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Abstract: In this paper we introduce Baxter integral Q-operators for finite-dimensional
Lie algebras gl�+1 and so2�+1. Whittaker functions corresponding to these algebras are
eigenfunctions of the Q-operators with the eigenvalues expressed in terms of Gamma-
functions. The appearance of the Gamma-functions is one of the manifestations of an
interesting connection between Mellin-Barnes and Givental integral representations of
Whittaker functions, which are in a sense dual to each other. We define a dual Baxter
operator and derive a family of mixed Mellin-Barnes-Givental integral representations.
Givental and Mellin-Barnes integral representations are used to provide a short proof
of the Friedberg-Bump and Bump conjectures for G = GL(� + 1) proved earlier by
Stade. We also identify eigenvalues of the Baxter Q-operator acting on Whittaker func-
tions with local Archimedean L-factors. The Baxter Q-operator introduced in this paper
is then described as a particular realization of the explicitly defined universal Baxter
operator in the spherical Hecke algebra H(G(R), K ), K being a maximal compact sub-
group of G. Finally we stress an analogy between Q-operators and certain elements of
the non-Archimedean Hecke algebra H(G(Qp),G(Zp)).

1. Introduction

The notion of the Q-operator was introduced by Baxter as an important tool to solve
quantum integrable systems [Ba]. These operators were initially constructed for a parti-
cular class of quantum integrable systems associated with affine Lie algebras ̂gl�+1 and
its quantum/elliptic generalizations. A new class of integral Q-operators corresponding
to the ̂gl�+1-Toda chain was later proposed by Pasquier and Gaudin [PG]. Its generali-
zation to Toda chains for other classical affine Lie algebras was proposed recently in
[GLO1,GLO2,GLO3].

In this paper we introduce integral Baxter Q-operators for Toda chains corresponding
to the finite-dimensional classical Lie algebras gl�+1 and so2�+1. These integral operators
are closely related with the recursion operators in the Givental integral representation of
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Whittaker functions (see [Gi,JK] for gl�+1 and [GLO3] for other classical Lie algebras).
It is well known that g-Whittaker functions are common eigenfunctions of the complete
set of mutually commuting g-Toda chain quantum Hamiltonians. The quantum Hamilto-
nians arise as projections of the generators of the center Z(g) of the universal enveloping
algebra U(g). One of the characteristic properties of the introduced Baxter integral opera-
tors for a finite-dimensional classical Lie algebra g is that the corresponding g-Whittaker
functions are their eigenfunctions. Moreover, integral Q-operators provide a complete
set of integral equations defining g-Whittaker functions. Similarly to the relation of the
Hamiltonians with the generators of the center Z , we construct universal Baxter opera-
tors in a spherical Hecke algebra whose projection gives the Baxter operator for Toda
chains. Other projections provide Baxter operators for other quantum integrable systems
(e.g. Sutherland models).

The eigenvalues of the Baxter operators acting on Whittaker functions are expressed
in terms of a product of Gamma-functions. The appearance of the Gamma-functions
implies a close connection between Givental and Mellin-Barnes integral representations
[KL1] for gl�+1-Whittaker functions. We discuss this relation in some detail. Note that
the representation theory interpretation [GKL] of the Mellin-Barnes integral represen-
tation uses the Gelfand-Zetlin construction of the maximal commutative subalgebra of
U(gl�+1). One can guess a connection between Mellin-Barnes and Givental representa-
tions on a general ground by noticing that Givental diagrams for classical Lie algebras
[GLO3] are identical to Gelfand-Zetlin patterns [BZ]. Moreover both constructions are
most natural for classical Lie algebras. In this note we discuss a duality relation bet-
ween recursive structures of Givental and Mellin-Barnes integral representations. We
construct a dual version of the Baxter Q-operator and derive a set of relations bet-
ween recursive/Baxter operators and their duals. We also propose a family of mixed
Mellin-Barnes-Givental integral representations interpolating between Mellin-Barnes
and Givental integral representations of Whittaker functions.

We use the Mellin-Barnes integral representation to give simple proofs of Bump-
Friedberg and Bump conjectures on Archimedean factors arising in the application of
the Rankin-Selberg method to analytic continuations of GL(� + 1) × GL(� + 1) and
GL(�+ 1)×GL(�) automorphic L-functions. We also discuss a relation with the proofs
given by Stade [St1,St2]. The proof in [St1,St2] is based on a recursive construction of
gl�+1-Whittaker functions generalizing the construction due to Vinogradov and Takhtajan
[VT]. As it was noticed in [GKLO] and is explicitly demonstrated below, the Stade
recursion basically coincides with the Givental recursion (see also the recent detailed
discussion in [St3]). We also show that the Bump-Friedberg and Bump conjectures are
simple consequences of the Mellin-Barnes integral representation of gl�+1-Whittaker
function.

The Rankin-Selberg method is a powerful tool of studying analytic properties of au-
tomorphic L-functions. The application of the Baxter Q-operators and closely related
recursive operators to a derivation of analytic properties of L-functions using the Rankin-
Selberg method is not accidental. We remark that the eigenvalues of the Q-operators
acting on g-Whittaker functions are given by Archimedean local L-factors and the inte-
gral Q-operators should be naturally considered as elements of the Archimedean Hecke
algebra H(G(R), K ), K being a maximal compact subgroup of G. We construct the
corresponding universal Baxter operator as an element of the spherical Hecke algebra
H(G(R), K ). We also describe non-Archimedean counterparts of the universal Baxter
operators as elements of non-Archimedean Hecke algebras H(GL(� + 1,Qp),GL(� +
1,Zp)). The consideration of Archimedean and non-Archimedean universal Q-operators
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on an equal footing provides a uniform description of the automorphic forms as their
common eigenfunctions (replacing the more traditional approach based on the algebra
of the invariant differential operators as a substitute of H(G(R), K )).

Let us note that the connection of the Baxter operators with Archimedean L-factors
implies in particular that there is a hidden parameter in the Q-operator corresponding
to a choice of a finite-dimensional representation of the Langlands dual Lie algebra. In
this sense, Q-operators considered in this paper correspond to standard representations
of the classical Lie algebras. We are going to consider the Q-operators corresponding
to more general representations in a separate publication.

One should stress that there are various Hecke algebras relevant to the study of the
quantum Toda chains. For example for B ⊂ G being a Borel subgroup, the Hecke
algebra H(G, B) of B-biinvariant functions is closely related to the scattering data of
quantum Toda chains [STS]. The Hecke algebra H(G, N ), N being the unipotent radical
of B also deserves consideration. Note that the representations of H(G, N ) contain
certain information about the scattering data of the theory and its center is isomorphic
to H(G, K ).

Finally let us remark that the constructions of affine integral Q-operators and their
eigenvalues for the action on Whittaker functions [PG] together with the considera-
tions of this paper imply an intriguing possibility to interpret the eigenvalues of affine
Q-operators as a kind of local Archimedean L-factors. It is natural to expect that these
L-factors should be connected with 2-dimensional local fields in the sense of Parshin
[Pa]. We are going to discuss this fascinating possibility elsewhere.

The plan of this paper is as follows. In Sect. 2 we recall the Givental integral represen-
tation for gl�+1 and introduce the Baxter Q-operator for gl�+1. In Sect. 3 we consider the
relation between Givental and Mellin-Barnes integral representations of gl�+1-Whittaker
functions and introduce the dual Baxter operator. In Sect. 4 we use the Mellin-Barnes
integral representation to prove the Bump-Friedberg and Bump conjecture and discuss
the relation with [St1,St2]. In Sect. 5 we identify eigenvalues of the Baxter Q-operator
with local Archimedean L-factors and construct universal Baxter operators as elements
of the spherical Hecke algebra H(G(R), K ). The main result of this paper is given in
Theorem 5.1. We also discuss an analogy between Q-operators and certain elements
of the non-Archimedean Hecke algebra H(GL(� + 1,Qp),GL(� + 1,Zp)). Finally in
Sect. 6 a generalization to so(2� + 1) is given.

2. Baxter Operator for gl�+1

2.1. Whittaker functions as matrix elements. Let us recall two constructions of
g-Whittaker functions as matrix elements of infinite-dimensional representations of U(g)
and a relation of g-Whittaker functions with eigenfunctions of g-Toda quantum chains.

Let us first describe the construction based on the Gauss decomposition. According to
Kostant [Ko1,Ko2], gl�+1-Whittaker function can be defined as a certain matrix element
in a principal series representation of G = GL(� + 1,R). Let U(g) be a universal
enveloping algebra of g = gl�+1 and V , V ′ be U(g)-modules, dual with respect to a non-
degenerate invariant pairing 〈. , .〉 : V ′ × V → C, 〈v′, Xv〉 = −〈Xv′, v〉 for all v ∈ V ,
v′ ∈ V ′ and X ∈ g. Let B− = N− AM and B+ = AM N+ be Langlands decompositions
of opposite Borel subgroups. Here N± are unipotent radicals of B±, A is the identity
component of the vector Cartan subgroup and M is the intersection of the centralizer
of the vector Cartan subalgebra with the maximal compact subgroup K ⊂ G. We will
assume that the actions of the Borel subalgebras b+ = Lie(B+) on V and b− = Lie(B−)
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on V ′ are integrated to the actions of the corresponding subgroups. Let χ± : n± → C be
the characters of n± defined by χ+(ei ) := −1 and χ−( fi ) := −1 for all i = 1, . . . , �,
where ei , fi are generators of n+ and n− which correspond to the simple roots. A vector
ψR ∈ V is called a Whittaker vector with respect to χ+ if

eiψR = −ψR, i = 1, . . . , �, (2.1)

and a vector ψL ∈ V ′ is called a Whittaker vector with respect to χ− if

fiψL = −ψL , i = 1, . . . , �. (2.2)

One defines a Whittaker model V as a space of functions on G such that f (ng) =
χN+(n) f (g), n ∈ N+, χN+(n) = χ+(log n). The U(g)-module admits a Whittaker model
with respect to the character χ if it is equivalent to a sub-representation of V .

