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1 Introduction

The partial breaking of extended supersymmetry is closely linked to the physics of branes,

as was originally observed in [1, 2]. Different realizations of N = 2 Supersymmetry spon-

taneously broken to N = 1 [3–5] give rise to physically different non-linear Lagrangians

whose propagating degrees of freedom are an N = 1 vector multiplet, or alternatively

an N = 1 tensor multiplet or chiral multiplet, where the latter two options are dual to

one another. For instance, the Supersymmetric Born-Infeld action [6, 7] inherits from its

bosonic counterpart, which is the standard Born-Infeld action [8], its self-duality. How-

ever, the tensor and chiral multiplet actions enjoy a different type of duality, where an

antisymmetric tensor is turned into a scalar and/or vice versa. This new duality, which

we call double self-duality, leads to three dual Lagrangians, depending on whether the two

spinless massless degrees of freedom are described via a scalar and antisymmetric tensor,

two scalars or two antisymmetric tensors. While in the first case the action turns out to

be doubly self-dual [4], in the other cases a double duality maps one action into the other.

The three actions are also connected by a single duality affecting only one of the two fields.

As pointed out in [3, 5], in four dimensions the close connection between the Supersym-

metric Born-Infeld action and the non-linear tensor multiplet action stems from similarities

between the superspace N = 1 constraints underlying the two models. Indeed, introduc-

ing an N = 1 vector multiplet chiral field strength Wα = D
2
DαV (Dα̇Wα = 0) and the

corresponding object ψα = DαL (Dα ψβ = 0) for a linear multiplet (D 2L = D
2
L = 0), the

non-linear actions in the two cases are determined by the non-linear constraints

X = − W 2
α

µ − D
2
X

and X = − ψ 2
α

µ − D 2X
, (1.1)

where µ is a parameter with mass-square dimension that sets the supersymmetry breaking

scale. X is chiral in the first case, since Wα is a chiral superfield, and is antichiral in the
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second, since ψα is an antichiral one. However, the highest components of the equations

are identical, provided one maps the complex field

G 2
+ = F 2 + i F F̃ (1.2)

of the Born-Infeld action into the complex field

(∂φ)2 − H 2
µ + iHµ ∂µφ (1.3)

of the linear multiplet action, where

Hµ =
1

3!
ǫµνρσ ∂

ν Bρσ . (1.4)

For both systems, the non-linear Lagrangian is proportional to the F -component of the

chiral(antichiral) superfield X. This is subject to the constraint in (1.1), which implies in

both cases its nilpotency, X2 = 0 [9–12].

Supergravity models of inflation based on nilpotent superfields, starting from the

Starobinsky model constructed in [13], were recently proposed [14], and were found to place

interesting restrictions on model building [15, 16]. Nilpotent superfields are also closely re-

lated to “brane supersymmetry breaking” in String Theory [17–23], to the KKLT [24, 25]

construction [26] and to supersymmetry breaking in de Sitter vacua [27–29].

In this note we generalize the setup to pairs of forms in D dimensions having comple-

mentary field strengths

Hp+1 = dBp VD−p−1 = dAD−p−2 , (1.5)

so that one can write the geometrical term

Hp+1 ∧ Vd−p−1 . (1.6)

General duality properties for massless higher-form gauge fields, including some of the

models considered here, were previously studied by Kuzenko and Theisen in [30].

The tensor multiplet non-linear Lagrangian enjoys a double self-duality, in the following

sense. To begin with, one can either dualize the scalar into a two-form or the two-form

into a scalar. In both cases, the resulting Lagrangian involves two fields of the same type

and is symmetric under their interchange. Hence, double self-duality is guaranteed by

the symmetry, since two successive Legendre transforms yield the identity. This result

therefore applies to the class of non-linear Lagrangians related to the Born-Infeld one and

brought about by Supersymmetry, but also, in principle, to more general ones. All these

systems can be formulated in terms of a pair of complex Lagrange multipliers [5, 31]: the

first provides a non-linear constraint, whose solution determines the value of the second,

which in its turn determines the non-linear action in a square-root form. The pattern is

along the lines of what was discussed in detail in [32, 33].

