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Abstract A mathematical model of dynamic wheelset–track

interaction is proposed in this paper. The model is defined in the

time domain in order to introduce and correctly evaluate non-

linear and time-variant phenomena related to the contact model

and boundary conditions which play a very important role in rail

surface degradation phenomena. The complete model can be

divided into three main components: the model of the wheelset,

the model of the track and the model of wheel–rail contact

forces. In the paper, the wheelset is described as a rotating

flexible body, and the gyroscopic and inertial effects associated

with wheelset rotation are introduced to this model using an

‘Eulerian’ finite element approach based on 3D quadratic solid

elements. The discrete supported track is modelled using finite

Timoshenko beam element, which takes into account both the

vertical and the lateral rail vibration valid up to 1500 Hz. The

wheelset and the track are coupled by means of a contact model

based on the nonlinear Hertz and Kalker theories. The flexible

components of the interaction model make it possible to

describe the train–track dynamics in a relatively high-fre-

quency range, which allows the investigation of specific aspects

such as rail corrugation. Some numerical results are presented

in terms of contact forces and rail–wheel vibration speed in the

paper. The effect of wheelset and track flexibility in specific

frequency range on train–track interaction dynamics is briefly

discussed.

Keywords Flexible wheelset � Flexible track � Train–track

interaction � High-frequency dynamics

1 Introduction

Train–track interaction has been extensively studied in the

last 40 years at least, leading to modelling approaches that

can deal satisfactorily with many dynamic problems arising

at the wheel–rail interface. Some important dynamic phe-

nomena, for instance, rolling noise [1] and vehicle–track

coupled vibration response [2] caused by the roughness of

the wheel and rail running surfaces have been investigated

with frequency-domain wheel–rail interaction models,

where the dynamic response characteristics at wheel–rail

contact are derived by combining the wheelset and track

frequency response functions with the assumed rail

roughness [3]. However, frequency-domain method gets its

limit when comes to nonlinear components in wheel–rail

contact and vehicle suspension. To take consideration of

the effect of nonlinearities in the track and in wheel–rail

contact, train–track interaction models in time domain are

widely studied today: in [4–14], the train–track interaction

is defined in time domain with the vehicle and/or the track

model defined using the finite element method.

In state-of-the-art papers, different configurations of the

vehicle model and the track model are used to investigate

the dynamic influences of a train running along a track

under specific targets. To investigate the track dynamics,

detailed track model coupled with relatively simple

wheelset model was used. Zhai et al. [9] investigated the

influence of elastic track structures on the lateral hunting

stability of different railway vehicles. Baeza et al. [10]

developed a cyclic boundary track model based on modal

substructuring. Di Gialleonardo et al. [13] investigated the

& Wenshan Fang

wenshan.fang@polimi.it

1 Mechanical Engineering Department, Politecnico di Milano,

20156 Milan, Italy

2 Centro de Investigación en Ingenierı́a Mecánica, Universitat
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effect of different levels of track flexibility on running beha-

viours of both tangent and curved tracks. To investigate the

wheelset dynamics, efforts have been made to develop detailed

rotating flexible wheelset model. Arnold et al. [5] and Kaiser

et al. [7, 13], proposed the use of a semi-analytical solution of a

rotational symmetric structure in two dimensions, using Navi-

er’s equations. Baeza et al. [8, 11], on the other hand, modelled

the rotating wheelset based on Brown and Shabana’s formu-

lation [15, 16] of kinematics of flexible rotating structure using

a Lagrangian coordinate. However, open problems still exist

related to wheel–rail interaction in the high-frequency range

and its relationship with wheelset flexibility. Furthermore, the

effect of wheelset and track flexibility at different levels still

needs to be investigated in full.

The aim of this paper is to define a wheelset–track interac-

tion model valid in a frequency range up to 1500 Hz and hence

suitable for the investigation of typical problems related to

high-frequency train–track interaction such as short-pitch rail

corrugation. To this aim, a new coupling of a full rotating

flexible wheelset model together with a discrete supported

Timoshenko finite element track model is developed. The

wheelset model is developed using a Eulerian approach [14].

