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Abstract Several investigations show that in a very small
length scale there exist corrections to the entropy of black
hole horizon. Due to fluctuations of the background metric
and the external fields the action incorporates corrections.
In the low energy regime, the one-loop effective action in
four dimensions leads to trace anomaly. We start from the
Noether current corresponding to the Einstein–Hilbert plus
the one-loop effective action to calculate the charge for the
diffeomorphisms which preserve the Killing horizon struc-
ture. Then a bracket for the charges is calculated. We show
that the Fourier modes of the bracket are exactly similar to the
Virasoro algebra. Then using the Cardy formula the entropy
is evaluated. Finally, the explicit terms of the entropy expres-
sion is calculated for a classical background. It turns out that
the usual expression for the entropy; i.e. the Bekenstein–
Hawking form, is not modified.

1 Introduction and motivation

One of the striking features of general relativity is its deep
connection with the laws of thermodynamics. A “marriage”
between the general theory of relativity (GR) and quantum
mechanics shows that black holes behave as thermodynamic
objects with a Hawking temperature TH = κ/2π and an
intrinsic entropy given by the Bekenstein–Hawking area law,
S = Ah/4G, where κ is the surface gravity and Ah is the area
of the horizon [1–5] (for recent reviews see [6,7]). It should
be noted that the interpretation of classical black hole laws
in terms of black hole thermodynamics has become possible
due to taking into account quantum mechanical effects, lead-
ing to Hawking radiation. Also we could readily obtain the
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same area dependence of entropy and that leads to a kind of
universality for the above result.

Although thermodynamic interpretations were first obser-
ved in black hole solutions, such features are much more
general. It has been observed that the accelerated observer
on a Minkowski spacetime also associates temperature and
entropy on the Rindler horizon. This originates with the
Unruh effect [8]. This leads us to think that the static observer
(black hole) and the Rindler observer (accelerated frame) are
to be treated on the same footing. The reality is much more
general. In a local region one can always have a null surface
which is not a solution of the Einstein equation and on which
an entropy functional can be associated such that evalua-
tion of it on the null surface leads to the entropy expression.
Moreover, the extremization of it leads to the Einstein equa-
tions. This is very important in the context of the emergent
paradigm of gravity [9]. Such a local concept implies that
the notion of entropy is much more fundamental and that it
must be an observer-dependent quantity. Hence any analy-
sis leading to it must have an observer-dependent off-shell
description.

For the more general class of theories including higher
curvature terms in the action the Bekenstein–Hawking area
law no longer applies. However, assuming the zeroth law, the
first law can be derived in this class of covariant actions [10].
Here the Noether charge corresponding to the diffeomor-
phism symmetry, calculated over the spatial cross-sections
of the horizon, plays the role of entropy. This mode of think-
ing has two important aspects, which are as follows:

• These results imply that the connection between gravity
and thermodynamics is valid well beyond the Einstein the-
ory of gravity. It only requires some general argument,
like covariance and the principle of equivalence (In some
modified gravity theories without the equivalence princi-
ple one can construct black hole solutions, first laws, and
thermal radiation [11,12]).
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• It is also possible to attribute an observer-dependent
entropy to any null surfaces (which need not be event hori-
zons).

So far the results are well valid in the classical regime. On
a very small length scale, like the Planck length, quantum
effects have to be incorporated, particularly since the fluctu-
ations of the metric and the external fields cannot be ignored.
Then the classical results have to be modified. One way to
include these effects is to find the effective action corre-
sponding to the fluctuations. It modifies the partition func-
tion and hence the entropy [13]. It turns out that in GR the
leading order correction to the entropy is logarithmic in the
horizon area [14] and the coefficient of it is related to the
trace anomaly. Similar results have been achieved in sev-
eral methods (see for example [15–21]), but the value of the
coefficient depends on the particular model for calculating
the entropy. On the other hand, the entanglement of quan-
tum fields between inside and outside of horizon approach
leads to power law corrections [22]. Hence it is evident
that the existence of corrections is universal and one would
expect an identical situation in a method of computing the
entropy.

One of the interesting ways to understand this universal-
ity is by the Noether charge prescription. This will be done
for the anomalous effective action due to the fluctuations of
the quantum fields, which leads to the trace anomaly in four
dimensions. The one-loop effective action can be determined
by the effective field theory technique. In the low energy
limit, if one breaks the conformal symmetry the resulting
theory leads to the trace anomaly [23–26]. In [27,28], an
attempt has been done by evaluating the Noether charge
corresponding to the GR action plus this one-loop effective
action for a Killing vector. It must be noted that the charge
was derived by using the equation of motion and so the anal-
ysis is on-shell. Here we will present a completely off-shell
analysis.