The paper is organized as follows. In section 2 we derive the doubly self-dual action

that generalizes to D dimensions the tensor multiplet actions and contains a pairs of field

strengths of rank (p+1) and (D−p−1) (in particular, the four-dimensional tensor multiplet
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is recovered for the two choices p = 0 or p = 2). The square root action includes a quartic

term, which is the square of the geometrical coupling in eq. (1.6). The action obtained

after a single duality is then presented. It is again of square root form, but involves two

field strengths of identical rank, which can be either p+1 or D−p−1, and now the quartic

term takes a non-geometrical universal form, which vanishes for two identical fields. This

action exhibits a manifest U(1) symmetry.

In section 3 we elaborate on the four-dimensional case, where for p = 0, 2 the symmetric

action becomes a Nambu-Goto-like determinant, a property that does not hold for the

mixed tensor-multiplet action. In addition, we show that for p = 1 this construction leads

to a pair of two-field actions, which are displayed in eqs. (3.11) and (3.13) and differ in their

quartic terms. The former is a generalization of the Born-Infeld action and has an “electric-

magnetic” U(1) duality, while the latter has a manifest U(1) “electric” symmetry. Abiding

to a common practice, we call a continuous duality transformation of the field equations

“electric” if it does not mix electric and magnetic field strengths, or “electric-magnetic”

if it does. For p odd(even) the transformations have respectively diagonal(off-diagonal)

embeddings in Sp(2n,R) [34, 35]1 (SO(n, n) [37–40]).

In section 4 we consider the analogs of these four-dimensional two-field systems that

exist for D = 2(p + 1) and the corresponding continuous dualities. We show that for p

odd there is always a single U(1) duality, while for p even this extends to a U(1) × U(1)

symmetry, so that both theories of eqs. (4.1) and (4.2) realize the maximal continuous

duality. An interesting example concerns a pair of two-form gauge fields, which occur in

the K3 reduction of the type-IIB superstring [41] are also ubiquitous in six-dimensional

orientifold vacua [42–49, 51–53],2 for which these non-linear actions might play a role in

connection with the breaking of supersymmetry. Non-linear theories in even dimensions

with maximal duality were previously considered in [54].

In section 5 we propose massive generalizations of the doubly-self-dual Lagrangians,

following [57]. In this case one can start from the action for a pair of massless p-form gauge

fields and add a Green-Schwarz term [55] involving a pair of (D−p−1)-form gauge fields, to-

gether with a corresponding non-linear action for a pair of (D−p)-form field strengths. Go-

ing to a first-order form and integrating out the (D−p)-form field strengths, one is led to an

action containing a non-linear curvature term for the (p+1)-form field strengths and a non-

linear mass term for the two p-form gauge fields inherited from the original non-linear action

of the two dual (D−p−1)-form gauge fields. For D = 2(p+1) we also present an alternative

kinetic Lagrangian involving a geometric quartic term, and in a similar fashion in D = 2p

we present a Lagrangian with a geometric quartic coupling in the mass-like terms. Finally,

we discuss the alternative option of coupling together two non-linear Lagrangians for (p+

1, D−p−1) and (p,D−p) form field strengths, and using the p-form gauge field to give mass

to the (p+1)-form one. The end result is a Lagrangian involving one massive field and two

massless ones, and now the mass-like term for one field combines with the kinetic-like terms

of one of the massless ones. The paper ends in section 6 with some concluding remarks.

1For a recent review see [36].
2For reviews see [50].
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2 Massless dualities

Let us begin by considering the Lagrangian

L = µ2

[
1 −

√

1 +
X

µ2
− Y 2

µ4

]
, (2.1)

in D dimensions and with a mostly positive signature, which was also proposed in [30].

Here we shall reconsider its doubly self-dual nature, in view of the discussion of section 5,

since the dual forms of eqs. (4.1) and (4.2) will play a role in connection with non-linear

massive deformations of Stueckelberg type.