Let Vλ = IndG
Bχλ be a principal series representation of G induced from the generic

character χλ of B trivial on N ⊂ B with λ = (λ1, . . . , λ�+1). It is realized in the space
of functions f ∈ C∞(G) satisfying equation

f (bg) = χλ(b) f (g),

where b ∈ B. The action of G is given by the right action πλ(g) f (x) = f (xg−1). We

will be interested in the infinitesimal form IndU(g)
U(b)χλ of this representation given by

(X f )(g) = d

dt
f (ge−t X )|t→0.

Define the (g, B)-module as a g-module such that the action of the Borel subalgebra
b ⊂ g is integrated to the action of the Borel subgroup B, b = Lie(B). Consider an
irreducible (g, B)-submodule V(0)λ of Vλ given by the Schwartz space S(N−) of functions
on N− exponentially decreasing at infinity with all their derivatives. This (g, B)-module
always admits a Whittaker model. Below we will denote byψL ,ψR the Whittaker vectors
in V(0)λ and its dual. Following Kostant [Ko1,Ko2] ( see also [Et] for a recent discussion)
we define a g-Whittaker function in terms of the invariant pairing of Whittaker modules
as follows:

�
gl�+1
λ (x) = e−〈ρ,x〉〈ψL , πλ(e

hx ) ψR〉, x ∈ h, (2.3)

where hx := ∑�+1
i=1〈ωi , x〉 hi ,ωi is a basis of fundamental weights of g,ρ = 1/2

∑

α>0 α

and πλ(ehx ) is an action of ehx in the representation Vλ. It was shown in [Ko1] that
g-Whittaker function is a common eigenfunction of a complete set of commuting
Hamiltonians of the g-Toda chain. A complete set of commuting Hamiltonians of the
g-Toda chain is generated by the differential operators Hk ∈ Diff(h), k = 1, . . . , �+1 on
the Cartan subalgebra h defined in terms of the generators {ck} of the center Z(g) ⊂ U(g)
as follows:

Hk�
gl�+1
λ (x) = e−〈ρ,x〉〈ψL , πλ(e

hx ) ck ψR〉. (2.4)

More explicitly one has

�
gl�+1
λ (x) = e−∑�+1

i=1 xiρi 〈ψL , πλ(e
∑�+1

i=1 xi Ei,i ) ψR〉, (2.5)
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where ρ j = �
2 + 1 − j, j = 1, . . . , � + 1 are the components of ρ in the standard basis

of R
�+1, x = (x1, . . . , x�+1) and Ei, j are the standard generators of U(gl�+1). The linear

and quadratic Hamiltonians in this case are given by

Hgl�+1
1 = −ı

�+1
∑

i=1

∂

∂xi
, (2.6)

H̃gl�+1
2 = −1

2

�+1
∑

i=1

∂2

∂xi
2 +

�
∑

i=1

exi −xi+1 . (2.7)

Let us introduce a generating function for gl�+1-Toda chain Hamiltonians as

tgl�+1(λ) =
�+1
∑

j=1

(−1) jλ�+1− jHgl�+1
j (x, ∂x ), (2.8)

where H̃gl�+1
2 = 1

2 (H
gl�+1
1 )2 − Hgl�+1

2 . Then the gl�+1-Whittaker function satisfies the
following equation

tgl�+1(λ) �
gl�+1
λ (x) =

�+1
∏

j=1

(λ− λ j ) �
gl�+1
λ (x), (2.9)

where λ = (λ1, . . . , λ�+1) and x = (x1, . . . , x�+1).
The appropriately normalized gl�+1-Whittaker function (2.3) is a solution of Eqs. (2.9)

invariant with respect to the actions of the Weyl group W = S�+1 given by s : λi → λs(i),
s ∈ W . The W -invariant gl�+1- Whittaker functions provide a basis of W -invariant
functions in R

�+1 (see e.g. [STS,KL2]).

Theorem 2.1. For the properly normalized W -invariant gl�+1-Whittaker functions the
following orthogonality and completeness relations hold

∫

R�+1
�

gl�+1
λ (x)�

gl�+1
ν (x)

�+1
∏

j=1

dx j

= 1

(� + 1)! µ(�+1)(λ)

∑

w∈W

δ(�+1)(λ− w(ν)), (2.10)

∫

R�+1
�

gl�+1
λ (x)�

gl�+1
λ (y)µ(�+1)(λ)

�+1
∏

j=1

dλ j = δ(�+1)(x − y), (2.11)

where

µ(�+1)(λ) = 1

(2π)�+1(� + 1)!
∏

j �=k

1

(ıλk − ıλ j )
. (2.12)
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There exists another construction of gl�+1-Whittaker functions that uses a pairing of
the spherical vector (i.e. a vector invariant with respect to the maximal compact subgroup
K = SO(� + 1,R) of GL(� + 1,R)) and a Whittaker vector (see e.g. [J,Ha]). Consider
the following function:

˜�
gl�+1
λ (g) = e−ρ(g)〈φK , πλ(g) ψR〉, (2.13)

where ρ(g) is given by ρ(kan) = 〈ρ, log a〉, φK is a spherical vector in Vλ,

φK (bgk) = χλ(b)φK (g), k ∈ K , b ∈ B+. (2.14)

The function ˜�
gl�+1
λ (g) defined by (2.13) satisfies the functional equation

˜�
gl�+1
λ (kgn) = χ̃N−(n) �̃

gl�+1
λ (g), k ∈ K , n ∈ N−, (2.15)

where χ̃N−(n) = exp(2
∑�

j=1 n j+1, j ). Thus (2.13) descends to a function on the space A

of the diagonal matrices a = diag(ex̃1 , . . . , ex̃�+1) entering the Iwasawa decomposition
K AN− → GL(�+ 1,R). We fix a normalization of the matrix element so that the func-
tion (2.13) is W -invariant. The resulting function on A is related to the gl�+1-Whittaker
function (2.3) by a simple redefinition of the variables.

Lemma 2.1. The following relation between �
gl�+1
λ (x) and ˜�

gl�+1

λ̃
(x̃) holds:

˜�
gl�+1

λ̃
(x̃) = �

gl�+1
λ (x), (2.16)

where x̃ = (x̃1, . . . , x̃�+1), λ̃ = (λ̃1, . . . , λ̃�+1) are expressed through x =(x1, . . . , x�+1),
λ=(λ1, . . . , λ�+1) as follows

x̃ j = 1

2
x j , λ̃ j = 2λ j .

2.2. Recursive and Baxter operators. The following integral representation for gl�+1-
Whittaker function was introduced by Givental [Gi] (see also [JK]).

Theorem 2.2. gl�+1-Whittaker functions (2.5) admit an integral representation

�
gl�+1
λ1,...,λ�+1

(x1, . . . , x�+1) =
∫

R
�(�+1)

2

�
∏

k=1

k
∏

i=1

dxk,i eFgl�+1 (x), (2.17)

where

Fgl�+1(x) = ı
�+1
∑

k=1

λk

(

k
∑

i=1

xk,i −
k−1
∑

i=1

xk−1,i

)

(2.18)

−
�

∑

k=1

k
∑

i=1

(

exk+1,i −xk,i + exk,i −xk+1,i+1
)

,

and xi := x�+1,i , i = 1, . . . , � + 1.
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The interpretation of the Givental integral formula as a matrix element (2.5) was first
obtained in [GKLO], where it was also noted that the integral representation (2.17) of
the gl�+1-Whittaker function has a recursive structure over the rank of the Lie algebra
gl�+1.

Corollary 2.1. The following integral operators Q
glk+1
glk

provide a recursive construction
of gl�+1-Whittaker functions:

�
gl�+1
λ1,...,λ�+1

(x �+1) =
∫

R�

�
∏

i=1

dx�,i Q
gl�+1
gl�

(x �+1, x �|λ�+1)�
gl�
λ1,...,λ�

(x �), (2.19)

Q
gl�+1
gl�

(x �+1, x �|λ�+1)

= exp

{

ıλ�+1

(
�+1
∑

i=1

x�+1,i −
�

∑

i=1

x�,i
)

−
�

∑

i=1

(

ex�+1,i −x�,i + ex�,i −x�+1,i+1
)

}

, (2.20)

where x k = (xk,1, . . . , xk,k) and we assume that Qgl1
gl0
(x11|λ1) = eıλ1x1,1 .

Definition 2.1. Baxter operator Qgl�+1(λ) for gl�+1 is an integral operator with the ker-
nel

Qgl�+1(x, y| λ)

= exp
{

ıλ
�+1
∑

i=1

(xi − yi ) −
�

∑

i=1

(

exi −yi + eyi −xi+1
)

− ex�+1−y�+1
}

, (2.21)

where we assume xi := x�+1,i and yi := y�+1,i .

Note that the Baxter operator defined above is non-trivial even for gl1.

Theorem 2.3. The Baxter operator Qgl�+1(λ) satisfies the following identities:

Qgl�+1(λ) · Qgl�+1(λ′) = Qgl�+1(λ′) · Qgl�+1(λ), (2.22)

Qgl�+1(γ )Q
gl�+1
gl�

(λ) = (ıγ − ıλ) Q
gl�+1
gl�

(λ)Qgl� (γ ), (2.23)

Qgl�+1(λ) · T gl�+1(λ′) = T gl�+1(λ′) · Qgl�+1(λ), (2.24)

Qgl�+1(λ− ı) = ı�+1 T gl�+1(λ) Qgl�+1(λ), (2.25)

where

T gl�+1(x, y|λ) = tgl�+1(x, ∂x |λ)δ�+1(x − y), (2.26)

tgl�+1(x, ∂x |λ) =
�+1
∑

j=1

(−1) jλ�+1− j Hgl�+1
j (x, ∂x ). (2.27)
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Proof. The commutativity of Q-operators

∫

R�+1
Qgl�+1(y, x |λ) Qgl�+1(x, z|λ′)

�+1
∏

j=1

dx j (2.28)

=
∫

R�+1
Qgl�+1(y, x |λ′) Qgl�+1(x, z|λ)

�+1
∏

j=1

dx j , (2.29)

is proved using the following change of variables xi :

x1 	−→ −x1 + z1 + ln
(

ey1 + ez2
)

,

xi 	−→ −xi − ln
(

e−yi−1 + e−zi
)

+ ln
(

eyi + ezi+1
)

, 1 < i ≤ �,

x�+1 	−→ −x�+1 + y�+1 − ln
(

e−y� + e−z�+1
)

.