So far no attempts have been made to quantify the degrees
of freedom which are responsible for such a universality. This
issue we will discuss in the context of the Virasoro algebra
and the Cardy formula. The method was first introduced in
the context of gravity by Brown and Hannueax [29] and later
developed by Carlip [30]. Although the method has been fol-
lowed up in several gravity theories [31–35], no discussion
exists of this in the presence of the one-loop effective action
which leads to the trace anomaly. Here we will fill up this
blank. Our analysis will be followed from a recent work of
one of the authors [35]. The key features of the calculation
are:

(i) The whole analysis will be off-shell;, i.e. no equation of
motion will be used.

(ii) The derivation of the current corresponding to the total
action (i.e. the Einstein–Hilbert part plus the one-loop
effective action) is off-shell and it is off-shell conserved.

These are essential since, as we have argued earlier, the notion
of entropy has a general sense beyond the concept of the black
hole horizon.

Let us first summarize the methodology. The main step is
to define a bracket among the charges. In a previous work of
one of the authors [35], an off-shell definition of the bracket
has been given for any general covariant Lagrangian in terms
of the arbitrary diffeomorphism vector and Noether current.
Here we will use this definition where an explicit form of
the current will be taken for the present theory. To evaluate
it the diffeomorphism vectors will be chosen using Carlip’s
formalism [30]. This essentially tells that the vectors are cho-
sen in such a way that they are asymptotically Killing vec-
tors near the horizon so that the asymptotic Killing horizon
remains invariant. It turns out that the Fourier modes of the
bracket are similar to the standard form of the Virasoro alge-
bra which has a central extension. Then the central charge
and the zero mode eigenvalue are automatically identified.
Substituting these in the Cardy formula [36,37] we obtain
the expression for the entropy. We will show that the entropy
will incorporate no correction for a classical background
to the usual Bekenstein–Hawking expression. Physically this
analysis tells that some of the degrees of freedom (DOF),
which were originally gauge DOF, are raised to true DOF,
which leads to an entropy. Since this is happening due to the
imposition of a particular condition on the diffeomorphisms,
the DOF responsible for the entropy are observer dependent.
This has been elaborated earlier in more detail in [32–34].

The organization of our paper is as follows. In Sect. 2
we present an analysis for a general covariant Lagrangian.
First the form of the Noether charge for a general covari-
ant Lagrangian is given. Next we give the expressions for the
Fourier modes of the charge and the central term correspond-
ing to the diffeomorphisms which keep the Killing horizon
structure invariant and are asymptotically Killing vector near
the horizon. Section 3 is devoted to an explicit calculation of
these quantities for the anomalous effective action. We then
find the entropy using the Cardy formula. Finally, we con-
clude in Sect. 4. For completeness, an appendix has been
given at the end of the paper.

2 Virasoro algebra and central term: a general
approach

The recent progress in black hole thermodynamics shows
that the microscopic features may not be too sensitive to the
details of quantum gravity as the derivations for black hole
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temperature and entropy only use semiclassical gravity. In
order to achieve this it was first pointed out by Strominger
that a quantum state calculation should rely on symmetry
[38]. In an earlier work, Brown and Henneaux [29] showed
that (2 + 1)-dimensional gravity has an asymptotic symme-
try consisting of a Virasoro algebra with central extension,
implying that any microscopic quantum theory should be a
conformal field theory. Strominger noticed that the use of the
above central charge in the Cardy formula [36,37] leads to
the usual Bekenstein–Hawking entropy. This implies that the
asymptotic symmetries might shed some light on the calcula-
tion of the density of states, leading to the statistical descrip-
tion of entropy. The limitations of the earlier works are that
they use the asymptotic AdS symmetry, which is insensitive
to the structure of interior spacetime; i.e. the details of the
horizon. Moreover, the method is confined to (2 + 1) dimen-
sions. Later on, Carlip introduced an approach which relies
on the Killing horizon structure preserving diffeomorphisms
and which is independent of the dimension of the spacetime
[30]. So it reflects the information of the horizon which is
important because the entropy depends on the structure of
the horizon. In this paper, we shall adopt this approach.

In this section, we shall present the general expressions for
the Fourier modes of the Noether charge Q and the central
term corresponding to a generally covariant Lagrangian. This
method not only applies to Einstein gravity but also to any
theories of gravity whose Lagrangian is a function of the
metric, the curvature tensor, and some other external fields,
like a scalar field. The technique we shall follow is from
[30,35].