In form language3

X = − ⋆

[
Hp+1 ∧ ⋆Hp+1 + VD−p−1 ∧ ⋆ VD−p−1

]
,

Y = ⋆

[
Hp+1 ∧ VD−p−1

]
, (2.2)

with Hp+1 a (p+1)-form and VD−p−1 a (D− p− 1)-form, and Hp+1 = dBp and VD−p−1 =

dAD−p−2. Alternatively, in components

X =
1

(p+ 1)!
H2 +

1

(D − p− 1)!
V 2 ,

Y =
1

(p+ 1)!(D − p− 1)!
ǫa1...aD Ha1...ap+1

Vap+2...aD , (2.3)

with

Ha1...ap+1
= (p+ 1) ∂[a1 Ba2...ap+1] , Va1...aD−p−1

= (D − p− 1) ∂[a1 Aa2...aD−p−1] . (2.4)

One can linearize the Lagrangian (2.1) introducing four real Lagrangian multipliers v,

u, a1 and a2, as in [5]. The first eliminates the square root, the second reduces its content

to a quadratic expression and the others linearize some ratios. All in all, one is thus led to

L =
µ2

2
ℑ
[
(a ā − 2 a)λ + 2 i a − 1

µ2
Gλ

]
, (2.5)

where a = a1 − i a2, λ = u+ i v and G = X − 2 i Y .

Varying in the Lagrangian (2.5) the multiplier λ leads to

G + µ 2 a (2 − ā) = 0 , (2.6)

and then letting F = µa, m = 2µ and G2
+ = G, one can recover the Born-Infeld equation

in the form used and generalized in [32, 33],

G2
+ + F (m − F̄ ) = 0 . (2.7)

3The ⋆ outside the brackets converts a top form into a zero-form, a step that is clearly necessary to

describe these non-linear actions.
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In order to integrate out Hp+1, let us turn to a first-order form introducing the dual

(D − p− 1)-form gauge field UD−p−1 = dCD−p−2, and let us add to the Lagrangian (2.5)

the term

− ⋆

[
Hp+1 ∧ UD−p−1

]
. (2.8)

Integrating out Hp+1 then turns the total Lagrangian into

L =
µ2

2
ℑ [(a ā − 2 a)λ+ 2 i a] −

(u2 + v2)V 2
D−p−1 + U2

D−p−1 − 2u (VD−p−1 · UD−p−1)

2 v
.

(2.9)

In terms of the convenient shorthand notations

R2
r = − ⋆

[
Rr ∧ ⋆Rr

]
, (Rr · Sr) = − ⋆

[
Rr ∧ ⋆Sr

]
, (2.10)

after integrating out the auxiliary fields one finally obtains

L = µ2


1−

√

1 +
V 2
D−p−1 + U2

D−p−1

µ2
+

V 2
D−p−1 U

2
D−p−1 − (VD−p−1 · UD−p−1)

2

µ4


 . (2.11)

Introducing the new complex (D − p− 1)-form

WD−p−1 = VD−p−1 + i UD−p−1 , (2.12)

the Lagrangian (2.10) takes the form

L = µ2


1 −

√

1 +
WD−p−1 · W̄D−p−1

µ2
+

(
WD−p−1 · W̄D−p−1

)2 −W 2
D−p−1 W̄

2
D−p−1

4µ4


 .

(2.13)

A particular case of this correspondence for p = 0, 1 and D = 3, in which case vectors are

dual to scalars, was considered in [56].

Let us now perform a double dualization, under which the Lagrangian (2.1) maintains

its original form. To begin with, let us add the terms

− ⋆

[
Hp+1 ∧ UD−p−1 + Kp+1 ∧ VD−p−1

]
(2.14)

involving the dual gauge fields in order to move to a first-order form, and let us then

integrate out Hp+1 and VD−p−1, obtaining

L =
µ2

2
ℑ [(a ā − 2 a)λ + 2 i a] − 1

2

v

u2 + v2
X1 − u

u2 + v2
Y1 , (2.15)

where

X1 = K2
p+1 + U2

D−p−1 ,

Y1 = ⋆

[
Kp+1 ∧ UD−p−1

]
. (2.16)
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Eliminating the axillary fields recovers the initial Lagrangian

L = µ2


 1 −

√

1 +
X1

µ2
− Y 2

1

µ4


 . (2.17)