The proof of (2.23) is similar to the proof of the commutativity (2.22). The commutation
relations (2.24) and the difference equation (2.25) then easily follow from (2.23) and
(2.10), (2.11). ��
Corollary 2.2. The following relation holds:

∫

R�+1

�+1
∏

i=1

dxi Qgl�+1(y, x | γ )�gl�+1
λ (x) =

�+1
∏

i=1

(ıγ − ıλi ) �
gl�+1
λ (y), (2.30)

where x = (x1, . . . , x�+1), y = (y1, . . . , y�+1) and λ = (λ1, . . . , λ�+1).

Finally let us provide an expression for the kernel of the Baxter Q-operator in the
parametrization naturally arising in the construction of gl�+1-Whittaker functions using
Iwasawa decomposition (see (2.13) and Lemma 2.1). Let Q̃gl�+1(x̃, ỹ|λ̃) be defined by

Q̃gl�+1(x̃, ỹ|λ̃)

= 2�+1 exp
{

ı λ̃
�+1
∑

i=1

(x̃i − ỹi )−
�

∑

k=1

(

e2(x̃k−ỹk ) + e2(ỹk−x̃k+1)
)

− e2(x̃�+1−ỹ�+1)
}

.

Proposition 2.1. The following relation holds:

∫

R�+1

�+1
∏

i=1

dx̃i ˜Qgl�+1(ỹ, x̃ | γ̃ ) �̃gl�+1

λ̃
(x̃) =

�+1
∏

i=1


( ı γ̃ − ı λ̃i

2

)

�̃
gl�+1

λ̃
(ỹ). (2.31)

3. Givental versus Mellin-Barnes Integral Representations

An important property of the Givental integral representation is its recursive structure
with respect to the rank of the Lie algebra. There is another integral representation [KL1]
for gl�+1-Whittaker functions generalizing the Mellin-Barnes integral representation for
low ranks. This representation also has a recursive structure. Its interpretation in terms
of representation theory uses the Gelfand-Zetlin construction of a maximal commutative



Baxter Operator and Archimedean Hecke Algebra 875

subalgebra inU(gl�+1) [GKL]. In this section we compare recursive structures of Givental
and Mellin-Barnes representations and demonstrate that these two integral representa-
tions should be considered as dual to each other. We propose the construction of the
dual Baxter operator based on Mellin-Barnes integral representations. We also construct
a family of new integral representations interpolating between Givental and Mellin-
Barnes representations. Finally we introduce a symmetric recursive construction of
gl�+1-Whittaker functions such that the corresponding recursive operator is expressed
through the Baxter and dual Baxter operators. The Givental and Mellin-Barnes integral
representations are then obtained from the symmetric integral representations by simple
manipulations.

Let us first recall the Mellin-Barnes integral representation of gl�+1-Whittaker func-
tions [KL1].

Theorem 3.1. The following integral representation of gl�+1-Whittaker function holds:

�
gl�+1
λ (x) =

∫

S

�
∏

n=1

n
∏

k=1

n+1
∏

m=1
(ıγn+1,m − ıγn)

(2π)nn! ∏

s �=p
(ıγns − ıγnp)

e
ı
�+1
∑

n=1

n
∑

j=1
(γnj −γn−1, j )xn �

∏

n=1
j≤n

dγnj , (3.1)

where λ = (λ1, . . . , λ�+1) := (γ�+1,1, . . . , γ�+1,�+1), x = (x1, . . . , x�+1) and the domain
of integration S is defined by the conditions min j {Im γk j } > maxm{Im γk+1,m} for all
k = 1, . . . , �. Recall that we assume γnj = 0 for j > n.

Corollary 3.1. The following recursive relation holds:

�
gl�+1
γ
�+1
(x1, . . . , x�+1)

=
∫

S�
̂Q

gl�+1
gl�

(γ
�+1
, γ

�
|x�+1)�

gl�
γ
�
(x1, . . . , x�) µ

(�)(γ
�
)

�
∏

j=1

dγ�, j , (3.2)

where

̂Q
gl�+1
gl�

(γ
�+1
, γ

�
|x �+1) = e

ı(
�+1
∑

j=1
γ�+1, j −

�
∑

k=1
γ�,k )x�+1

�
∏

k=1

�+1
∏

m=1

(ıγ�+1,m − ıγ�,k), (3.3)

the measure µ(�)(γ
�
) is defined by (2.12) and γ

k
= (γk,1, . . . , γk,k). We imply

�
gl1
γ1,1(x1)= eıγ1,1x1 . The domain of integration S� is defined by the conditions

min j {Imγ�, j } > maxm{Imγ�+1,m}.
We call the integral operator Corollary 3.1 the Mellin-Barnes recursive operator.
Let us stress that the recursive structure of the Mellin-Barnes integral representation

of gl�+1-Whittaker functions is dual to that of the Givental integral representation. Indeed,

the Givental recursive operator Q
gl�+1
gl�

depends on an additional “spectral” variable λ�+1

and acts in the space of functions of the “coordinate” variables x , while the dual Mellin-

Barnes recursive operator ̂Q
gl�+1
gl�

depends on the additional “coordinate” variable x�+1

and acts in the space of functions of the “spectral” variables γ . Using the orthogonal and
completeness relations (2.10), (2.11) one can show that these two operators are related

by a conjugation by the integral operator with the kernel �gl�
γ
�
(x �).
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Proposition 3.1. The following integral representation for the kernel of the recursive

operator ̂Q
gl�+1
gl�

holds:

̂Q
gl�+1
gl�

(γ
�+1
, γ

�
|x�+1,�+1) =

∫

R�

�
∏

j=1

dx�+1, j �
gl�
γ
�
(x ′
�+1) �

gl�+1
γ
�+1
(x �+1)

=
∫

R�

�
∏

j=1

dx�+1, j

�
∏

k=1

dx�,k �
gl�
γ
�
(x ′

�+1) Q
gl�+1
gl�

(x �+1, x �γ�+1, �+1)�
gl�
γ ′
�+1
(x �), (3.4)

where x k = (xk,1, . . . , xk,k), x ′
k = (xk,1, . . . , xk,k−1).

In view of the above duality for the recursive operators it is natural to introduce an
operator dual to the Baxter Q-operator.

Definition 3.1. The dual Baxter operator ̂Qgl�+1(z) is an integral operator with the
kernel

̂Qgl�+1(γ
�+1
, β

�+1
|z) =

�+1
∏

i=1

�+1
∏

j=1

(γ�+1,i − ıβ�+1, j )e
ız(

∑�+1
i=1 γ�+1,i −∑�+1

j=1 β�+1, j ), (3.5)

acting on the space of functions of γ = (γ1, . . . , γ�+1) as

̂Qgl�+1(z) · F(γ ) =
∫

S�+1

̂Qgl�+1(γ , γ̃ |z) F(γ̃ ) µ(�+1)(γ̃ )

�+1
∏

j=1

dγ̃ j . (3.6)

Proposition 3.2. The gl�+1-Whittaker function satisfies the following relation:

̂Qgl�+1(z) ·�gl�+1
γ
�+1
(x �+1) = e−e(x�+1,�+1−z)

�
gl�+1
γ
�+1
(x �+1). (3.7)

Proof. We should prove that

∫

S�+1

eız (
∑�+1

i=1 λ�+1,i −∑

γ�+1,i )

�+1
∏

i, j=1
(ıλ�+1,i − ıγ�+1, j )

∏

i �= j
(ıγ�+1, j − ıγ�+1,i )

�
gl�+1
γ
�+1
(x �+1)

�+1
∏

j=1

dγ�+1, j

= (2π)�+1(� + 1)! e−e(x�+1,�+1−z)
�

gl�+1
λ�+1

(x �+1). (3.8)

Due to the orthogonality condition (2.10) this is equivalent to the following:

∫

R�+1
e−e(x�+1,�+1−z)

�
gl�+1
γ
�+1
(x �+1)�

gl�+1
λ�+1

(x �+1)

�+1
∏

j=1

dx�+1, j

= eız
∑�+1

i=1(λ�+1,i −γ�+1,i )
�+1
∏

i=1

�+1
∏

j=1

(ıλ�+1,i − ıγ�+1, j ). (3.9)
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Using the recursive relation (3.2) one can rewrite this as

∫

R�+1×S�×S�

�+1
∏

j=1

dx�+1, j

�
∏

j=1

dλ�, j

�
∏

j=1

dγ�, j

×e ıx�+1,�+1(
∑�+1

i=1(λ�+1,i −γ�+1,i )−∑�
k=1(λ�,k−γ�,k ))−e(x�+1,�+1−z)

(3.10)

×

�+1
∏

i=1

�
∏

k=1
(λ�+1,i − ıλ�,k)(ıγ�,k − ıγ�+1,i )

(2π)2�(�!)2 ∏

k �=l
(ıλ�,l − ıλ�,k)(ıγ�,l − ıγ�,k)

�
gl�
γ
�
(x ′
�+1)�

gl�
λ�
(x ′
�+1)