Let us first introduce the general expressions for the
Noether conserved current J a and the charge Q correspond-
ing to a generally covariant Lagrangian. The explicit variation
of this general Lagrangian for the metric variation leads to
the following form:

δ
(
Lgrav

√−g
) = √−g

{
Eabδgab + ∇a

(
δva)}

(1)

where Eab = 0 leads to the equation of motion and δva is the
surface term. Now if the variation is given by the Lie deriva-
tive due to the coordinate transformation xa → xa + ξa ,
then δgab ≡ £ξ gab = ∇aξb + ∇bξa . Therefore, using
the generalized Bianchi identity ∇a Eab = 0 [9], the first
term on the right hand side of Eq. (1) can be cast into
a total derivative form, −2

√−g∇a(Ea
b ξb). On the other

hand, since Lgrav
√−g density, the Lie variation is given by√−g∇a(Lgravξ

a). Using all these in Eq. (1) we obtain a con-
servation relation given by ∇a J a = 0, where

J a =
(

Lgravξ
a − £ξ v

a + 2Eabξb

)
. (2)

Here £ξ v
a represents a boundary term arising from the Lie

variation of the metric as stated earlier. The current Ja is

called the Noether current. Since the current is covariantly
conserved, it can be expressed as the covariant derivative of
an antisymmetric tensor: J a = ∇b J ab, where J ab is known
as the Noether potential. For the general class of covariant
gravitational theories, substituting the respective values in
(2) one can obtain the explicit expression. This leads to the
current and potential as (see page 394 of [39] for details):

J a = 1

8πG
Pabcd∇b∇cξd − 1

8πG
∇b

(
Padbc + Pacbd

)

×∇cξd − 1

4πG
ξd∇b∇c Pabcd , (3)

J ab = 1

8πG
Pabcd∇cξd − 1

4πG

(
∇c Pabcd

)
ξd (4)

where the four index tensor Pabcd is defined as Pabcd =
∂Lgrav/∂ Rabcd . This tensor has identical symmetry proper-
ties to that of the curvature tensor Rabcd , i.e. it is antisymmet-
ric under interchange of a, b and c, d, and symmetric under
interchange of pairs (a, b) and (c, d) along with Pa(bcd) = 0.
The corresponding Noether charge is defined as

Q[ξ ] = 1

2

∫
d�ab

√
h J ab (5)

where d�ab corresponds to the surface element. For instance,
using Eq. (4) one can show that the explicit expression
for the Noether potential corresponding to Einstein grav-
ity appears to be J ab = (1/16πG)

(∇aξb − ∇bξa
)
. Now

using this in Eq. (5) for a timelike Killing vector field
ξa = χa , the Noether charge Q, calculated on the hori-
zon, can be shown to be related to the horizon entropy.
More specifically, Q multiplied by the periodicity of the
Euclidean time leads to the Bekenstein–Hawking entropy
expression: (2π/κ)Q = Ah/4G, with κ being the surface
gravity. The above procedure has also been extended for
Lanczos–Lovelock models to get the black hole entropy as
the Noether charge [35]. However, note that in all these mod-
els we have ∇a Pabcd = 0. Having set the stage we shall now
deal with the general expressions (3) and (4) to consider the
situation where ∇a Pabcd �= 0.

Next we give the expressions for the Fourier modes of
the charge and the central extension. Applying the method
of Carlip [30] for a stretched horizon scenario and using the
definition of the bracket among the charges, given in [35],
we find the Fourier modes of the charge as

Qm = − 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

×
[

2κTm − 1

κ
D2Tm

]

− 1

8πG

∫ √
hdd−2 Xμabχd Tm

(
∇c Pabcd

)
, (6)
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while the Fourier modes for the central term turn out to be

K [ξm, ξn]

= − 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

1

κ
DTm D2Tn

− 1

8πG

∫ √
hdd−2 X

| χ |
ρ

χbχcρd

κχ2 Tn D2Tm∇ f Pbc f d

− 1

8πG

∫
dd−2 X

√
h

| χ |
κ2χ2ρ

χbχcρd DTn D2Tm∇ f Pbd f c

+ 1

4πG

∫
dd−2 X

√
h

| χ |
κρ3

×
(
χ2ρbρd − ρ2χbχd

)
Tn DTm∇ f ∇c Pbf cd

− 1

4πG

∫ √
hdd−2 X

|χ |
ρχ2 χaρbχd Tm DTn∇c Pabcd

− 1

4πG

∫ √
hdd−2 X

|χ |
ρχ2

×
(

χ2

κρ2

)2

DTm D2Tnχaχbρd∇c Pabcd −(m ↔ n). (7)

The detailed derivation of the above quantities can be taken
from [35]. But for completeness and clarity, we have shown
this in Appendix A . We will use these expressions to identify
the zero mode eigenvalue and the central charge to calculate
the entropy. To evaluate the above, the explicit expression for
Tm is needed. This will be chosen subject to the condition that
the Fourier modes for the diffeomorphism vector ξa obey the
following subalgebra isomorphic to Diff S1:

i {ξm, ξn}a = (m − n)ξa
m+n (8)

with { , } being the Lie bracket. Keeping this condition in
mind, the form for Tm can be taken as