Let us mention here that the Lagrangian (2.14) can also be recast in a form similar to

eq. (2.5),

L =
µ2

2
ℑ
[
(b b̄ − 2b)λ1 + 2 i b − 1

µ2
G1 λ1

]
, (2.18)

with b = b1 − i b2, λ1 = u1 + i v1 and G1 = X1 − 2 i Y1 . Here

v1 =
v

u2 + v2
, u1 = − u

u2 + v2
, (2.19)

and moreover

b1 =
−u2 − v2 + v +

√
(u+ a2v)

2 (−1 + u2 + v2) + (1 + (a1 − 1) v)2 (u2 + v2)

v
,

b2 = a2 . (2.20)

3 Dualities in four dimensions

Let us now discuss the case ofD = 4 in more detail, starting from the Lagrangian containing

one scalar field ϕ and one tensor field Bµν . This corresponds to the choices p = 2 or p = 0,

and

L = µ2

[
1 −

√
1 +

1

6µ2
Hµ νλHµ νλ +

1

µ2
∂µϕ∂µϕ − 1

36µ4
(ǫµ νλ δ Hµ νλ ∂δϕ)

2
]
,

(3.1)

where Hµ νλ = 3 ∂[µ Bνλ ].

One can now turn Bµν into another scalar field χ by a Legendre transformation, adding

to the Lagrangian the term

− 1

6
ǫµ νλ δ Hµ νλ ∂δχ , (3.2)

which turns it into a first-order form. It is instructive to perform these steps directly,

without resorting to the introduction of auxiliary fields at intermediate stages. The field

equation of Hµ νλ is then

∂δ χ =

Y
µ2 ∂δ ϕ + 1

6 ǫµ νλ δ H
µ νλ

√
A

, (3.3)

where A identifies the expression under the square root in eq. (3.1), and

Y =
1

6
ǫµ ν λ δ Hµ νλ ∂δ ϕ . (3.4)

Substituting into the last term of the Lagrangian gives

L = µ2

[
1 −

1 + 1
µ2 ∂α ϕ ∂α ϕ
√
A

]
. (3.5)
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One can now reconstruct in a similar fashion the other expressions ∂µ χ∂µ χ, ∂µ χ∂µ ϕ,

and finally

L = µ2


 1 −

√

1 +
∂µ χ ∂µ χ+ ∂µ ϕ ∂µ ϕ

µ2
+

(∂µ χ ∂µ χ) (∂µ ϕ ∂µ ϕ) − (∂µ χ ∂µ ϕ)2

µ4




(3.6)

or, introducing the complex field z = ϕ+ iχ,

L = µ2


 1 −

√

1 +
∂µ z ∂µ z̄

µ2
+

(∂µ z ∂µ z̄)2 − (∂µ z ∂µ z) (∂µ z̄ ∂µ z̄)

4µ4


 . (3.7)

One can also trade ϕ for an additional tensor field. To this end, one is to replace ∂µϕ with

a vector field Vµ in eq. (3.1) to then add to the initial Lagrangian the term

− 1

6
ǫµ νλ δ Kµ νλ Vδ , (3.8)

where Kµ νλ = 3 ∂[µ Cνλ ].

Varying L with respect to Vµ now yields

Kµ νλ =

Y
µ2 Hµ νλ + ǫµ νλ δ V

δ

√
A

, (3.9)

and again one can reconstruct the expressions Kµ νλK
µ νλ, Kµ νλH

µ νλ, obtaining eventu-

ally

L = µ2


1−

√

1 +
KµνλKµνλ +HµνλHµνλ

µ2
+

KµνλKµνλHαβγHαβγ − (KµνλHµνλ)
2

µ4


 .

(3.10)

The other case of interest corresponds to p = 1, and involves a pair of vectors Bi
µ and

the non-linear Lagrangian

L = µ2

[
1 −

√
1 +

1

2µ2

(
F 1
µ ν F

1 µ ν + F 2
µ ν F

2 µ ν
)
− 1

16µ4

(
ǫµ νλ δ F 1

µ ν F
2
λ δ

)2
]
,

(3.11)

where F i
µ ν = 2 ∂[µ Bi

ν ]. The dualization now requires the addition to the Lagrangian of

− 1

4
ǫµ νλ δ F 1

µ ν G
1
λ δ , (3.12)

with G1
µ ν = 2 ∂[µ C1

ν ], and proceeding as above one ends up with

L = µ2


1−

√

1 +
G1

µνG
1 µν + F 2

µνF
2 µν

2µ2
+

G1
µνG

1 µνF 2
αβF

2 αβ −
(
G1

µνF
2 µν

)2

16µ4


 . (3.13)
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Notice that the equations of motion of the Lagrangian (3.11) are invariant under a