The equations of wheelset motion are deducted using virtual

work principal, and the convergence of the model is guaranteed

using integral by parts, which has not been treated in previous

work. The track model describes displacement and rotation of

both vertical and lateral directions. The results of this new

model are presented by comparing the running behaviours

under different model configurations.

2 Mathematic Model of the Wheelset–Track
Interaction

The vehicle model used in this paper considers one single

wheelset and the primary suspension only. The second

suspension system is ignored, with the bogie frame and the

car body masses represented by two static forces applied

through the primary suspension on the two sides. The

reason of this simplification is due to the mechanical filter

effect introduced by the suspensions: the dynamics of the

sprung masses of vehicle (bogie frame and car body) occur

in low-frequency area under 20 Hz and thus are well iso-

lated from the high-frequency vibrations of wheelsets and

can consequently be simplified as lumped masses

[10, 11, 14, 17] when modelling the high-frequency vehi-

cle–track interaction.

2.1 Model of the Rotating Flexible Wheelset

When modelling the rotating flexible wheelset, the inter-

ested contact points are always applied to the interface with

the rail. The external forces of the wheelset are applied in

the direction and displacement of the contact points, which

is a fixed spatial point. Thus, a Eulerian approach originally

from [14] is introduced to describe the kinematic motion of

the wheelset. The position vector r is defined as:

r ¼ uþ wðu; tÞ; ð1Þ

where u is the position of an undeformed spatial point and

wðu; tÞ is the displacement associated with wheelset

flexibility.

The wheelset is set to rotate with spin velocity X in the

second axle, and the angular velocity tensor verifies:

~X ¼
0 0 X
0 0 0

�X 0 0

2
4

3
5 ¼ XJ; and J � J ¼ �E; ð2Þ

where J and E are defined as:

J ¼
0 0 1

0 0 0

�1 0 0

2
4

3
5; E ¼

1 0 0

0 0 0

0 0 1

2
4

3
5: ð3Þ

The spin velocity of the wheelset is:

V ¼ v1 v2 v3ð ÞT¼ ~Xu ¼ XJu ¼ X~u ð4Þ

where ~u ¼ u3 0 �u1ð ÞT
.

The equation of wheelset motion is formulated by vir-

tual work principle. The velocity and acceleration of the

particle are computed through the material derivatives as

follows:

_r ¼ Dr

Dt
¼ Du

Dt
þ Dw

Dt
¼
X3

i¼1

vi
ou

oui
þ _wþ

X3
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oui
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oui
; ð5Þ
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ð6Þ

The virtual work associated with the inertial forces is:

dW ¼
Z

Vol

qdwT€rdv ¼
Z

Vol

qdwT €wdvþ 2X
Z

Vol

qdwT
X3

i¼1

~ui
o _w

oui
dv

þ X2 �
Z
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qdwT
X3

i¼1

Eui
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oui
dv

 

þ
Z
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qdwT
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i¼1

X3

j¼1
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Z
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qdwT
X3
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Euidv

!

ð7Þ

The virtual work equation is then solved by finite ele-

ment integration. In this step, the integrals in the volume of
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the solid are computed as the sum of integrals on each

volume of the finite element elements:Z

Vol

� dv ¼
X

elements

Z

Ve

�dv ð8Þ

To reduce the computational cost, a modal approach and

nodal interpolation are adopted after the finite element

integration. The displacement of the eth element in volume

Ve is:

wðu; tÞ ¼ NeðuÞweðtÞ ¼ NeðuÞUeðuÞqðtÞ u 2 Ve ð9Þ

where NeðuÞ is the shape function matrix of the eth ele-

ment, weðtÞ is the nodal displacement of the eth element,

UeðuÞ is the mode shapes of the eth element computed

from the finite element model of the wheelset, and qðtÞ is

the modal coordinate vector. Introduce Eq. (9) into Eq. (7),

one can obtain:

dW ¼
XN elements

e¼1

dqeTUeT
FE

�

Z

Ve

qNeTNedv€qe þ 2X
Z

Ve

qNeT
X3

i¼1

~ui
oNe

oui
dv _qe

þ X2ð�
Z

Ve

qNeT
X3

i¼1

Eui
oNe

oui
dv
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Z

Vol

qNeT
X3

i¼1

X3

j¼1

~ui~uj
o2Ne

ouiouj
dv
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Z
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qNeT
X3
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EuidvÞqe
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Ue
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ð10Þ