Tm = 1

α
exp[im(αt + g(x) + p.x⊥)] (9)

where α is a constant and g(x) is a function which is reg-
ular at the Killing Horizon. Here p is an integer and x⊥ is
the (d − 2)-dimensional transverse coordinates with the t–x
plane defining the null surface. The explicit expression (9)
for Tm will be needed later to evaluate the charge and the
central term. However, as we will see later, this will involve
the choice for the parameter α. To obtain the correct expres-
sion for the entropy one has to consider the periodicity of
the Euclidean time 2π/κ . Then for periodicity in the time
coordinate of Eq. (9), one must have α = κ . This will be
needed at the end of the paper. For Lanczos–Lovelock grav-
ity ∇c Pabcd vanishes and so the above expressions reduce
to those obtained earlier in [35]. Here the results are much

more general and can be applied for the covariant gravity
theory for which the covariant derivative of Pabcd does not
vanish. Moreover, the expressions are off-shell and free of
any ambiguity, as mentioned earlier.

Having obtained these general results we shall now apply
these results for anomaly-induced effective action arising
from the fluctuations in the matter fields and background met-
ric. The purpose of the next section is to calculate each of the
terms of Eqs. (6) and (7) for the anomalous effective action
and use them in the Cardy formula to derive the corrections
to the usual form of the entropy. The analysis will be done for
the case where the four-dimensional trace anomaly appears.
The basic idea is that the trace anomaly, being independent of
the renormalization schemes and quantum states, has some
effects on the quantum correction to the black hole area law.
Furthermore, the explicit expression for the anomaly can be
derived from the anomaly-induced effective action. Hence it
would be interesting to find the Noether charge and then use
it to find the entropy. Actually, to use Eqs. (6) and (7), we
need to find the explicit expression for Pabcd for the action
on which we are interested. Then substitution of it will lead
to the final result.

3 Anomalous effective action and entropy

In this section we shall briefly review the anomalous effec-
tive action for the fluctuations of the fields and consequently
the Noether charges thus are obtained. Classical general rel-
ativity does not take into account the microscopic effects of
quantum matter on any scale. In order to discuss the wave-
like nature of a particle or phase correlation we need at least a
semi-classical treatment of the effective stress energy tensor
appearing in the Einstein equation. The one-loop effective
action could be determined by the method called Effective
Field Theory (EFT). It can be shown that non-local macro-
scopic coherence effects are actually self-contained in low
energy EFT provided the one-loop trace anomaly for mass-
less fields is included in Einstein theory [26]. The low energy
EFT of gravity contains an expansion in the derivatives of the
local term, while the higher order terms are suppressed by
the inverse ultraviolet cutoff scale M . Also the theory is not
renormalizable; however, this is not sensitive to all the micro-
scopic details due to decoupling of short distance degrees of
freedom [23]. When we break a classical symmetry by the
quantum trace anomaly, the decoupling of short and long dis-
tance physical situations using the standard technique fails.
Thus an anomaly can have a significant effect on low energy
EFT. The necessity of the trace anomaly for low energy EFT
of gravity can be understood from the behavior of differ-
ent terms in the effective gravitational action under global
Weyl rescaling. Thus the addition of anomaly terms to the
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low energy effective gravity action is consistent with both
quantum theory and the equivalence principle [41].

This search for quantum corrections to the black hole
entropy takes place in the context of quantum field theory in
curved spacetime [42]. The backreaction of quantum fields
on curved spacetime is determined by the semiclassical Ein-
stein equation,

Gab + �gab = 8π〈Tab〉, (10)

such that the quantum fields affect the curved background
through the expectation value of the energy-momentum ten-
sor. This expectation value can be obtained using the one-
loop correction due to the fluctuations in the quantum fields to
the classical action and then taking the variation with respect
to the metric. The trace of it is then given by ([25], [26])

〈T 〉 ≡ − 2√−g
gab δSef f

δgab
= − 2√−g

gab δSanom

δgab
. (11)

In four dimensions there exist three geometric contributions
to the anomaly-induced action, namely the Euler density
(called Type-A), the Weyl tensor squared (called Type-B)
and a �R term that comes from variation of R2. Here we
will pay attention only to the type-A anomaly, since it is
interesting in various ways for the study of black holes [41]
and also it is simple compared to other types. This type of
anomaly leads to the trace anomaly:

〈T 〉 = − a

16π2G
E4, (12)

where E4 = Rabcd Rabcd − 4Rab Rab + R2. The correspond-
ing low energy effective action is given by

Sef f = − 1

16πG

∫
d4x

√−gR + Sanom (13)

where the anomalous part of the action is of the form Sanom =
S0 + S1 + S2 + S3 with [27,28]

S0 = − a

32π2G

∫
d4x

√−g
{
−(�φ)2

}
; (14)

S1 = − a

16π2G

∫
d4x

√−g

(
Rab − 1

3
Rgab

)
∇aφ∇bφ;

(15)

S2 = a

48π2G

∫
d4x

√−gφ�R; (16)

S3 = − a

32π2G

∫
d4x

√−gE4φ. (17)

The scalar field φ satisfies the following equation of motion:
[
�2 + 2∇μ

(
Rμν − 1

3
gμν R

)
∇ν

]
φ = 1

2

(
E4 − 2

3
�R

)
.