U(1) electric-magnetic duality, as can be seen from the fact that the constraint

ǫµνρσ

[
−4

∂L
∂F 1

µν

∂L
∂F 2

ρσ

+ F 1µν F 2 ρσ

]
= 0 (3.14)

holds. On the other hand, the full Lagrangian (3.13) is manifestly invariant under an U(1)

rotation, consistently with the fact that the constraint [34–36]

ǫµνρσ

[
∂L

∂G1
µν

F 2 ρσ − ∂L
∂F 2

ρσ

G1µν

]
= 0 , (3.15)

where the preceding one is mapped by the Legendre transform, does not mix electric and

magnetic components.

4 Dualities in D = 2 (p + 1)

It is interesting to investigate continuous dualities in the general case D = 2 (p+ 1) for

the two classes of Lagrangians

L = µ2


1−

√√√√
1 +

(F 1
p+1)

2 + (F 2
p+1)

2

µ2
+

(F 1
p+1)

2(F 2
p+1)

2 −
(
F 1
p+1 · F 2

p+1

)2

µ4


 , (4.1)

L = µ2


1−

√√√√
1 +

(F 1
p+1)

2 + (F 2
p+1)

2

µ2
−

(
⋆
[
F 1
p+1 ∧ F 2

p+1

])2

µ4


 , (4.2)

where the precise meaning of the symbols is spelled out in eq. (2.10). To this end, let us

also recall that in D dimensions and with given “mostly positive” signature

⋆ ⋆F i
p+1 = (−1)p F i

p+1 , Fp+1 ∧Gp+1 = −(−1)pGp+1 ∧ Fp+1 . (4.3)

For a pair of fields, the corresponding duality groups are in general contained in the

maximal compact subgroup U(2) of Sp(4, R) for p odd, and in the maximal compact

subgroup U(1) × U(1) of SO(2, 2) for p even [34–40]. For a general theory involving n

(p+ 1)-form field strengths F̂ı in D = 2(p+ 1) dimensions and their duals Gi, where

G̃i = (p+ 1)!
∂L
∂F i

, (4.4)

the duality conditions read4

Gi G̃j + F i F̃ j = 0 , (4.5)

Gi F̃ j − Gj F̃ i = 0 , (4.6)

4Here, for instance, G
i
G̃

j , is a shorthand notation for a total index contraction. In form language

G
i
G̃

j = ⋆
[
G

i ∧G
j
]
.
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and will hold for a subset of the available values of i and j. This subset must identify

a subgroup of the maximal duality group, which is U(n) for p odd and SO(n) × SO(n)

for p even. With reference to what we stated in the Introduction, an electric duality

transformation corresponds to diagonal matrices when embedded in Sp(2n,R) or SO(n, n),

while an electric-magnetic transformation corresponds to off-diagonal ones. These two

classes of matrices result in the two classes of constraints of eqs. (4.6) and (4.5).

The two maximal duality groups obtain when the conditions (4.6) hold for all values

of i and j. The infinitesimal transformations for these groups are generated by the 2n×2n

matrices

Mp odd =

(
a b

− b a

)
, a = −aT , b = bT , (4.7)

Mp even =

(
a b

b a

)
, a = −aT , b = −bT . (4.8)

In our case n = 1, 2 and each of the theories in eqs. (4.1) and (4.2) is invariant under a

U(1) subgroup of the maximal duality group. The constraints that hold are in the first

case

G1 F̃ 2 − G2 F̃ 1 = 0 , (4.9)

and in the second

G1 G̃2 + F 1 F̃ 2 = 0 . (4.10)

For the model of eq. (4.1), the matrix M takes the same form,

(
i σ2 0

0 i σ2 ,

)
(4.11)

for both p even and p odd, since this U(1) does not mix electric and magnetic components.

