes
involved in cell growth. Discrepancies between the bind-
ing affinity of various estrogens to the ER and their growth
potency both in vitro and in vivo have been reported

Glutathione peroxidase mimic inhibits the formation of estrogen-induced reactive oxygen speciesFigure 3
Glutathione peroxidase mimic inhibits the formation of 
estrogen-induced reactive oxygen species. Pretreatment with 
the glutathione peroxidase mimic ebselen showed a signifi-
cant reduction of E2-induced oxidants in endothelial cells. 
Data from three independent experiments are presented as 
ROS production with controls set at 100% (± SD). Values 
that are significantly different from E2 treatment alone (P < 
0.05) are indicated with an asterisk (*).
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[20,21]. Although selective ER modulators such as
tamoxifen and antiestrogens such as ICI 182,780 prevent
the growth of estrogen dependent cells, the contribution
of other mechanisms cannot be ruled out as these com-
pounds also block metabolism and redox cycling of estro-
gen, and are free radical scavengers [22].

Endothelial cells could conceivably generate ROS from an
NAD(P)H oxidase system, from xanthine oxidase or from
mitochondria. A variety of endothelial cell subtypes
express NAD(P)H oxidase, and this system has been
implicated in the signaling activated during mechanical
strain [23]. Since we have shown the dependence of E2-
induced mitochondrial ROS on the cytoskeleton [24], we
proposed that E2 could produce mitochondrial ROS via
the cytoskeleton because it has been shown to occur in
mechanical strained endothelial cells [25]. Several studies
have concluded that NAD(P)H oxidase is involved, on the
basis of the observation that strain-induced changes were
inhibited by diphenylene iodonium (DPI) [26,27]. How-
ever, the flavoprotein inhibitor DPI also blocks virtually
all cellular oxidase systems, including mitochondrial
complex I, nitric oxide (NO) synthase, and xanthine oxi-
dase [28]. Therefore, the inhibition by DPI is not specific
for NAD(P)H oxidases. Furthermore, NAD(P)H oxidase

activity has been shown not to increase while hydrogen
peroxide levels did increase in cyclic strained endothelial
cells [29]. This suggest that NAD(P)H oxidase may not be
responsible for E2-induced ROS in endothelial cells.

To identify the source of intracellular ROS, we tried to
suppress E2-induced ROS production using selective
chemical inhibitors (Fig. 1). The doses of pharmacologi-
cal inhibitors used in this study have been demonstrated
to be the lowest dose necessary to inhibit fluorescence in
unstrained cells [30]; these doses coincided with a 10-fold
increase from the dose reported to inhibit 50% of enzyme
activity for the targeted enzyme systems (apocynin for
NADPH oxidase, allopurinol for xanthine oxidase, L-
NAME for endothelial NO synthase (eNOS), and roten-
one for mitochondrial complex I). Our results excluded
the involvement of NAD(P)H oxidase because apocynin,
a more specific inhibitor compared to DPI [31], was inef-
fective in preventing ROS production. Since endothelial
cells release NO in response to estrogen activation of
eNOS which results in vasodilation [32] and NO can
potentially contribute to the oxidation of DCFH (43); we
evaluated the participation of reactive nitrogen species
(RNS) in the response to estrogen by inhibiting NO syn-
thesis with L-NAME. E2 stimulated DCFH oxidation
remained unaffected in the presence of the NOS inhibitor
L-NAME, instead we observed an increase in ROS produc-
tion. Pretreatment with rotenone, a specific blocker of
mitochondrial complex I, completely abolished E2-
induced ROS. Endothelial cells co-treated with the xan-
thine oxidase inhibitor allopurinol also showed a dra-
matic decrease in E2-induced ROS. Together this data
suggests that the both mitochondria and xanthine oxidase
are the source of ROS in estrogen treated vascular
endothelial cells. A possible mechanism for mitochon-
drial ROS formation by E2 is via the cytoskeleton. The
ligation of α5β1 integrins at the plasma membrane and
reorganization of the actin cytoskeleton has been shown
to mediate ROS production through the activation of Rac-
1 [33]. Whether estrogen can bind to integrins is not
known. Alternatively, E2 binding to a membrane estrogen
receptor could initiate the signal to mitochondria via the
cytoskeleton. More specifically, activation of Rac-1 may
modulate voltage dependent anion channel activity via
the cytoskeleton leading to a rise in mitochondrial mem-
brane potential and ROS formation [34,35].

To date, the specific, individual ROS that is most relevant
to vascular signaling pathophysiologically is yet identi-
fied. Nevertheless, selectively overproducing or removing
hydrogen peroxice (H2O2) significantly altered atherogen-
esis in animal models. Given that the DCFH probe is
more sensitive toward oxidation by H2O2 than superoxide
anion [36] and based on our results which show an
increase in E2-induced ROS production (Figure 1) that

Glutathione peroxidase mimic ebselen inhibits estrogen-induced DNA synthesisFigure 4
Glutathione peroxidase mimic ebselen inhibits estrogen-
induced DNA synthesis. Cellular proliferation in the control 
and the treated cultures was measured by colorimetric 
immunoassay based on BrdU incorporation into the cellular 
DNA. Pretreatment with the glutathione peroxidase mimic 
ebselen showed a significant reduction of E2-induced DNA 
synthesis in endothelial cells. Data from three independent 
experiments are presented as ROS production with controls 
set at 100% (± SD). Values that are significantly different 
from E2 treatment alone (P < 0.05) are indicated with an 
asterisk (*). Significant increases in DNA synthesis by E2 (P < 
0.05) are indicated by (#).
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can be blocked with H2O2 scavenging compounds NAC
(Figure 2) and ebselen (Figure 3); the identity of the E2-
induced oxidant appears to be H2O2. Our data is corrobo-
rated by studies showing that H2O2 increases, while anti-
oxidants such as catalase, sodium pyruvate, and
superoxide dismutase decrease HUVECs cell growth [37].
In experimental animals, selectively overproducing or
removing H2O2 significantly altered atherogenesis [38].
We previously showed that E2 exposure increases the
growth of macrophages and the secretion of the pro-
inflammatory cytokine TNF-α [10,39]. Taken together,
these data suggest that endothelial cells produce ROS in
response to E2 or indirectly in response to E2-induced
cytokines. Atherosclerotic lesions have been proposed to
occur as a result of the monoclonal expansion of a
mutated vascular cell [40]. Thus, E2-induced ROS in
endothelial cells may be an underlying mechanism for the
development of vascular lesions.

Conclusion
In summary, we have shown that E2 exposure of HUVECs
stimulates the rapid production of intracellular ROS that
is involved in signaling endothelial cell growth. It appears
that the early E2 signaling does not require ER mediated
genomic signaling because we can inhibit E2-induced
growth by antioxidants. The results from this study have
major implications in understanding the role of estrogen

in the development of vascular lesions which is highly rel-
evant to the cardiovascular health of individuals suscepti-
ble to harm from elevated estrogen exposure. Findings of
this study may further expand research defining the
underlying mechanism of how estrogen may promote
vascular lesions. It also provides important information
for the design of new antioxidant-based drugs or new anti-
oxidant gene therapy to protect the cardiovascular health
of individuals sensitive to estrogen.
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