(18)

Note that S0 does not contain any curvature part and so for that
part the derivative with respect to Rabcd vanishes. Thus there

is no Noether charge corresponding to this part. The standard
way to get the trace anomaly, as first pointed out by Polyakov
[24], is to find the conformal primitive. In four dimensions
we need two generalizations, firstly the conformal properties
of the Gaussian curvature where the d’Alembertian is deter-
mined by the Q-curvature defined as E4 − 2

3�R [43], and
secondly the Paneitz operator [44] should be introduced (see
also [45,46]).

The entropy tensors can be obtained from the above
actions by the usual prescription. These are given by

Pabcd
1 = − a

32π2G

[(
gac∇bφ∇dφ − gad∇bφ∇cφ

)

−1

3

(
gacgbd − gad gbc

)]
, (19)

Pabcd
2 = − a

96π2G
�φ

(
gacgbd − gad gbc

)
, (20)

Pabcd
3 = − a

32π2G
φ

[
Rabcd − 4

(
gac Rbd − gad Rbc

)

+R
(

gacgbd − gad gbc
)]

. (21)

Along with the usual Noether charge due to the Einstein–
Hilbert action we have three extra charges which are obtained
by substitution of the respective entropy tensors in Eq. (4) and
using the definition Eq. (5) for the charge. These turn out to
be

QE H = 1

16πG

∫
d�ab∇aξb, (22)

Q(1) = − a

16π2G

∫
d�cd

×
[
∇cξ p∇dφ∇pφ − 1

3
(∇φ)2∇cξd

]

+ terms containing (∇c Pabcd), (23)

Q(2) = a

48π2G

∫
d�cd∇cξd�φ

+ terms containing (∇c Pabcd), (24)

Q(3) = − a

32π2G

∫
d�ab

[
Rabcd∇cξd

+ 4
(
∇aξd Rb

d − ∇dξa Rb
d

)
+ R∇aξb

]

+ terms containing (∇c Pabcd). (25)

Note that these are identical to those obtained in [27,28]
except the terms containing the covariant derivative of Pabcd .
However, it can be shown that these terms behave as O(χ2)

near the horizon for ξa , chosen to be a timelike Killing vector
χa . For instance, let us consider Pabcd

2 , present in Eq. (19).
Then ∇c Pabcd = −(a/96π2G)

(
gacgbd − gad gbc

) ∇c�φ

as the covariant derivative of the metric tensor vanishes.
Now to evaluate this term explicitly, for simplicity we
take a general spherically symmetric metric of the form

123



2867 Page 6 of 10 Eur. Phys. J. C (2014) 74:2867

ds2 = − f (r)dt2 + dr2/ f (r) + r2d�2. Then one can eas-
ily show that the relevant quantity μabχd∇c Pabcd is O( f )

since the timelike Killing vector in this case is given by
χa = (1, 0, 0, 0). Similar conclusions hold for other parts
also. Hence the terms, containing the covariant derivative
of entropy tensor, in the above equations are all of O(χ2)

as χ2 = − f . Wald [10] was first to introduce the idea
that entropy could be calculated from the Noether charge
by choosing the diffeomorphism vector ξa as the timelike
Killing vector χa . In the original formulation we have two
spacetime boundaries, the asymptotic region and the hori-
zon. The Noether charges on the asymptotic region deter-
mines the mass and the angular momentum, while that on
the horizon determines the entropy. The boundary conditions
are very important for the calculation of the Noether charges
for they can get modified by modification of the boundary
terms. Remember that, to determine the entropy, we need to
calculate the charges (22), (23), (24), and (25) on the horizon
defined by the relation gabχ

aχb = 0. So the O(χ2) terms
do not contribute and hence one can drop those terms.