On the other hand, for the model of eq. (4.2) the matrix is purely off-diagonal and takes

the form (
0 σ1

−σ1 0

)
(4.12)

for p odd, and (
0 i σ2

i σ2 0

)
(4.13)

for p even.

Actually, for p even there is more, since the topological term in eq. (4.1) has a U(1)

invariance. As a result, eqs. (4.1) and (4.2) have an additional U(1) symmetry, and thus

satisfy corresponding constraints, which are respectively

G1 G̃2 + F 1 F̃ 2 = 0 , (4.14)

G1 F̃ 2 − G2 F̃ 1 = 0 . (4.15)

– 9 –
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Therefore, the maximal U(1)×U(1) duality symmetry is realized for both models. One of

the two U(1) factors is a manifest electric rotation, while the other is a genuine electric-

magnetic duality.

Note that for p odd a theory could allow, in principle, five types of duality symmetry,

where the electric part is diagonal and rest is off-diagonal. This implies that the electric

part is always U(1) or is absent when the magnetic part is U(1), so that the five cases

correspond to U(1)electric, U(1)magnetic, U(1) × U(1), SU(2) and SU(2) × U(1). Our

Lagrangians for p odd only possess a U(1) duality, which is diagonal for eq. (4.1) and

off-diagonal for eq. (4.2). On the other hand, a simple example of a Born-Infeld-like

Lagrangian that admits an SU(2) symmetry is

L = µ2


 1 −

√

1 +
Fp+1 · F p+1

µ2
−

(⋆ [Fp+1 ∧ Fp+1])
(
⋆
[
F p+1 ∧ F p+1

])

µ4


 , (4.16)

where Fp+1 = F 1
p+1 + iF 2

p+1 is a complex field strength and the symbols are defined in

eq. (2.10). Note that the Lagrangian of eq. (4.16), unlike that of eq. (4.2), has a manifest

U(1) electric symmetry but also maintains the original electric-magnetic U(1), so that in

this case eqs. (4.14) and (4.15) are simultaneously satisfied.

5 Massive dualities

Let us start from the Lagrangian

L = µ2


1 −

√√√√
1 +

(H1
p+1)

2 + (H2
p+1)

2

µ2
+

(H1
p+1)

2 (H2
p+1)

2 −
(
H1

p+1 ·H2
p+1

)2

µ4


 (5.1)

+ν2


1 −

√√√√
1 +

(F 1
D−p)

2 + (F 2
D−p)

2

ν2
+

(F 1
D−p)

2 (F 2
D−p)

2 −
(
F 1
D−p · F 2

D−p

)2

ν4


 ,

where H i
p+1 = dBi

p are (p + 1)-forms and F i
D−p are (D − p)-forms, and i = 1, 2. Let us

stress that in these expressions D and p are arbitrary.

One can now add masses introducing the Green-Schwarz [55] terms

− ⋆

[
miB

i
p ∧ F i

D−p

]
, (5.2)

in a first-order form for F i
D−p obtained adding to the Lagrangian the terms

− ⋆

[
Ai

p ∧ F i
D−p

]
, (5.3)

where Ai
p = dCi

p−1 is p-form. As a result

∂L
∂F i

D−p

= Ai
p + miB

i
p , (i = 1, 2) (5.4)
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and whenever a mass term mi is not vanishing one can eliminate the term involving Ai
p by

a gauge transformation, ending up with

L = µ2


1−

√√√√
1 +

(H1
p+1)

2 + (H2
p+1)

2

µ2
+

(H1
p+1)

2 (H2
p+1)

2 −
(
H1

p+1 ·H2
p+1

)2

µ4


(5.5)

+ν2


1−

√

1 +
m2

1(B
1
p)

2 +m2
2(B

2
p)

2

ν2
+ m2

1m
2
2

(B1
p)

2 (B2
p)

2 −
(
B1

p ·B2
p

)2

ν4


 .

In the special case D = 2(p + 1), one can also start from a µ-dependent Lagrangian

with a geometric term, and the same steps then lead to

L = µ2


1 −

√√√√
1 +

(H1
p+1)

2 + (H2
p+1)

2

µ2
−

(
⋆
[
H1

p+1 ∧H2
p+1

])2

µ4


 (5.6)

+ ν2


1 −

√

1 +
m2

1(B
1
p)

2 +m2
2(B

2
p)

2

ν2
+ m2

1m
2
2

(B1
p)

2 (B2
p)

2 −
(
B·

pB
2
p

)2

ν4


 .