Define matrices Me, Ve, Ae, Ce, Le as follows:

Me ¼
Z

Ve

qNeTNedv;

Ve ¼
Z

Ve

qNeT
X3

i¼1

~ui
oNe

oui
dv;

Ce ¼
Z

Ve

qNeT
X3

i¼1

Eui
oNe

oui
dv;

Ae ¼
Z

Ve

qNeT
X3

i¼1

X3

j¼1

~ui~uj
o2Ne

ouiouj
dv;

Le ¼
Z

Ve

qNeT
X3

i¼1

Euidv;

ð11Þ

where matrices Ve, Ae, Ce, Le are related to the gyroscopic

and inertial effects associated with wheelset rotation.

With 3D solid element, the polynomial shape functions

are C0 continuous. Thus, in Eq. (11), the convergence of

the integral of matrix Ae cannot be guaranteed due to the

second derivative of the shape function. This problem is

solved by integrating Ae by parts. The integration is taken

over all of the three directions in space, which leads to:

Ae ¼
Z

Ve

qNeT
X3

i¼1

X3

j¼1

~ui~uj
o2Ne

ouiouj
dv
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 !
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With Eqs. (8), (10), (11) and (12), the matrices of each

element can be assembled into global matrices using a

standard finite element method. Consequently, the final

motion of equation of the wheelset is:

€qþ 2XUT
FEVUFE _qþ ðKþ X2UT

FEðA� CÞUFEÞq
¼ X2UT

FELþQ ð13Þ

where Q is the generalized forces of the wheelset and K is

the modal stiffness matrix of the finite element wheelset

model.

In present work, an ETR500 wheelset profile is mod-

elled (Fig. 1). 3D solid element with 20 nodes is used in the

mesh, which can describe the bending motion better than

linear solid element. Fifty modes of the wheelset are

adopted in the simulation, covering a frequency range up to

1500 Hz approximately. Some of the mode shapes of the

flexible wheelset and the corresponding natural frequencies

are reported in Fig. 2 and Table 1. The modal frequencies

are validated by experimental data (from [17]) with an

acceptable error, see Table 1.

In Fig. 2a, d are mode shapes with multiplicity 1: the

first torsional mode and the first umbrella mode. These

Fig. 1 Finite element model of the wheelset
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modes are characterized by their deformed shapes having

axial symmetry. Modes shown in Fig. 2b, c are examples

of modes of multiplicity 2. They are bending modes of the

wheelset axis. For each bending mode, there are two modes

with the same natural frequency but their deformed shapes

are rotated by a certain angle with respect to each other

around the wheelset axis. In Fig. 2e–h the wheel mode

shapes with two nodal diameters and no nodal circle are

shown. Although the natural frequency corresponding to

these mode shapes is the same (341.3 Hz), they must be

regarded as two different modes with multiplicity 2.

The receptance expression is obtained from Eq. (13):

H wð Þ ¼ UT
FE½�x2Iþ 2ixXVþKþ X2 ðA� CÞð Þ�UFE

ð14Þ

Figure 3 shows the vertical receptance of the contact

point of the wheelset. For the non-rotating wheelset, the

receptance coincides with the natural frequencies of the

free-boundary wheelset. If the angular velocity of the

wheelset is nonzero, the peaks of the FRF associated with

modes with multiplicity 2 (bending modes) produce two

peaks that can be interpreted as the forward and backward

modes. For instance, when the vehicle velocity is 100 km/

h, the backward mode and the forward mode of the first

Fig. 2 Mode shapes of the

flexible wheelset: a first

torsional mode; b, c first

bending mode; d first umbrella

mode; e–h first wheelset

bending mode
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bending mode are 65 and 85 Hz, respectively. The peaks of

the receptance associated with modes with multiplicity 1

(torsional modes and umbrella modes) remain the same.

A Campbell diagram for the wheelset shows the frequency

intersection points of the model. Several intersection points of

‘forward’ and ‘backward’ modes of wheelset modes with

multiplicity 2 are shown in Fig. 4, which indicates wheelset

resonances are affected by the rotation of the wheelset.