Following similar arguments as above, it is also possible
to show that the terms containing the covariant derivative of
Pabcd in Eqs. (6) and (7) are of the order χ2. So they will
not contribute near the horizon. Taking into account this fact
and following identical steps to [35], we obtain from Eq. (6)
and Eq. (7)

Qm = Â

8πG

κ

α
δm,0, (26)

K [ξm, ξn] = −im3

[
Â

8πG

α

κ

]

δm+n,0 (27)

where we have introduced the Wald entropy function

Â = −1

2

∫ √
hdd−2 X Pabcdμabμcd (28)

which leads to the horizon area in GR. To obtain Eqs. (26)
and (27), Eq. (9) has been used and then the integration is
done over the transverse coordinates. Collecting all these it
is possible to find the following form:

i[Qm, Qn] = (m − n)Qm+n + C

12
m3δm+n,0, (29)

which is in the form of a Virasoro algebra with central exten-
sion. C is known as the central charge and is given by

C

12
= Â

8πG

α

κ
. (30)

The zero mode eigenvalue from Eq. (26) turns out to be

Q0 = Â

8πG

κ

α
. (31)

Therefore, we obtain the central charges and zero mode
eigenvalues from Eq. (30) and Eq. (31) for each term of the
action as

C E H

12
= Ah

8πG

α

κ
; QE H

0 = Ah

8πG

κ

α
; (32)

C (2)

12
= a

12π2G
rh

α

κ

(
dφ

dr

)

rh

;

Q(2)
0 = a

12π2G
rh

κ

α

(
dφ

dr

)

rh

; (33)

C (3)

12
= − a

2πG

α

κ
φrh χ; Q(3)

0 = − a

2πG

κ

α
φrh χ, (34)

where the respective terms due to S1 vanishes. To obtain
the above expressions the explicit forms of Pabcd , given by
(19), (19), and (20), have been used in (28). χ is the two-
dimensional Euler characteristic of the horizon and φrh is
the value of φ at the horizon. Also in the above expression
Ah is the value of the quantity defined in equation (28) with
Pabcd = 1

2

(
gacgbd − gad gbc

)
. Now substituting all these in

the standard Cardy formula [36,37],

S = 2π

√
C�

6
; � ≡ Q0 − C

24
, (35)

we find the expressions for the entropy:

SE H = Ah

4G
, (36)

S(2) = a

6πG
rh

(
dφ

dr

)

rh

, (37)

S(3) = − a

G
φrh χ (38)

where we have used the identification α = κ . The reason
has been explained earlier below Eq. (7). This can also be
taken from [35]. Hence the total expression for the entropy
corresponding to the anomaly-induced action would be given
by

Stot = Ah

4G
+ a

6πG
rh

(
dφ

dr

)

rh

− a

G
φrh χ. (39)

The same expression was also obtained in [27,28] by evalu-
ating the Noether charge for a Killing vector on the horizon.
The charge obtained by the authors of [27,28] is on-shell.
Here we derived it by the Virasoro algebra technique. The
analysis adopted here is totally off-shell.

The remarkable fact about the above expression is, con-
trary to [27,28], that the last two terms yield an additive
constant to the entropy which can be neglected. This can be
shown as follows. For simplicity, let us consider the classi-
cal background as the Schwarzschild metric. To obtain the
explicit expression for φ in terms of metric coefficients, we
need to solve Eq. (18). The solution will be found by impos-
ing certain boundary conditions on the scalar field φ. Since
our only concern is the horizon we would require the finite-
ness of φ and its first derivative at the horizon. Such condi-
tions lead to the following solution [26]:
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dφ

dr
= − 4Gm

3r (r − 2Gm)
ln

r

2Gm
− 1

2Gm
− 2

r
, (40)

where dilog(x) = ∫ x
1

ln (t)
1−t dt . Integrating the above we find

φ(r) = − r

2Gm
− 2 ln

r

2Gm
+ 1

3

(
ln

r

2Gm

)2

+2

3
dilog

( r

2Gm

)
. (41)

Note the important point that any constant term can shift
the value of φ at horizon. But the respective contribution to
the Noether charge and hence the entropy would then vanish
since the action reduces to a topological term, which is the
integral of the Euler density. Now it is easy to see that the
term φrh leads to a constant contribution and so the last term
does not affect the Bekenstein–Hawking entropy. However,
dφ
dr leads to a term which is proportional to the inverse of the
square root of the horizon area. This would get compensated
by the rh term. Hence the final expression for entropy leads
to the usual expression of the entropy. Therefore, from the
above discussion, one can conclude that the type-A trace
anomaly does not lead to any correction to the entropy.

4 Conclusions

The idea that horizon entropy can be obtained from a certain
class of diffeomorphism generators is pioneered mainly by
the works of Brown, Henneaux [29] and Carlip [30]. How-
ever, all these methods use on-shell criteria, i.e., the equa-
tions of motion have been used at one stage or another.
Recently, one of the authors of this paper has derived the
horizon entropy using the Virasoro algebra and the Cardy for-
mula, bypassing the use of the equation of motion [35]. In the
present work, we have given an off-shell description as well,
i.e., no equation of motion has been used. This again illus-
trates that the notion of entropy goes beyond the black hole
horizon. We have started from the expressions for the Noether
current and the potential for an arbitrary generally covariant
Lagrangian, which could be function of metric tensor, curva-
ture tensor, and scalar combination of different fields. From
these, using the off-shell definition of the bracket among the
charges [35], a general expression for the central term was
derived. We then obtained the Fourier modes of the charge
and the central term.