= e−ı z
∑�+1

i=1(λ�+1,i −γ�+1,i )
�+1
∏

i=1

�+1
∏

j=1

(ıλ�+1,i − ıγ�+1, j ), (3.11)

where x ′
�+1 = (x�+1,1, . . . , x�+1,�). Using the orthogonality condition (2.10) with respect

to the x ′
�+1 and integrating over γ

�
we see that (3.7) is equivalent to the following:

1

(2π)� � !
∫ ∞

−∞
dx�+1,�+1 e−ı(x�+1,�+1−z)

∑�+1
i=1(λ�+1,i −γ�+1,i )−ex�+1,�+1−z

×
∫

S ′
�

�
∏

j=1

dλ�, j

�+1
∏

i=1

�
∏

k=1
(λ�+1,i − ıλ�,k)(ıλ�,k − ıγ�+1,i )

∏

k �=l
(ıλ�,l − ıλ�,k)

(3.12)

=
�+1
∏

i=1

�+1
∏

j=1

(ıλ�+1,i − ıγ�+1, j ).

where the contour of integration S ′
� in above formulas is deformed so as to separate the

sequences of poles going down {γ�+1, j − ık, j = 1, . . . , � + 1, k = 0, . . . ,∞} from the
sequences of poles going up {λ�+1, j + ık, j = 1, . . . , �+ 1, k = 0, . . . ,∞} . We assume
also that γ�+1, j �= λ�+1,k for any j, k. The last identity is a simple consequence of the
following integral formula due to Gustafson (see [Gu], Theorem 5.1, p. 81):

1

(2π)�

∫

S ′
�

�
∏

j=1

dλ�, j

�+1
∏

i=1

�
∏

k=1
(λ�+1,i − ıλ�,k)(ıλ�,k − ıγ�+1,i )

∏

k �=l
(ıλ�,l − ıλ�,k)

= � !

�+1
∏

i=1

�+1
∏

j=1
(ıλ�+1,i − ıγ�+1, j )


( �+1

∑

i=1
ıλ�+1,i −

�+1
∑

i=1
ıγ�+1,i

)

. ��

Proposition 3.3. The following symmetric recursive relation for gl�+1-Whittaker func-
tions holds:

�
gl�+1
γ
�+1
(x �+1) = e ıγ�+1,�+1x�+1,�+1 ̂Qgl� (x�+1,�+1) · Qgl� (γ�+1,�+1)�

gl� , (3.13)
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where x ′
�+1 = (x�+1,1, . . . , x�+1,�), γ ′

�+1
= (γ�+1,1, . . . , γ�+1,�) and the action of the

Baxter operator Qgl� and its dual ̂Qgl� is given by
(

̂Qgl� (x�+1,�+1) · Qgl� (γ�+1,�+1)�
gl�

)

γ
�+1

(x �+1) (3.14)

=
∫ �

∏

j=1

dγ�, j

�
∏

j=1

dx�, j µ
(�)(γ

�
) ̂Qgl� (γ ′

�+1
, γ

�
| x�+1,�+1)

×Qgl� (x ′
�+1, x �| γ�+1,�+1)�

gl�
γ
�
(x �).

Proof. Let us start with the Mellin-Barnes recursive relation

�
gl�+1
γ
�+1
(x �+1)

=
∫ �

∏

j=1

dγ�, j µ
(�)(γ

�
)

�+1
∏

i=1

�
∏

j=1

(ıγ�+1,i − ıγ�, j )

× e ıx�+1,�+1(
∑�+1

i=1 γ�+1,i −∑�
i=1 γ�,i )�

gl�
γ
�
(x ′
�+1).

Using the properties of the Baxter operator we have

�
gl�+1
γ
�+1
(x �+1) = eıγ�+1,�+1x�+1,�+1

∫ �
∏

j=1

dx�, j Qgl� (x ′
�+1, x �|γ�+1,�+1)

×
(

∫ �
∏

j=1

dγ�, j µ
(�)(γ

�
)

�
∏

i=1

�
∏

j=1

(ıγ�+1,i − ıγ�, j )

×eıx�+1,�+1(
∑�

i=1 γ�+1,i −∑�
i=1 γ�,i ) �

gl�
γ
�
(x �)

)

= e ıγ�+1,�+1x�+1,�+1 ̂Qgl� (x�+1,�+1) · Qgl� (γ�+1,�+1)�
gl� .

Note that one can equally start with a Givental recursive relation and use the eigenvalue
property (3.7) of the dual Baxter operator. ��

The Givental and Mellin-Barnes recursions are easily obtained from the symme-
tric recursion (3.13). This provides a direct and inverse transformation of the Given-
tal representation into the Mellin-Barnes one. Moreover, this leads to a family of the

intermediate Givental-Mellin-Barnes representations. Indeed, to obtain �gl�+1
γ
�+1
(x �+1)

from �
gl�
γ
�
(x �) one can either use the integral operator Q

gl�+1
gl�

(x �+1, x �|γ�+1,�+1) or the

integral operator ̂Q
gl�+1
gl�

(γ
�+1
, γ

�
|x�+1,�+1). This leads to the following family of mixed

Mellin-Barnes-Givental integral representations of gl�+1-Whittaker function

�gl�+1 = Q(ε1) · Q(ε2) · · · Q(ε�) �gl1 , ε = L , R , (3.15)

where Q(L) is the integral operator with the integral kernel Q
glk+1
glk

, Q(R) is the integral

operator with the integral kernel ̂Q
glk+1
glk

and the integral operators act on γ - or x-variables
depending on εi . Various choices of {εi } in (3.15) provide various integral representations
of the gl�+1-Whittaker function.
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4. Archimedean Factors in Rankin-Selberg Method

In this section we apply the dual recursion operator and Baxter operators discussed
in the previous section to simplify calculations of the correction factors arising in the
Rankin-Selberg method applied to GL(�+1)×GL(�+1) and GL(�+1)×GL(�). Note
that these calculations are an important step in the proof of the functional equations
for the corresponding automorphic L-functions using the Rankin-Selberg approach.
Explicit expressions for these correction factors in terms of Gamma-functions were
conjectured by Friedberg-Bump and Bump and proved later by Stade [St1,St2]. The
proofs in [St1,St2] are based on a recursive generalization of the integral representation
of gl�+1-Whittaker functions, � = 2 first derived by Vinogradov and Takhtajan [VT].
The recursion in [St1,St2] changes the rank by two � − 1 → � + 1. It was noted in
[GKLO] that this recursion is basically the Givental recursion applied twice.

In this section we will demonstrate that using the recursive properties of the Mellin-
Barnes representation and the dual Baxter operator one can give a one-line proof of
the Friedberg-Bump and Bump conjectures. We start with a brief description of the
relevant facts about automorphic L-functions, the Rankin-Selberg method and the Bump-
Freidberg and Bump conjectures. For more details see e.g. [Bu,Go].

Let A be the adele ring of Q and G be a reductive Lie group. An automorphic
representation π of G(A) can be characterized by an automorphic form φπ such that it
is an eigenfunction of any element of the global Hecke algebra H(G(A)). The global
Hecke algebra can be represented as a product H(G(A)) = (⊗pHp) ⊗ H∞ of the
local non-Archimedean Hecke algebras Hp = H(G(Qp),G(Zp)) for each prime p and
an Archimedean Hecke algebra H∞ = H(G(R), K ), where K is a maximal compact
subgroup in G(R). The local Hecke algebra Hp is isomorphic to a representation ring of
a simply connected complex Lie group L G0, Langlands dual to G (e.g. A�, B�, C�, D� are
dual to A�, C�, B�, D� respectively). For each unramified representation of G(Qp) one
can define an action of Hp such that an automorphic form φπ is a common eigenfunction
of all elements of Hp for all primes p and thus defines a set of homomorphisms Hp → C.
Identifying local Hecke algebras with the representation ring of L G0 one can describe
this set of homomorphisms as a set of conjugacy classes gp in L G0.

Given a finite-dimensional representation ρV : L G0 → GL(V,C) one can construct
an L-function corresponding to an automorphic form φ in the form of the Euler product
as follows:

L(s, φ, ρV ) =
∏′

p

L p(s, φ, ρV ) =
∏′

p

det
V
(1 − ρV (gp) p−s)−1, (4.1)

where
∏′

p is a product over primes p such that the corresponding representation of
G(Qp) is not ramified. It is natural to complete the product by including local L-factors
corresponding to Archimedean and ramified places. L-factors for ramified representa-
tions can be taken trivial. For the Archimedean place the Hecke eigenfunction property
is usually replaced by the eigenfunction property with respect to the ring of invariant
differential operators on G(R). The corresponding eigenvalues are described by a conju-
gacy class t∞ in the Lie algebra Lg0 = Lie(L G0). The Archimedean L-factor is given
by [Se]

L∞(s, φ, ρV ) =
�+1
∏

j=1

(

π− s−α j
2 

( s − α j

2

))

= det
V

(

π− s−ρV (t∞)

2 
( s − ρV (t∞)

2

))

,

(4.2)
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where ρV (t∞) = diag(α1, . . . α�+1). The complete L-function

�(s, φ, ρ) = L(s, φ, ρ)L∞(s, φ, ρ), (4.3)

should satisfy the functional equation of the form

�(1 − s, φ, ρ) = ε(s, φ, ρ)�(s, φπ∨ , ρ∨),

where the ε-factor is of the exponential form ε(s, φ, ρ) = A Bs and π∨, ρ∨ are dual to
π , ρ.

In the Rankin-Selberg method one considers automorphic L-functions associated
with automorphic representations of the products G × G̃ of reductive groups. Let
ρV : L G0 → End(V ), ρ̃Ṽ : L G̃0 → End(Ṽ ) be finite-dimensional representations of
dual groups and let gp ∈ L G0, g̃p ∈ L G̃0 be representatives of the conjugacy classes cor-
responding to automorphic formsφ and φ̃. One defines the L-function L(s, π×π̃ , ρ×ρ̃)
as follows:

L(s, φ × φ̃, ρ × ρ̃) =
∏′

p

det
V ⊗Ṽ

(1 − ρV (gp)⊗ ρ̃V (g̃p) p−s)−1. (4.4)

The L-function (4.4) up to a correction factor can be naturally written as an integral of the
product of automorphic forms φ and φ̃ with a simple kernel function. Given an explicit
expression for the correction factor, this integral representation can be an important tool
for studying analytic properties of L(s, φ × φ̃) as a function of s.