2.2 Model of the Track

The rail is modelled using Timoshenko beam elements on

discrete supports with four elements per sleeper bay. The

deformation of the cross section of the rail is neglected in

current study since the frequency range interested in the

current work is under 1500 Hz [1]. Half the track only is

considered due to the symmetric structure. The half

sleepers are modelled as equally spaced masses, while

railpads and ballast are modelled as two linear viscoelastic

layers with a simple spring–damper model (Fig. 5). A rail

with UIC60 section is considered in the track model. The

railpad and track bed data come from the EUROBALT

project. Parameters are listed in Table 2.

Only horizontal and vertical displacements and angular

deflections around horizontal and vertical axes are con-

sidered, and motions related to axial and torsional rail

Fig. 3 Direct wheelset

receptance at the contact point

Hz for different vehicle

velocities

Fig. 4 Campbell diagram for the wheelset

Table 1 Vibration modes of

the wheelset
Vibration mode Frequency by

MATLAB (Hz)

Experimental frequency

(Hz) (from [18])

First torsional mode 71.9 –

First vertical and horizontal bending modes (2) 75.0 77

Second vertical and horizontal bending modes (2) 121.9 122

Third vertical and horizontal bending modes (2) 176.4 184

First umbrella mode 203.3 203

Second umbrella mode 247.3 254

Fourth vertical and horizontal bending modes (2) 317.9 315

First bending modes of wheels (2 ? 2) 341.3 335

Fifth vertical and horizontal bending modes (2) 570.7 548

Second bending modes of the wheels (2 ? 2) 936.8 922
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deformation are not included in the analysis. The dis-

placement vector {uij} for a general element of the model

linking nodes i and j is then

uij
� �

¼ vi hi ui ui vj hj uj uj

� �0 ð15Þ

The mass and stiffness matrices of the beam elements

are determined using Timoshenko beam elements includ-

ing shear deformation and rotatory inertial effects. The

homogeneous Euler–Lagrangian equations for a Timosh-

enko beam are [18]:

kAG v00 � h0ð Þ ¼ 0;

kAG u00 þ u0ð Þ ¼ 0;

kAGhþ EIyh
00 � kAGv0 ¼ 0;

kAGuþ EIzu
00 þ kAGu0 ¼ 0;

kG Iy þ Iz
� �

u00 ¼ 0:

8>>>>>><
>>>>>>:

ð16Þ

The shape functions of the beam element are formulated

by solving the homogeneous Euler–Lagrangian equations

with corresponding boundary conditions of the beam ele-

ment. The stiffness matrix of the rail element is therefore

given by:where the coefficients are defined as:

az ¼
EIz

kAGa2
; bz ¼

EIz

2a3ð1 þ 3azÞ
; ay ¼

EIy

kAGa2
;

by ¼
EIy

2a3ð1 þ 3ayÞ
ð18Þ

being E the Young’s modulus, I the second moment of

area, A the cross-sectional area, k the Timoshenko shear

coefficient, G the shear modulus, and a = 0.075 m is half

the element length.

A Rayleigh damping is used for the rail, with a corre-

sponding damping ratio 0.6%. Mass, stiffness and damping

matrix for the railpad element (including the mass of the

sleeper) and ballast element are set as two-layer parallel

Fig. 5 Finite element track

model

Table 2 Simulation parameters

Description Value

Wheelset type ETR500

Wheelset mass 1375 kg

Axle load 110 KN

Rail type UIC 60

Sleeper spacing 0.6 m

Track length 42 m

Second moment of area of rail 30.55 9 10-6 m4

Second moment of area of rail 51.92 9 10-7 m4

Half mass of sleeper 170 kg

Railpad vertical stiffness 3 9 108 N/m

Railpad vertical damping 3 9 104 Ns/m

Railpad lateral stiffness 2 9 107 N/m

Railpad lateral damping 8 9 103 Ns/m

Ballast vertical stiffness 8 9 107 N/m

Ballast vertical damping 8 9 106 N/m

Ballast lateral stiffness 1 9 105 Ns/m

Ballast lateral damping 8 9 103 Ns/m

Kr ¼

3bz 3abz 0 0 �3bz 3abz 0 0

a2bz 4 þ 3azð Þ 0 0 �3abz a2bz 2 � 3azð Þ 0 0

3by �3aby 0 0 �3by �3aby
a2by 4 þ 3ay

� �
0 0 3aby a2by 2 � 3ay

� �
3bz �3abz 0 0

a2bz 4 þ 3azð Þ 0 0

3by 3aby
a2by 4 þ 3ay

� �

2
66666666664

3
77777777775

ð17Þ
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spring–dashpot elements with the ground nodes being

clamped constrained. A set of equations of motion for the

track is therefore written in a matrix form:

Mt €ut þ Ct _ut þKtut ¼ Fct ð19Þ

where Mt, Ct and Kt are the mass, damping and stiffness

matrix of the track model, respectively. Fct is the gener-

alized force applied on the contact point of the rail surface.

The direct receptance of the track in both vertical and

lateral direction is obtained (cf. Fig. 6), and the results

match with that obtained in previous study [4], which is

proved to be valid for dynamic study of frequency up to

1500 Hz.

2.3 Model of Wheel–Rail Contact Force

The nonlinear normal force between wheel and rail surface

is solved using Hertz’s theory [19]:

Fn ¼ Chd
1:5 ð20Þ

where the constant Ch depends from the contact surfaces

bending and from material characteristics and d is the value

of the elastic penetration between the two bodies.

Tangential and lateral forces have been calculated

according to Kalker’s linear theory [20]:

et ¼
_xcw � _xctð Þ

V
; el ¼

_ycw � _yctð Þ
V

;

Ft ¼ f11 � et; Fl ¼ f22 � el
ð21Þ

where V represents the speed of the relative reference with

respect to an absolute observer (i.e. the wheelset speed) and

f11 and f22 are constants dependent on dimensions of the

contact area and the elastic material properties. Since a

motion of the wheelset on a straight path at consistent

speed has been taken into account in the present model, the

creepages are very little, which meets the hypothesis of

Kalker’s linear theory. The ODE45 routine based on an

explicit Runge–Kutta formula in MATLAB is used to solve

simultaneously the rail and the wheel equations.

3 Results and Discussion

This section presents the results of simulations under dif-

ferent rail irregularities: a random rail corrugation and

several single-harmonic corrugations. The simulation is to

investigate the influence of different track and wheelset

modelling options on wheel–rail contact forces, which are

important to wear and damage phenomena in the rolling

surfaces.

3.1 Response to Random Rail Corrugation

In order to investigate how the corrugation wavelength

may influence the results from the track model and the

wheelset models, simulations are carried out when the rail

roughness is described by a white-noise band function.

Roughness is defined as an additional component of the

relative displacement between the wheel and the rail. The

amplitude of the random corrugation is 0.1 lm, and the

wavelengths were chosen between 2.7 and 67.7 cm, cov-

ering the frequency range from 60 to 1500 Hz if the vehicle

velocity is 40 m/s.

Figure 7 shows the contact force of three directions for a

flexible track and an infinitely rigid track, respectively. A

rotating flexible wheelset model was used for both

Fig. 6 Track receptance: a direct receptance of the vertical direction; b direct receptance of the lateral direction
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interaction models. With a flexible track, a periodic

vibration component corresponding to the sleeper bay

could be seen from the three directions. To investigate the

difference caused by track flexibility, a discrete Fourier

transform modulus of the contact forces was taken (Fig. 8).

Four peaks can be observed at frequency 67, 134, 201 and

268 Hz for the flexible track model, which is due to the

sleeper bay and the length of each beam element of the

track. In the frequency range below 800 Hz, the spectra of

the contact forces are on average higher for the model

considering a rigid track, compared to the model consid-

ering a flexible track. This is due to the reduction in

impedance produced in this frequency range by track

flexibility. For frequency higher than 1000 Hz, the flexi-

bility of the track leads to slightly higher amplitude of both

vertical and longitudinal forces.

Figure 9 shows the contact force of three directions with

a non-rotating flexible wheelset and a rotating flexible

wheelset. A flexible track model was used for both inter-

action models. The time histories of the vertical and lateral

contact forces of the two different wheelset models are

almost the same, while the longitudinal force of the rotat-

ing flexible wheelset shows a higher amplitude with the

non-rotating one. Actually, the longitudinal component of

the non-rotating flexible wheelset is very small, with a max

value around 25 N, i.e. 200 times smaller than the ampli-

tude of the dynamic fluctuation of the vertical force.