Next we have evaluated the general expressions explicitly
for the anomaly-induced action which produces the type-A
trace anomaly. This action has a pure geometric meaning
except for the Euler characteristics and couplings appearing
in it. For this particular action we have shown that the terms
containing derivatives of Pabcd vanish in the near horizon
limit and the most dominant term is the one that appears
in Lanczos–Lovelock models. It has been shown that the

Fourier modes of the bracket are similar to the usual Virasoro
algebra with central extension. Identifying the central charge
and the zero mode eigenvalue and then using them in the
Cardy formula we obtained the expression for the entropy.
The result is identical to that obtained in [27,28]. Considering
the classical background as the Schwarzschild metric, it has
been shown that the entropy of the black hole is Ah/4G, the
usual result. Hence the type-A trace anomaly does not lead
to any correction to the horizon entropy.

So far, we have observed that there is no correction term
in the entropy. Our present analysis was based on the type-
A trace anomaly. As we mentioned earlier, there also exist
other types of trace anomalies, like type-B etc. It would be
interesting to study the effective actions corresponding to
these anomalies in the present direction and investigate if
they lead to any correction to the entropy. This we leave for
the future.
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Appendix A: Detailed calculation for the Fourier modes
of the charge and the central term

In this appendix, using Eqs. (3) and (4) we shall obtain the
expressions (6) and (7), the Fourier modes of the Noether
charge and the central term. To start with, we consider a d-
dimensional spacetime manifold M with boundary given as
∂ M , such that neighborhood of ∂ M admits a Killing vector
χa , satisfying χ2 = gabχ

aχb = 0 over the boundary ∂ M .
We shall work in a stretched horizon method as used by Carlip
[30]. In this approach, all the calculations will be done on
the boundary χ2 = ε and at the end the limit ε → 0 will
be imposed to obtain our final results. Near this stretched
horizon one can define an orthogonal vector ρa to χa such
that

∇aχ2 = −2κρa (42)

with κ being the surface gravity at the horizon. Next we
choose the diffeomorphism vector as

ξa = T χa + Rρa (43)
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where R and T are the arbitrary functions of all coordinates
of spacetime. This diffeomorphism could be interpreted as
deformations in the r–t plane, playing a crucial role in the
Euclidean approach to black hole thermodynamics [40]. The
condition χaχbδgab/χ

2 → 0, when imposed on χa , leads
to a relation between them:

R = χ2

κρ2 DT (44)

where D ≡ χa∇a . The condition is chosen in such a way that
the asymptotic Killing horizon structure remains invariant
after the perturbation. The diffeomorphism formed by Eqs.
(43) and (44) is said to form a closed subalgebra provided
ρa∇aT = 0 is satisfied near the horizon. In this setup, we
can define the surface element on the horizon as [35]

d�ab = dd−2 Xμab; μab = −| χ |
ρχ2 (χaρb − χbρa). (45)

To evaluate the charge and the bracket we also need three
identities which are valid up to O(χ2). The detailed deriva-
tions are given in [35] (see, Eq. (B37), Eq. (B43) and Eq.
(B38)). The identities are

∇aξb = χaχb

χ2 DT + κ

χ2 (χaρb − χbρa) T

− 1

κχ2 χaρb D2T + R∇aρb, (46)

Pabcd∇cξd = Pabcd
[

2κ

χ2 T − 1

κχ2 D2T

]
χcρd , (47)

∇d∇aξb = 2κ

χ4 χaρbχd DT

− 1

κχ4 χaρbχd D3T − 1

χ4 χaχbχd D2T . (48)

We shall now use the above expressions to find the charge
and the bracket. For a covariant Lagrangian, we define the
bracket among the charges as

[Q1, Q2] = (
δξ1 Q[ξ2] − δξ2 Q[ξ1]

)

≡
∫ √

hd�ab

[
ξa

2 J b
1 − ξa

1 J b
2

]
(49)

where the notation J b
1 = J b[ξ1] has been used. The above

expression is off-shell and free of any ambiguity. The only
fact needed is that the Noether current can be expressed
as the covariant derivative of an antisymmetric tensor (see
Ref. [35] for more details). To evaluate it for the present
setup, we first calculate the current using Eq. (3). It can be
shown that the current, present in Eq. (3), takes the following
form:

J a = 1

8πG
Pabcdξbξcρd

1

ξ4

(
2κ DT − 1

κ
D3T

)

− 1

8πG

[
κ

χ2 (χcρd − χdρc) T + ρcρd

χ2 DT − χcρd

κχ2 D2T

]

×∇b

(
Padbc + Pacbd

)

− 1

4πG
ξd∇b∇c Pabcd . (50)