In the following we consider the Rankin-Selberg method in the case of G×˜G being
either GL(�+1)×GL(�+1) or GL(� + 1)×GL(�) with ρ and ρ̃ being standard repre-
sentations. We start with the case of GL(� + 1) × GL(� + 1). Consider the following
zeta-integral:

Z(s, φ × φ̃) =
∫

GL(�+1,Q)Z (�+1)
A

\GL(�+1,A)
φ(g)φ̃(g)E(g, s) dg, (4.5)

where the Eisenstein series is

E(g, s) = ζ((� + 1)s)
∑

γ∈P(�+1,�,Z)\GL(�+1,Z)

fs(γ g). (4.6)

Here Z (�+1)
A

is the center of GL(�+1,A), ζ(s) = ∑∞
n=1 n−s is the Riemann zeta-function

and

fs ∈ IndGL(�+1,A)
P(�+1,�,A) δ

s
P ,

where δP denotes the modular function of the parabolic subgroup P(� + 1, �,A) of
GL(� + 1,A) with the Levi factor GL(�,A)× GL(1,A).

Using the Rankin-Selberg unfolding technique (4.5) can be represented in the form

Z(s, φ × φ̃) = L(s, φ × φ̃)�(s, φ × φ̃),

where the correction factor�(s, φ×φ̃) is a convolution of two gl�+1-Whittaker functions.
The Bump-Freidberg conjecture proved in [St1] claims that �(s, φ × φ̃) is equal to the
Archimedean local L-factor.
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Theorem 4.1 (Bump-Freidberg-Stade).

�(s, φ × φ̃) = L∞(s, φ × φ̃) =
�+1
∏

j=1

�+1
∏

k=1

π− s−α j −α̃k
2 

( s − α j − α̃k

2

)

, (4.7)

where ρV (t∞) = diag(α1, . . . α�+1) and ρ̃V (t̃∞) = diag(α̃1, . . . α̃�+1) correspond to the
automorphic representations φ and φ̃ as in (4.2).

The proof of the theorem can be reduced to the following identity proved by Stade
(we rewrite Theorem 1.1, [St2] in our notations).

Lemma 4.1. The following integral relation holds:

∫

R�+1

�+1
∏

j=1

dx�+1, j e−ex�+1,�+1
�gl�+1γ

�+1
(x �+1)�

gl�+1
λ�+1+t (x �+1)

=
�+1
∏

k=1

�+1
∏

j=1

(ı t + ıλ�+1,k − ıγ�+1, j ), (4.8)

where t = (t, . . . , t) ∈ R
�+1.

Proof. The proof readily follows from the proof of Proposition 3.2. ��
Next we consider the Rankin-Selberg method for GL(�+ 1)× GL(�), ρ and ρ̃ being

standard representations of GL(� + 1) and GL(�). In this case one has to study the
following integral:

Z(s, φ × φ̃) =
∫

GL(�,Z)Z (�)
A

\GL(�,A)
φ(

(

g
1

)

) φ̃(g) |det(g)|s−1/2dg, (4.9)

where Z (�)
A

is the center of GL(�,A). Using the Rankin-Selberg unfolding technique,
the integral (4.9) can be represented in the form

Z(s, φ × φ̃) = L(s, φ × φ̃)�(s, φ × φ̃),

where the correction factor �(s, φ × φ̃) is a convolution of gl�+1- and gl�-Whittaker
functions. The Bump conjecture proved in [St1] claims that �(s, φ × φ̃) is equal to the
Archimedean local L-factor.

Theorem 4.2 (Bump-Stade).

�(s, φ × φ̃) = L∞(s, φ × φ̃) =
�+1
∏

j=1

�
∏

k=1

π− s−α j −α̃k
2 

( s − α j − α̃k

2

)

, (4.10)

where ρV (t∞) = diag(α1, . . . α�+1) and ρ̃V (t̃∞) = diag(α̃1, . . . α̃�) correspond to the
automorphic representations φ and φ̃ as in (4.2).

The proof of the theorem is equivalent to the proof of the following integral identity
( we rewrite Theorem 3.4, [St2] using our notations):
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Lemma 4.2.
∫

R�+1

�+1
∏

j=1

dx�+1, j �
gl�
γ
�
(x ′
�+1)�

gl�+1
λ�+1+t (x �+1)

= δ
(

ı(� + 1)t + ı
�+1
∑

i=1

λ�+1,i − ı
�

∑

k=1

γ�,k

)
�+1
∏

i=1

�
∏

k=1

(ı t + ıλ�+1,i − ıγ�,k), (4.11)

where t = (t, . . . , t) ∈ R
�+1, x ′

�+1 = (x�+1,1, . . . , x�+1,�) and δ(x) is the Dirac δ-
function.

Proof. To verify this statement we substitute into the l.h.s. of (4.11) the following
recursive relation:

�
gl�+1
λ�+1+t (x �+1) = ̂Q(x�+1, �+1) ·�gl�

λ�
(x ′
�+1).

Then applying the orthogonality relation from Theorem 2.1 and integrating over x�+1, �+1
we obtain the r.h.s. (4.11). ��

Let us stress that one should not expect to have expressions for �(s, φ × φ̃) as
products of Gamma-functions for more general cases GL(�+ n)× GL(�), n > 1. From
the point of view of Mellin-Barnes recursive construction, �(s, φ × φ̃) are the kernels
of recursive operators corresponding to the change of rank � → �+ n and thus are given
by compositions of elementary recursive operators. This leads to general expressions
for �(s, φ × φ̃) in terms of the integrals of the products of Gamma-functions. Let us
remark that in this paper we consider Rankin-Selberg method as a method for studying
properties of matrix elements of the natural (recursive) operators acting in the space
of automorphic forms. One can expect that this point of view might be useful in the
investigation of other properties of automorphic L-functions.

Let us comment on Stade’s proof of Theorems 4.1, 4.2. The proof in [St1,St2] is
based on the recursive relation connecting gl�+1- and gl�−1-Whittaker functions. Below
we derive this recursion from the following form of the Givental recursion.

Proposition 4.1. The following recursive relations for gl�+1-Whittaker functions holds:

�
gl�+1
λ1,...,λ�+1

(x �+1) =
∫

R�−1

�−1
∏

i=1

dx�−1,i Q
gl�+1
gl�−1

(x �+1, x �−1|λ�+1, λ�)

×�gl�−1
λ1,...,λ�−1

(x �−1), (4.12)

Q
gl�+1
gl�−1

(x �+1, x �−1|λ�+1, λ�)

=
∫

R�

�
∏

j=1

dx�, j exp

{

ıλ�+1

(
�+1
∑

i=1

x�+1,i −
�

∑

k=1

x�,k
)

−
�

∑

k=1

(

ex�+1,k−x�,k + ex�,k−x�+1,k+1
)

+ ıλ�
(

�
∑

k=1

x�,k −
�−1
∑

j=1

x�−1, j

)

−
�−1
∑

k=1

(

ex�,k−x�−1,k + ex�−1,k−x�,k+1
)

⎫

⎬

⎭

. (4.13)
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Proof. The recursive relation (4.12) is the Givental recursive relation (2.19) applied
twice. ��
Theorem 4.3 (Stade). The following recursion relation for gl�+1-Whittaker functions
holds:

�
gl�+1
λ1,...,λ�+1

(x �+1) =
∫

R�−1

�−1
∏

j=1

dx�−1, j K�+1, �−1(x �+1, x �−1| λ�+1, λ�)

×�gl�−1
λ1,...λ�−1

(x �−1), (4.14)

where K�+1, �−1(x �+1, x �−1| λ) is given by the following explicit formula:

K�+1, �−1(x �+1, x �−1| λ)

= 21−� exp
{ ı(λ� + λ�+1)

2

(
�+1
∑

i=1

x�+1,i −
�−1
∑

j=1

x�−1, j

) }

×
�

∏

i=1

Kı(λ�−λ�+1)

(

2
√

(

ex�+1,i + ex�−1,i−1
)(

e−x�+1,i+1 + e−x�−1,i
)

)

. (4.15)

Here we use the following integral representation for the Macdonald function:

Kν(y) =
∫ ∞

0

dt

t
tνe−y(t+t−1)/2.

Proof. At first we substitute into the expression for K�+1, �−1 the integral representation
with integration variables ti for Macdonald functions Kı(λ�−λ�+1). Then we make the
following change of variables ti :

t1 = ex�,1

√

e−x�+1,2 + e−x�−1,1

ex�+1,1
,

tk = ex�,k

√

e−x�+1,k+1 + e−x�−1,k

ex�+1,k + ex�−1,k−1
, t� = ex�,�

√

e−x�+1,�+1

ex�+1,� + ex�−1,�−1
, (4.16)

for k = 1, . . . , � and j = 1, . . . , �− 1. Thus we obtain the following identity between
the kernels:

K�+1, �−1(x �+1, x �−1| λ) = Q
gl�+1
gl�−1

(x �+1, x �−1| λ). (4.17)

This reduces the Stade recursion to the Givental recursive procedure. ��
The appearance of the Gamma-functions both in the Mellin-Barnes integral repre-

sentation of the gl�+1-Whittaker functions and in the expressions for the Archimedean
L-factors is not accidental. In the next section we explain this connection by relating
the constructed Baxter operator with a universal Baxter operator considered as an ele-
ment of the Archimedean Hecke algebras H(G(R), K ), where K is a maximal compact
subgroup of G(R).
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5. Universal Baxter Operator

5.1. Universal Baxter operator in H(G(R), K ). In this section we will argue the Baxter
Q-operator for the gl�+1-Toda chain can (and should) be considered as a realization of
the universal Baxter operator considered as elements of the spherical Hecke algebra
H(GL(� + 1,R), K ), K being a maximal compact subgroup of GL(� + 1,R). We also
consider non-Archimedean analogs of the universal Baxter operator as an element of a
local Hecke algebra H(GL(�+ 1,Qp),GL(� + 1,Zp)). Both in Archimedean and non-
Archimedean cases the eigenvalues of the Baxter Q-operators acting on gl�+1-Whittaker
functions are given by the corresponding local L-factors.