Considering wheelset rotation instead, a small longitudinal

force is generated, due to the effect of gyroscopic forces on

the modes of the rotating wheelset involving axle bending

in the horizontal plane. Despite the fact the force amplitude

is still small compared to the vertical and lateral force

components, it shows a big difference from the case of the

non-rotating wheelset.

The Fourier transform modulus of the vertical and lat-

eral forces (Fig. 10) shows slight difference with non-ro-

tating and rotating flexible wheelset. For longitudinal force,

the rotating flexible wheelset shows a higher component

than the non-rotating flexible wheelset under 800 Hz. The

peak frequencies of rotating flexible wheelset can be found

to correspond with the forward and backward mode fre-

quencies at 40 m/s. For instance, the first two peak fre-

quencies of rotating flexible wheelset appear at 67 and

135 Hz. At 67 Hz, the peak meets the backward first

bending mode and the frequency due to the sleeper bay. At

Fig. 7 Contact forces for different track options

Fig. 8 Spectra of the contact forces for different track options Fig. 9 Contact forces of the wheelset running on randomly worn rails
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about 135 Hz, the peak appears due to the forward second

bending mode of the wheelset and the frequency due to the

mid-sleeper bay.

3.2 Response to Single-Harmonic Rail Corrugation

In order to quantify the relevance of dynamic effects

affecting the wheel–rail contact forces, the peak values for

the vertical component of the contact forces normalized

with respect to the static wheel load are reported with

increasing vehicle speed under several single-harmonic rail

corrugations which may excite the resonances of the

wheelset and the track. Two kinds of harmonic excitation

are chosen: the first one has an excitation frequency equal

to the pinned–pinned frequency of the finite element track,

and the second one coincides with the fifth backward mode

of the rotating wheelset.

Figure 11 shows the dynamic ratio of the vertical con-

tact force peak value for an excitation at pinned–pinned

frequency with different track models. For both models, the

dynamic ratio increases with increasing velocity. For the

flexible track model, the ratio is 10–15% higher than the

rigid track and shows a greater increasing trend compared

to the rigid one, confirming the influence of the flexible

track model.

Figure 12 shows the ratio of peak value of the vertical

contact force to the static wheel load with different

wheelset models. A rigid wheelset is added to this analysis.

The fifth backward mode of the rotating wheelset is chosen

as the excitation frequency to investigate influence of the

resonance frequencies of the rotating wheelset, which is

shown as intersection points at 322 Hz with a velocity of

Fig. 11 Dynamic ratio of different track models for an excitation at

pinned–pinned frequency

Fig. 13 Intersection points for the fifth bending backward mode of

the rotating wheelset

Fig. 10 Spectra of the contact forces for different wheelset options

Fig. 12 Dynamic ratio of different track models for an excitation at

the fifth backward frequency of the rotating wheelset
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103 km/h and at 311 Hz with a velocity of 165 km/h

(Fig. 13). It is observed that the average dynamic ratio is

higher for the model considering a rigid wheelset than for

the model accounting for wheelset flexibility. This is due to

a compensation of the wheelset flexibility to the contact

forces. For the flexible wheelset model, the dynamic ratio

of the rotating flexible wheelset shows a slightly higher

amplitude with the non-rotating flexible wheelset. A peak

ratio at around 165 km/h for the rotating wheelset can be

found, which is the resonance frequency related to the

intersection point of the fifth backward and the fourth

backward bending modes, while the intersection point at

103 km/h does not show significant amplification of the

dynamic contact force.

4 Conclusion

This paper proposed a vehicle–track interaction model in

time domain, which is valid for dynamic simulation up to

1500 Hz. The effect of wheelset and track flexibility on

dynamics of wheelset–track interaction was investigated.

Results of the contact forces under different structure

flexibilities are presented for two kinds of rail corrugation:

a randomly corrugated track and several single-harmonic

corrugated tracks. For the random corrugation, the

Timoshenko beam track model shows obvious difference

compared with a rigid track model. Force peaks on the

three directions could be found in the discrete support

flexible track at each sleeper bay position. In the frequency

range below 800 Hz, the flexible track model shows lower

contact forces than the rigid model, while for frequency

higher than 1000 Hz, the contact forces of the flexible track

model are slightly higher than for the rigid track model.