In the intermediate steps, the identities (46), (47), and (48)
have been used. Then using Eqs. (43) and (45) we obtain

d�abξ
a
2 J b

1

= dd−2 X
1

32πG

ρ

| χ | Pabcdμabμcd

(
2κ DT1− 1

κ
D3T1

)
T2

+ 1

8πG
dd−2 X

( | χ |
ρχ2

)
(χaρb − χbρa) ξa

2

×
[

κ

χ2 (χcρd − χdρc) T1

+ρcρd

χ2 DT1 − χcρd

κχ2 D2T1

]
∇ f

(
Pbd f c + Pbcf d

)

+ 1

4πG
dd−2 X

(
χ

ρχ2

)
(χaρb − χbρa) ξa

2 ξ1d∇ f ∇c Pbf cd

(51)

where the relation Pabcdμabμcd = 4
ρ2χ2 Pabcdρaχbρcχd has

been used. Finally, substitution of Eq. (51) in Eq. (49) leads
to

[Q1, Q2] = 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

×
[

1

κ
T1 D3T2 − 2κT1 DT2

]

− 1

8πG

∫ √
hdd−2 X

| χ |
ρ

χbχcρd

κχ2 T2 D2T1∇ f Pbc f d

− 1

8πG

∫
dd−2 X

√
h

| χ |
κ2χ2ρ

χbχcρd DT2 D2T1∇ f Pbd f c

+ 1

4πG

∫
dd−2 X

√
h

| χ |
κρ3

×
(
χ2ρbρd − ρ2χbχd

)
T2 DT1∇ f ∇c Pbf cd − (1 ↔ 2) .

(52)

Next we shall obtain the expression for the charge Q[ξ ] in
the near horizon limit. The charge is given by Eq. (5). Use of
Eqs. (43) and (48) in Eq. (5) leads to

Q[ξ ] = − 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

×
[

2κT − 1

κ
D2T

]

− 1

8πG

∫ √
hdd−2 Xμabξd

(
∇c Pabcd

)
. (53)

Now the central term will be calculated. This is defined as

K [ξ1, ξ2] = [Q1, Q2] − Q[{ξ1, ξ2}] (54)
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where the quantity [Q1, Q2] given in Eq. (52) and Q[{ξ1, ξ2}]
will be evaluated using (53) in the following way. Using Eq.
(43), the Lie bracket near the horizon turns out to be

{ξ1, ξ2}a = {T1, T2} χa + {R1, R2} ρa (55)

where we have {T1, T2} = (T1 DT2 − T2 DT1) and so on.
Substituting this in Eq. (53) we find

Q[{ξ1, ξ2}]
= − 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

×
[
2κT1 DT2 − 1

κ
DT1 D2T2 + T1 D3T2

]
− (1 ↔ 2)

− 1

8πG

∫ √
hdd−2 Xμab {ξ1, ξ2}d

(
∇c Pabcd

)
. (56)

Finally, substitution of Eqs. (52) and (56) in Eq. (54) yields
the form of the central term as

K [ξ1, ξ2]
= − 1

32πG

∫ √
hdd−2 X Pabcdμabμcd

1

κ
DT1 D2T2

− 1

8πG

∫ √
hdd−2 X

| χ |
ρ

χbχcρd

κχ2 T2 D2T1∇ f Pbc f d

− 1

8πG

∫
dd−2 X

√
h

| χ |
κ2χ2ρ

χbχcρd DT2 D2T1∇ f Pbd f c

+ 1

4πG

∫
dd−2 X

√
h

| χ |
κρ3

(
χ2ρbρd − ρ2χbχd

)

×T2 DT1∇ f ∇c Pbf cd

− 1

4πG

∫ √
hdd−2 X

|χ |
ρχ2

[
χaρbχd T1 DT2∇c Pabcd

+
(

χ2

κρ2

)2

DT1 D2T2χaχbρd∇c Pabcd
]

− (1 ↔ 2) . (57)

Now the Fourier modes of the Noether charge and the cen-
tral term will be evaluated. For this we need to first give
the Fourier modes of the arbitrary function T . The Fourier
decompositions of the functions T1 and T2 are taken as

T1 =
∑

m

Am Tm; T2 =
∑

n

BnTn (58)

with the reality criteria for T1 and T2 being given by A∗
n =

A−n and B∗
m = B−m . Substituting Eq. (58) in Eq. (53) and

using Q[ξ ] =
∑

m
Am Qm , we find the Fourier modes of

the charge as given in Eq. (6). Similarly, in order to obtain
the same for the central term, we define

K [ξ1, ξ2] =
∑

m,n

Cm,n K [ξm, ξn] (59)

with Cm,n ≡ Am Bn and so C∗
m,n ≡ C−m,−n . This manipula-

tion in turn leads to the Fourier decomposition of the central
term as present in Eq. (7).
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