Let us start with the definition of the spherical Hecke algebra H∞ = H(G(R), K ),
where K is a maximal compact subgroup of G(R). Algebra H∞ is defined as an algebra
of K -biinvariant functions on G, φ(g) = φ(k1gk2), k1, k2 ∈ K acting by a convolution

φ ∗ f (g) =
∫

G
φ(gg̃−1) f (g̃)dg̃. (5.1)

To ensure the convergence of the integrals one usually imposes the condition of compact
support on K -biinvariant functions. We will consider slightly more general class of
exponentially decaying functions.1

By the multiplicity one theorem [Sha], there is a unique smooth spherical vector
〈φK | in a principal series irreducible representation Vγ = IndG

B− χγ . The action of a
K -biinvariant functionφ on the spherical vector 〈φK | in Vγ is given by the multiplication
by a character �φ of the Hecke algebra:

φ ∗ 〈φK | ≡
∫

G
dgφ(g−1) 〈φK |πγ (g) = �φ(γ )〈φK |. (5.2)

In particular, the elements φ of the Hecke algebra should act by convolution on the
Whittaker function as follows:

φ ∗�gl�+1
γ (g) = �φ(γ )�

gl�+1
γ (g), φ ∈ H∞. (5.3)

Here the Whittaker function �gl�+1
γ is considered as a function on G such that

�
gl�+1
γ (kan) = χN−(n)�

gl�+1
γ (a), (5.4)

where kan ∈ K AN− → G is the Iwasawa decomposition.
In the previous section we construct the Baxter integral operator acting on the gl�+1-

Whittaker function (considered as a function on the subspace A of the diagonal matrices)
as

Qgl�+1(λ) ·�gl�+1
γ (x) =

�+1
∏

j=1

π− ıλ−ıγ j
2 

( ıλ− ıγ j

2

)

�
gl�+1
γ (x), (5.5)

1 This should be compared with the use of exponentially decreasing functions instead of functions with
compact support in the Mathai-Quillen construction of the representative of the Thom class.



Baxter Operator and Archimedean Hecke Algebra 885

where the kernel of the operator Qgl�+1(λ) is given by

Qgl�+1(x, y|λ)

= 2�+1 exp
{

ıλ
�+1
∑

i=1

(xi − yi )− π

�
∑

k=1

(

e2(xk−yk ) + e2(yk−xk+1)
)

− πe2(x�+1−y�+1)
}

.

Note that here we use a parametrization of Baxter operator naturally arising in the
description of Whittaker functions in terms of Iwasawa decomposition. In this section
we will use only this type of the parametrization and drop the tildes in the corresponding
notations (see (2.13) and Lemma 2.1). We also take coupling constants in the Toda chain
gi = π2 to agree with the standard normalizations in Representation theory.

Let us recall that we introduce the gl�+1-Whittaker function �gl�+1
γ (x) as a matrix

element multiplied by the factor exp(−〈ρ, x〉) (see (2.5), (2.13)). In the construction of
the universal Baxter operator it is more natural to consider a modified Whittaker function
�gl�+1 equal to the matrix elements itself

�
gl�+1
γ (x) = e〈ρ,x〉�gl�+1

γ (x). (5.6)

Define a modified Baxter Q-operator:

Qgl�+1
0 (λ) = e〈ρ,x〉Qgl�+1(λ)e−〈ρ,x〉.

It has the kernel

Qgl�+1
0 (x, y|λ) = 2�+1 exp

{
�+1
∑

j=1

(ıλ + ρ j )(x j − y j )

−π
�

∑

k=1

(

e2(xk−yk ) + e2(yk−xk+1)
)

− πe2(x�+1−y�+1)
}

,

where ρ ∈ R
�+1 , with ρ j = �

2 + 1 − j, j = 1, . . . , � + 1, and it acts on the modified
Whittaker functions as follows:

Qgl�+1
0 (λ) ·�gl�+1

γ (x) =
�+1
∏

j=1

π− ıλ−ıγ j
2 

( ıλ− ıγ j

2

)

�
gl�+1
γ (x). (5.7)

We would like to find an element φQ0(λ) in H∞ such that the following relation holds:

φQ0(λ) ∗�gl�+1
γ (g) =

�+1
∏

j=1

π− ıλ−ıγ j
2 

( ıλ− ıγ j

2

)

�
gl�+1
γ (g), (5.8)

and the restriction of φQ0(λ) to the subspace of functions satisfying (5.4) coincides with

the operator Qgl�+1
0 (λ). We shall call such φQ0(λ) a universal Baxter operator.

Theorem 5.1. Let φQ0(λ)(g) be a K -biinvariant function on G = GL(� + 1,R) given
by

φQ0(λ)(g) = 2�+1| det g|ıλ+ �2 e−πTrgt g. (5.9)
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i) Then, the action of φQ0(λ) on the functions satisfying (5.4) descends to the action

of Qgl�+1
0 (λ) defined by (5.7);

ii) The action of φQ0(λ) on the modified Whittaker function�
gl�+1
γ (g) by a convolution

is given by
(

φQ0(λ) ∗�gl�+1
γ

)

(g) = L∞(λ) �
gl�+1
γ (g), (5.10)

where L∞(λ) is the local Archimedean L-factor,

L∞(λ) =
�+1
∏

j=1

π− ıλ−ıγ j
2 

( ıλ− ıγ j

2

)

. (5.11)

Proof. i) The action of the K -biinvariant function on gl�+1-Whittaker functions is given
by

(

φ ∗ �gl�+1
γ

)

(g) =
∫

G
dg̃ φ(gg̃−1)�

gl�+1
γ (g̃)

=
∫

G
dg̃ φ(gg̃−1) 〈k|πγ (g̃)|ψR〉. (5.12)

Fix the Iwasawa decomposition g̃ = k̃ãñ, k̃ ∈ K , ã ∈ A, ñ ∈ N− of a generic element
g̃ ∈ G and let δB−(ã) = detn− Adã . We shall use the notation d×a = da · det(a)−1 for
a ∈ A. We have for a ∈ A,

(

φ ∗ �gl�+1
γ

)

(a) =
∫

AN−
d×ãdñ δB−(ã) φ(añ−1ã−1) χN−(ñ)�

gl�+1
γ (ã)

=
∫

A
d×ã Kφ(a, ã)�

gl�+1
γ (ã) (5.13)

with

Kφ(a, ã) =
∫

N−
dñ δB−(ã) φ(añ−1ã−1) χN−(ñ),

χN−(ñ) = exp
{

2π ı
�

∑

i=1

ñi+1,i

}

.

Thus to prove the first statement of the theorem we should prove the following;

Qgl�+1
0 (x, y|λ) =

∫

N−
dñ δB−(ã) φQ0(λ)(añ−1ã−1|λ) χN−(ñ), (5.14)

where

a = diag (ex1 , . . . , ex�+1), ã = diag(ey1 , . . . ey�+1),

δB−(ã) = e−2〈ρ,log ã〉 = e
∑

i> j (yi −y j ).
(5.15)

For g = añ−1ã−1 we have

det g = e
∑�+1

i=1(xi −yi ), Tr gt g =
�+1
∑

i=1

e2(xi −yi ) +
∑

i> j

u2
i j e

2(xi −y j ), (5.16)
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where u = ñ−1 ∈ N−. Taking into account that χN−(ñ) = χN−(u
−1) = exp(−2π ı

∑�
i=1 ui+1,i ), we obtain

Qgl�+1
0 (x, y|λ)
= 2�+1

∫

N−
du e

∑

i> j (yi −y j ) e−2π ı
∑�

i=1 ui+1,i

× exp
{
�+1
∑

i=1

(ıλ +
�

2
)(xi − yi )− π

�+1
∑

i=1

e2(xi −yi ) − π
∑

i> j

u2
i j e

2(xi −y j )
}

(5.17)

= 2�+1 exp
{

(ıλ +
�

2
)

�+1
∑

i=1

(xi − yi )− π

�+1
∑

i=1

e2(xi −yi )
}

e
∑

i> j (yi −y j )

×
∫

R�

�
∏

i=1

dui+1,i exp
{

− 2π ı
�

∑

i=1

ui+1,i − π

�
∑

i=1

u2
i+1,i e

2(xi+1−yi )
}

×
∏

i> j+1

∫

dui j exp
{

− πu2
i j e

2(xi −y j )
}

. (5.18)

Computing the integrals by using the formula
∫ ∞

−∞
e−ıωx−px2

dx =
√

π

p
e

−ω2
4p (5.19)

we readily obtain that

Qgl�+1
0 (x, y|λ) = 2�+1 exp

{
�+1
∑

i=1

(ıλ + ρi )(xi − yi )

−π
�

∑

i=1

(

e2(xi −yi ) + e2(yi −xi+1)
)

− πe2(x�+1−y�+1)
}

, (5.20)

where ρ j = �
2 + 1 − j, j = 1, . . . , �+ 1. This completes the proof of the first statement

of the theorem.
ii) The proof of (5.10) follows from the results of Sect. 2. ��

It is instructive to provide a direct proof of (5.10). To do so let us first recall standard
facts in the theory of spherical functions (see [HC] for details).