The rotating flexibility of the wheelset produces a higher

longitudinal force when compared with a non-rotating

flexible wheelset, while the vertical and lateral forces show

little difference between the two wheelset models. For the

single-harmonic corrugation case, the numerical results

show that the wheel–rail contact force amplitude is gen-

erally increasing with growing velocities and shows a peak

when the frequency of excitation meets the resonance

frequencies of the flexible structure. However, it must be

highlighted that the effect of velocity is more remarkable.

Overall, the results presented above show that simula-

tion results are highly sensitive to the track model and

wheelset model adopted. Neglecting wheelset rotating

flexibility and track flexibility may lead to an overestima-

tion or underestimation of the dynamic contact forces

generated by the vehicle in response to track imperfections,

depending on the type of excitation and on the frequency

range considered.

The model in this paper is valid up to 1500 Hz in

wheel–rail interaction analysis, which can be used for

investigation of specific interaction problems, e.g. rail

short-pitch corrugation. However, for problems related to

higher-frequency range, e.g. rolling noise problem, the

model of the track still needs to be improved. Future

developments of this work will be addressed to further

expanding the frequency range of validity of the train–track

interaction model, by introducing a more detailed track

model based on solid FEM in a moving reference.
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6. Gómez J, Vadillo E, Santamarı́a J (2006) A comprehensive track

model for the improvement of corrugation models. J Sound Vib

293(3):522–534

7. Kaiser I, Popp K (2006) Interaction of elastic wheelsets and

elastic rails: modelling and simulation. Veh Syst Dyn

44(sup1):932–939

8. Baeza L, Fayos J, Roda A, Insa R (2008) High frequency railway

vehicle–track dynamics through flexible rotating wheelsets. Veh

Syst Dyn 46(7):647–659

9. Zhai W, Wang K (2010) Lateral hunting stability of railway

vehicles running on elastic track structures. J Comput Nonlinear

Dyn 5(4):1–9

10. Baeza L, Ouyang H (2011) A railway track dynamics model

based on modal substructuring and a cyclic boundary condition.

J Sound Vib 330(1):75–86

11. Baeza L, Vila P, Xie G, Iwnicki SD (2011) Prediction of rail

corrugation using a rotating flexible wheelset coupled with a

flexible track model and a non-Hertzian/non-steady contact

model. J Sound Vib 330(18):4493–4507

12. Di Gialleonardo E, Braghin F, Bruni S (2012) The influence of

track modelling options on the simulation of rail vehicle

dynamics. J Sound Vib 331(19):4246–4258

13. Kaiser I (2012) Refining the modelling of vehicle–track interac-

tion. Veh Syst Dyn 50(sup1):229–243

Urban Rail Transit

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


14. Martı́nez-Casas J, Mazzola L, Baeza L, Bruni S (2013) Numer-

ical estimation of stresses in railway axles using a train–track

interaction model. Int J Fatigue 47:18–30

15. Shabana AA (2013) Dynamics of multibody systems. Cambridge

University Press, Cambridge

16. Brown M, Shabana A (1997) Application of multibody method-

ology to rotating shaft problems. J Sound Vib 204(3):439–458

17. Francesco R, Roberto A, Bruni S (2007) A time domain model

for the study of high frequency train–track interaction. Paper

presented at the 7th international conference on railway bogies

and running gears, Budapest

18. Petyt M (2010) Introduction to finite element vibration analysis.

Cambridge University Press, Cambridge

19. Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge

University Press, Cambridge

20. Kalker JJ (1990) Three-dimensional elastic bodies in rolling

contact, vol 2. Kluwer, Amsterdam

Urban Rail Transit

123


	A Time-Domain Model for the Study of High-Frequency Wheelset--Track Interaction
	Abstract
	Introduction
	Mathematic Model of the Wheelset--Track Interaction
	Model of the Rotating Flexible Wheelset
	Model of the Track
	Model of Wheel--Rail Contact Force

	Results and Discussion
	Response to Random Rail Corrugation
	Response to Single-Harmonic Rail Corrugation

	Conclusion
	Acknowledgements
	References