On the other hand, when D = 2 p one can start from ν-dependent Lagrangian with a

geometric term, obtaining

L = µ2


1 −

√√√√
1 +

(H1
p+1)

2 + (H2
p+1)

2

µ2
+

(H1
p+1)

2 (H2
p+1)

2 −
(
H1

p+1 ·H2
p+1

)2

µ4




+ ν2


1 −

√

1 +
m2

1(B
1
p)

2 +m2
2(B

2
p)

2

ν2
− m2

1m
2
2

(
⋆
[
B1

p ∧B2
p

])2

µ4


 . (5.7)

As a last example, let us consider the Lagrangian

L = µ2

[
1 −

√

1 +
X

µ2
− Y 2

µ4

]
+ ν2


 1 −

√

1 +
X0

µ2
− Y 2

0

µ4


 , (5.8)

where X, Y are defined in eq. (2.2) and

X0 = F 2
p + G2

D−p ,

Y0 = ⋆

[
Fp ∧ GD−p

]
. (5.9)

In this case one can introduce a single mass, introducing the Green-Schwarz [55] term

− ⋆

[
mBp ∧ GD−p

]
, (5.10)
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in a first-order form for GD−p that can be reached adding to the Lagrangian the term

− ⋆

[
Ap ∧ GD−p

]
, (5.11)

where Ap = dCp−1 is p-form. As a result

∂L
∂GD−p

= Ap + mBp , (5.12)

and whenever the mass term m is not vanishing one can eliminate the term involving Ap

by a gauge transformation, ending up with

L = µ2

[
1 −

√

1 +
X

µ2
− Y 2

µ4

]

+ν2


 1 −

√

1 +
(Fp)2 +m2 (Bp)2

ν2
+ m2

(Fp)2 (Bp)2 − (Fp ·Bp)
2

ν4


 . (5.13)

6 Concluding remarks

This paper was motivated by intriguing analogies among different of non-linear Lagrangians

for N = 2 → N = 1 partial supersymmetry breaking in four dimensions introduced in [3–

5]. These realizations differ in the nature of the supermultiplet that hosts the goldstino

mode of the broken supersymmetry, and yet the two cases of the vector multiplet and of

the tensor (linear) multiplet rest on superfields strengths of opposite chiralities subject

to similar non-linear constraints. This fact has direct implications for the mathematical

structure of the corresponding non-linear Lagrangians, especially when they are formulated

in terms of auxiliary fields, as emphasized in the Introduction. Moreover, a standard duality

between linear and chiral multiplets converts the non-linear Lagrangian for the tensor

multiplet into a Nambu-Goto Lagrangian for a chiral multiplet. This state of affairs affords

direct generalizations in D dimensions for pairs of form field strengths of complementary

degrees p+ 1 and D − p− 1. These systems enjoy a double duality when these forms are

interchanged, while they acquire a manifest U(1) symmetry after a single duality turns them

into systems for pairs of forms of the same degree. Additional duality properties are present

for D = 2(p+1), when the two original forms have the same degree. In these cases the field

equations of the original two-form system in eq. (4.1) acquire a continuous U(1) electric-

magnetic duality for p odd, or a U(1)×U(1) duality, where the first factor is electric and the

second is electric-magnetic, for p even. For p = 1 and D = 4, one is thus led to a two-field

Born-Infeld action that admits a U(1) electric-magnetic duality that interchanges the two

fields. For p odd, we also presented in eq. (4.16) a different two-field non-linear Lagrangian,

a complexification of the Born-Infeld theory that admits an SU(2) duality. The final section

was devoted to the massive deformations induced in these models by four-dimensional

Green-Schwarz [55] terms, along the lines of [57]. These patterns of continuous dualities

and the ensuing non-linear constraints provide explicit realizations in non-linear systems of

the general framework for duality rotations proposed by Gaillard and Zumino in [34–36].
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[44] P. Hořava, Strings on world sheet orbifolds, Nucl. Phys. B 327 (1989) 461 [INSPIRE].
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