There is a general integral expression for the K -biinvariant function in terms of
eigenvalues �φ(γ ) (5.3). Consider the action on the spherical functions

ϕγ (g) = 〈φK |πγ (g)|φK 〉, (5.21)

normalized by the condition ϕγ (e) = 1. The explicit integral representation for ϕγ (g)
is

ϕγ (g) =
∫

K
dk e〈h(gk),ıγ+ρ〉, (5.22)
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where
∫

K dk = 1 and h(g) = log a, where g = kan ∈ K AN− → G is the Iwasawa
decomposition. Then we have

φ ∗ ϕγ (g) = �φ(γ )ϕγ (g),

�φ(γ ) = φ ∗ ϕγ (e). (5.23)

Thus the eigenvalues can be written in terms of the spherical transform as follows:

�φ(γ ) =
∫

G
dg φ(g−1)ϕγ (g) = 2−(�+1)

∫

A+
d×a φ(a−1)ϕγ (a), (5.24)

where we have used the Cartan decomposition G = K A+(M \ K ) to represent the first
integral as an integral over diagonal matrices. Here we define A+ = exp a+, where a+

consists of the diagonal matrices of the form diag (ex1 , . . . , ex�+1), x1 ≤ x2 ≤ . . . ≤
x�+1 and M is the normalizer of a in K . Notice that 2�+1 = |M |.
Proposition 5.1. The following integral relation holds:

�φQ0(λ)
(γ ) = 2−(�+1)

∫

A+
d×a φQ0(λ)(a

−1) ϕγ (a)

=
�+1
∏

j=1

π− ıλ−γ j
2 

( ıλ− ıγ j

2

)

, (5.25)

where ρ j = �
2 + 1 − j, j = 1, . . . , � + 1.

Proof. Using the integral representation (5.24), the l.h.s. of (5.25) is given by
∫

K×A+
dkd×a | det a|−ıλ− �

2 e−πTr (at a)−1
e<h(ak),ıγ+ρ>. (5.26)

Using Cartan and Iwasawa decompositions we have
∫

K×A+
dk d×a | det a|−ıλ− �

2 e−πTr (at a)−1
e<h(ak),ıγ+ρ>

=
∫

K×A+×K
dk′ d×a dk | det k′ak|−ıλ− �

2 e−πTr ((k′ak)t (kak′))−1
e<h(k′ak),ıγ+ρ> (5.27)

= 2�+1
∫

K×A+×M\K
dk′ d×a dk | det k′ak|−ıλ− �

2 e−πTr ((k′ak)t (kak′))−1
e<h(k′ak),ıγ+ρ>

= 2�+1
∫

G
dg | det g|−ıλ− �

2 e−πTr (gt g)−1
e<h(g),ıγ+ρ>

= 2�+1
∫

K×A×N−
dn d×a dk δB−(a)| det a|−ıλ− �

2 e−πTr (nt a2n)−1
e〈log(a),ıγ+ρ〉

= 2�+1
∫

A×N−
dn d×a δB−(a)| det a|−ıλ− �

2 e−πTr (nt a2n)−1
e<log(a),ıγ+ρ>

=
�+1
∏

j=1

π− ıλ−γ j
2 

( ıλ− ıγ j

2

)

,
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where the formula
∫ +∞

−∞
dx eνx e−ae−2x = 1

2
a
ν
2 (−ν

2
)

was used. ��
The integral operator constructed above can be considered as a universal Baxter

operator on matrix elements between the spherical vector and any other vector in the
representation space. In particular it is easy to describe explicitly an action of the Baxter
operators on the space of zonal spherical functions. In this case one obtains the Baxter
operator for the Sutherland model at a particular value of the coupling constant.

5.2. Non-Archimedean analog of Baxter operator. Let us construct a non-Archimedean
analog of the universal Baxter Q-operator introduced above. In the non-Archimedean
case the local Hecke algebra Hp = H(GL(� + 1,Qp), K p), K p = GL(� + 1,Zp) is
defined as an algebra of the compactly supported K p-biinvariant functions on GL(� +
1,Qp). Note that K p is a maximal compact subgroup of GL(� + 1,Qp). Consider a

set {T (i)p }, i = 1, . . . , (� + 1) of generators of H(GL(� + 1,Qp), K p) given by the
characteristic functions of the following subsets:

Oi = K p · diag(p, . . . , p
︸ ︷︷ ︸

i

, 1 . . . , 1) · K p ⊂ GL(� + 1,Qp). (5.28)

The action of T (i)p on functions f ∈ C(G/K ) is then given by the following integral
formula:

(T (i)p f ) (g) =
∫

Oi

f (gh)dh. (5.29)

This can be considered as a convolution with characteristic function T (i)p of Oi . For an
appropriately defined non-Archimedean gl�+1-Whittaker function Wσ [Sh,CS] one has

T (i)p Wσ = TrVωi
ρi (σ ) Wσ , (5.30)

where ρi : GL(� + 1,C) → End(Vωi ,C), Vωi = ∧i
C
�+1 is a representation of GL(� +

1,C) corresponding to the fundamental weight ωi and σ is a conjugacy class in GL(�+
1,C) corresponding to a non-Archimedean Whittaker function Wσ . Note that, in contrast
with (5.30), the standard normalization of T (i)p includes an additional factor p−i(i−1)/2.

More generally, one considers Hecke operators T (V )p associated to arbitrary finite di-
mensional representations ρV : GL(� + 1,C) → End(V,C) satisfying

T (V )p Wσ = TrV ρV (σ ) Wσ . (5.31)

It is natural to arrange the generators of Hp into the following generating function:

Tp(λ) =
�+1
∑

j=1

(−1) j p−(�+1− j)λ T ( j)
p . (5.32)
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We introduce another generating function

Qgl�+1
p (λ) =

∞
∑

n=0

p−nλ T (S
n V )

p , (5.33)

where V = C
�+1 is the standard representation of gl�+1(C). The generating functions

(5.32), (5.33) satisfy the following relations:

Qgl�+1
p (λ) · Qgl�+1

p (λ′) = Qgl�+1
p (λ′) · Qgl�+1

p (λ), (5.34)

Qgl�+1
p (λ) · Tp(λ

′) = Tp(λ
′) · Qgl�+1

p (λ), (5.35)

1 = Tp(λ) · Qgl�+1
p (λ), (5.36)

and the operators Tp(λ) and Qgl�+1
p (λ) act on the non-Archimedean analog of the

Whittaker function as

Tp(λ) Wσ = det
V
(1 − p−λρV (σ ))Wσ , (5.37)

Qgl�+1
p (λ) Wσ = det

V
(1 − p−λρV (σ ))

−1 Wσ . (5.38)

Thus the eigenvalues of Qgl�+1
p (λ) are given by the local non-Archimedean L-factors

L p(s) = det
V
(1 − p−sρV (σ ))

−1, (5.39)

where we use a more traditional notation s := λ.
Comparing (5.34), (5.35), (5.36) with (2.22), (2.24), (2.25) one can see that the gl�+1

Baxter Q-operator appears quite similar to the generating function Qgl�+1
p (λ) in the Hecke

algebra H(GL(�+ 1,Qp), K p) and the analog of Tp(λ) is given by (2.26). In particular
both operators share the property that their eigenvalues are given by local L-factors.

One can represent Archimedean and non-Archimedean Baxter operators in a unified
form. Let us rewrite (5.33) as

Qgl�+1(λ)(g) =
∑

(n1,,...n�+1)∈Z
�+1
+

(pn1 · · · pn�+1)ıλδn(g), (5.40)

where n = (n1, . . . , n�+1), δn(g) is a characteristic function of On ⊂ GL(� + 1,Qp),

On = K p · diag(pn1 , . . . , pn�+1) · K p. (5.41)

On the other hand the (universal) Archimedean Baxter Q-operator (5.9) can be written
in the following form:

φQ0(λ)(g) =
∫

dt1 · · · dt�+1 (t1 · · · t�+1)
ıλe−π ∑�+1

j=1 t2
i δt (g), (5.42)

where δt (g), t = (t1, . . . , t�+1) is an appropriately defined function with the support at
Ot ⊂ GL(� + 1,R),

Ot = K · diag(t1, . . . , t�+1) · K . (5.43)

The integral formulas (5.40) and (5.42) are compatible in the sense of the standard
correspondence between Archimedean and non-Archimedean integrals (see e.g. [W]).
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6. Baxter Operator for so2�+1

In the next section we define a Baxter Q-operator for g = so2�+1 and demonstrate that
the relation between local L-factors and eigenvalues of Q-operators holds in this case.
A more systematic discussion of the general case will be given elsewhere.

According to [Ko1], the so2�+1-Whittaker function can be written in terms of the
invariant pairing of Whittaker modules as follows

�
so2�+1
λ (x) = e−〈ρ,x〉〈ψL , πλ(e

hx ) ψR〉, x ∈ h, (6.1)

where hx :=
�

∑

i=1
〈ωi , x〉 hi , ωi is a basis of the fundamental weights of so2�+1. Note

that so2�+1-Whittaker functions are common eigenfunctions of the complete set of the
commuting so2�+1-Toda chain Hamiltonians H2k ∈ Diff(h), k = 1, . . . , � defined by

Hso2�+1
2k �

so2�+1
λ (x) = e−〈ρ,x〉〈ψL , πλ(e

hx ) c2k ψR〉, (6.2)

where {c2k} are generators of the center Z(so2�+1) ⊂ U(so2�+1). For the quadratic
Hamiltonian we have

Hso2�+1
2 = −1

2

�
∑

i=1

∂2

∂xi
2 +

1

2
ex1 +

�−1
∑

i=1

exi+1−xi . (6.3)

Let us introduce a generating function for the so2�+1-Toda chain Hamiltonians as

tso2�+1(λ) =
�

∑

j=1

(−1) jλ2�+1−2 jHso2�+1
2 j (x). (6.4)

Then the so2�+1-Whittaker function satisfies the following equation:

tso2�+1(λ) �
so2�+1
λ (x) = λ

�
∏

j=1

(λ2 − λ2
j ) �

so2�+1
λ (x), (6.5)

where λ = (λ1, . . . , λ�+1) and x = (x1, . . . , x�+1).

Theorem 6.1. Eigenfunctions of the so2�+1-Toda chain admit the integral representa-
tion:

�
so2�+1
λ1,...,λ�

(x�,1, . . . , x�,�) =
∫

R�
2

�−1
∏

k=1

k
∏

i=1

dxk,i

�
∏

k=1

k
∏

i=1

dzk,i eFso2�+1 (x,z),

where

Fso2�+1(x, z) = −ıλ1(x1,1 − 2z1,1)− ı
�

∑

n=2

λn

(
n

∑

i=1

xn,i −2
n

∑

i=1

zn,i +
n−1
∑

i=1

xn−1,i

)

−
{

�
∑

n=1

ezn,1 +
�

∑

k=2

�
∑

n=k+1

(

exn−1,k−zn,k + exn,k−zn,k
)

+
�

∑

n=k

(

ezn,k−xn−1,k−1 + ezn,k−xn,k−1
)

+
�

∑

n=1

exn,n−zn,n
}

, (6.6)

where we set xi := x�,i , 1 ≤ i ≤ �.
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This integral representation was proposed in [GLO3] ( we made an additional change

of variables z�,1 	−→ −z�,1 + ln
(

ex�,1 + ex�−1,1

)

in the integral representation given in

[GLO3]).

Corollary 6.1. The following integral operators Qso2�+1
so2�−1 provide a recursive construc-

tion of the so2�+1-Whittaker function:

�
so2�+1
λ1,...,λ�

(x�) =
∫

R�−1

�−1
∏

i=1

dx�−1,i Qso2�+1
so2�−1(x�, x �−1|λ�)�so2�−1

λ1,...,λ�−1
(x �−1), (6.7)

where

Qso2�+1
so2�−1(x�, x �−1|λ�) =

∫

R�

�
∏

i=1

dz�,i

× exp
{

− ıλ�
(

�
∑

i=1

x�,i − 2
�

∑

i=1

z�,i +
�−1
∑

i=1

x�−1,i

)}

× exp
{

−
(

ez�,1 +
�−1
∑

i=1

(

ex�−1,i −z�,i + ez�,i+1−x�−1,i
)

+
�−1
∑

i=1

(

ex�,i −z�,i + ez�,i+1−x�,i
)

+ ex�,�−z�,�
)}

. (6.8)

For � = 1 we set

Qso3
so1(x1,1|λ1) =

∫

R

dz1,1eıλ1x1,1−2ıλ1z1,1 exp
{

−
(

ez1,1 + ex1,1−z1,1
)}

. (6.9)

Below �
so2�+1
λ (x) will always denote the unique W -invariant solution of (6.5) (class

one principal series Whittaker function). Note that the space of W -invariant Whittaker
functions �so2�+1

λ (x) provides a basis in the space of W -invariant functions on R
�.

Definition 6.1. The Baxter Q-operator for so2�+1 is given by

Qso2�+1(y, x |λ) =
∫

R�+1

�+1
∏

i=1

dzi exp
{

− ıλ
(

�
∑

i=1

yi − 2
�+1
∑

i=1

zi +
�

∑

i=1

xi

)}

(6.10)

× exp
{

− ez1 −
�

∑

i=1

(

eyi −zi + ezi+1−yi + exi −zi + ezi+1−xi
) }

,

where y = (y1, . . . , y�) and x = (x1, . . . , x�).

Theorem 6.2. The operator Qso2�+1(λ) satisfies the following identities:

Qso2�+1(λ)Qso2�+1(λ′) = Qso2�+1(λ′)Qso�+1(λ), (6.11)

Qso�+1(λ) · Qso2�+1
so2�−1 (λ

′) = 
(

ıλ′ − ıλ
)


(

− ıλ′ − ıλ
)

Qso2�+1
so2�−1 (λ

′) · Qso�−1(λ),

(6.12)

Qso2�+1(λ) T so2�+1(λ′) = T so2�+1(λ′)Qso2�+1(λ), (6.13)

λQso�+1(λ + ı) = ı2� Qso�+1(λ) T so2�+1(λ), (6.14)
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where

T so2�+1(x, y|λ) = tso2�+1(x, ∂x |λ)δ(�)(x − y), (6.15)

tso2�+1(x, ∂x |λ) =
�+1
∑

j=1

(−1) jλ2�+1−2 j Hso2�+1
2 j (x, ∂x ). (6.16)

Proof. We will prove the commutativity of Q-operators (6.11). The relation (6.12) can
be proved using a similar approach. The other identities then easily follow.

To prove (6.11) we should verify the following identity between the kernels:

∫

R�+1
Qso2�+1(y, x |λ) Qso2�+1(x, z|λ′)

�+1
∏

j=1

dx j (6.17)

=
∫

R�+1
Qso2�+1(y, x |λ′) Qso2�+1(x, z|λ)

�+1
∏

j=1

dx j , (6.18)

where

Qso2�+1(y, x |λ)

=
∫

R�+1

�+1
∏

i=1

dui exp
{

− ıλ
(

�
∑

i=1

yi − 2
�+1
∑

i=1

ui +
�

∑

i=1

xi

)}

× exp
{

− eu1 −
�

∑

i=1

(

eyi −ui + eui+1−yi + exi −ui + eui+1−xi
) }

, (6.19)

Qso2�+1(x, z|λ′)

=
∫

R�+1

�+1
∏

i=1

dvi exp
{

− ıλ′(
�

∑

i=1

xi − 2
�+1
∑

i=1

vi +
�

∑

i=1

zi

)}

× exp
{

− ev1 −
�

∑

i=1

(

exi −vi + evi+1−xi + ezi −vi + evi+1−zi
) }

. (6.20)

The proof is given by the following sequence of elementary transformations. Let us first
make a change of variables ui and vi in (6.17):

u1 	−→ −u1 + ln
(

ey1 + ex1
)

,

ui 	−→ −ui − ln
(

eyi−1 + exi−1
)

+ ln
(

eyi + exi
)

, 1 < i ≤ �,

v1 	−→ −v1 + ln
(

ex1 + ez1
)

,

vi 	−→ −vi − ln
(

exi−1 + ezi−1
)

+ ln
(

exi + ezi
)

, 1 < i ≤ �.
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We introduce additional integration variables u�+1 and v�+1 in (6.17) using integral
formulas:
(

e−y� + e−x�
)−2ıλ′

=(2ıλ′)−1
∫

R

du�+1 exp
{

2ıλ′u�+1 − eu�+1−y� − eu�+1−x�
}

,

(

e−x� + e−z�
)−2ıλ=(2ıλ)−1

∫

R

dv�+1 exp
{

2ıλ′v�+1 − ev�+1−x� − ev�+1−z�
}

. (6.21)

Then let us modify the variables xi , i = 1, . . . , � as:

xi 	−→ −xi − ln
(

e−ui + e−zi
)

+ ln
(

eui+1 + ezi+1
)

, (6.22)

and use the following integral representations to introduce the additional variables x0
and x�+1:

(

eu1 + ev1
)−ı(λ+λ′) =(ı(λ + λ′))−1

∫

R

dx0

× exp
{

− ı(λ + λ′)x0 − eu1−x0 − ez1−x0
}

,

(

e−u�+1 + e−v�+1
)ı(λ+λ′) =(−ı(λ + λ′))−1

×
∫

R

dx�+1 exp
{

− ı(λ + λ′)x�+1 − ex�+1−u�+1 − ex�+1−v�+1
}

.

Now we make the following sequence of changes of the variables:

u1 	−→ −u1 − ln
(

1 + e−x0
)

+ ln
(

ey1 + ex1
)

,

ui 	−→ −ui − ln
(

eyi−1 + exi−1
)

+ ln
(

eyi + exi
)

, 1 < i ≤ �,

u�+1 	−→ −u�+1 + x�+1 − ln
(

e−y� + e−x�
)

,

v1 	−→ −v1 − ln
(

1 + e−x0
)

+ ln
(

ex1 + ez1
)

,

vi 	−→ −vi − ln
(

exi−1 + ezi−1
)

+ ln
(

exi + ezi
)

, 1 < i ≤ �,

v�+1 	−→ −v�+1 + x�+1 − ln
(

e−x� + e−z�
)

,

x0 	−→ −x0 + ln
(

eu1 + ez1
)

,

xi 	−→ −xi − ln
(

e−ui + e−zi
)

+ ln
(

eui+1 + ezi+1
)

, 1 ≤ i ≤ �,

x�+1 	−→ −x�+1 − ln
(

e−u�+1 + e−z�+1
)

.

(6.23)

One integrates out the variables x0 and x�+1 and modifies the variables ui and vi as
follows

u1 	−→ −u1 + ln
(

ey1 + ex1
)

,

ui 	−→ −ui − ln
(

eyi−1 + exi−1
)

+ ln
(

eyi + exi
)

, 1 < i < �,

u� 	−→ −u� − ln
(

e−y�−1 + e−x�−1
)

,
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v1 	−→ −v1 + ln
(

ex1 + ez1
)

,

vi 	−→ −vi − ln
(

exi−1 + ezi−1
)

+ ln
(

exi + ezi
)

, 1 < i < �,

v� 	−→ −v� − ln
(

e−x�−1 + e−z�−1
)

.

Integrating out u�+1 and v�+1, one completes the proof of (6.11). ��
Corollary 6.2. The following identity holds:

∫

R�

�
∏

i=1

dx�,iQso2�+1(y, x |γ )�so2�+1
λ (x)

=
�

∏

i=1


(

ıλi − ıγ
)

�
∏

i=1


(

− ıλi − ıγ
)

�
so2�+1
λ (y). (6.24)

Finally let us note that this result is in agreement with the interpretation of the eigen-
values of Q-operators as local Archimedean L-functions corresponding to automorphic
representations of reductive Lie groups discussed above.
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