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Abstract
In this paper, the problem of bifurcation of limit cycles from degenerate singular point
and infinity in a class of septic polynomial differential systems is investigated. Using
the computer algebra system Mathematica, the limit cycle configurations of {(8), 3}
and {(3), 6} are obtained under synchronous perturbation at degenerate singular
point and infinity. To our knowledge, up to now, this is the first time that the problem
of limit cycles bifurcated from degenerate singular point and infinity under
synchronous perturbed conditions in a septic system has been investigated.
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1 Introduction
In the qualitative theory of planar dynamical systems, bifurcation of limit cycles for planar
polynomial differential system

dx
dt

= P(x, y),
dy
dt

=Q(x, y), (.)

which belongs to the second part of the Hilbert th problem, is known as a hot but in-
tractable issue. In the case of limit cycles bifurcated from the origin, a lot of work has been
done (see [, ]). Let In be the maximum possible number of limit cycles in the neighbor-
hood of the infinity (large amplitude limit cycles) of system (.) when P(x, y), Q(x, y) are
of degree at most n. As far as the number of limit cycles bifurcated from infinity is con-
cerned, representative results are as follows: cubic systems, [] got I ≥ , [] got I ≥ ,
[] got I ≥ , [, ] got I ≥ ; quintic systems, [] got I ≥ , [] got I ≥ , [] got I ≥ ,
[] got I ≥ ; septic systems, [] got I ≥ , [] got I ≥ , [] got I ≥ .

Definition . [] We call the configuration {(k),k} the configuration of a vector field
with k ‘small’ limit cycles and k ‘large’ ones.

Few papers are concerned with bifurcation of limit cycles from the origin and infinity
under synchronous perturbation: [] obtained the limit cycle configurations of {(), } and
{(), } in a cubic polynomial differential system; [] and [] respectively got the limit
cycle configurations of {(), }, {(), } and {(), }, {(), } in two certain quintic systems.
However, for a higher degree system, there is not any result.
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In this paper, we deal with limit cycles bifurcated from degenerate singular point and in-
finity under synchronous perturbation in the following real septic polynomial differential
system:

dx
dt

= λ(δx – y)
(
x + y

)
+X(x, y) + (δx – y)

(
x + y

),
dy
dt

= λ(x + δy)
(
x + y

)
+ Y(x, y) + (x + δy)

(
x + y

),
(.)

where λ �=  and

X(x, y) =
∑
k+j=

Akjxkyj, Y(x, y) =
∑
k+j=

Bkjxkyj, (.)

A = β + β + β + β, B = α + α + α + α,

A = –α – α – α + α, B = β + β + β – β,

A = –(β + β – β – β), B = –(α + α – α – α),

A = (α – α – α + α), B = –(β – β – β + β),

A = β – β + β + β, B = α – α + α + α,

A = –α + α – α + α, B = β – β + β – β.

(.)

This paper is organized as follows. In Section , some preliminaries are given and system
(.) is transferred to its complex concomitant system. In Sections  and , the first nine
singular point quantities at degenerate singular point and the first seven singular point
quantities at infinity are deduced. At the same time, their center conditions are obtained.
In Section , the sufficient conditions of limit cycle configurations {(), } and {(), } are
presented.

2 Conversion of the system
Obviously, the origin of system (.) is either a center or a focus, and it is also a degener-
ate singular point. System (.) contains no real singular point on the equator �∞ of the
Poincaré compactification on the sphere. �∞ is called infinity on the Gauss sphere or the
equator of system (.).
By means of polar coordinate transformation

x = r cos θ , y = r sin θ , (.)

system (.) takes the form

dr
dθ

= r
δλ + δr + r[cos θX(cos θ , sin θ ) + sin θY(cos θ , sin θ )]

λ + r + r[cos θY(cos θ , sin θ ) – sin θX(cos θ , sin θ )]
. (.)

For a sufficiently small h, let

r = r(θ ,h) =
∞∑
m=

νm(θ )hm (.)
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be the solution of Eq. (.) satisfying the initial value condition r|θ= = h, where

ν(θ ) = eδθ , νm() = , m = , , . . . . (.)

The th focal value at the origin of system (.) is ν(π ) – , i.e., eπδ – , the kth one is
νk+(π ), k = , , . . . .
By means of generalized polar coordinate transformation

x = r– cos θ , y = r– sin θ , (.)

system (.) takes the form

dr
dθ

= –r
δ + δλr + r[cos θX(cos θ , sin θ ) + sin θY(cos θ , sin θ )]
 + λr + r[cos θY(cos θ , sin θ ) – sin θX(cos θ , sin θ )]

. (.)

For a sufficiently small h, let

r = r(θ ,h) =
∞∑
m=

νm(θ )hm (.)

be the solution of Eq. (.) satisfying the initial value condition r|θ= = h, where

ν(θ ) = e–δθ , νm() = , m = , , . . . . (.)

The th focal value at infinity of system (.) is ν(π ) – , i.e., e–πδ – , the kth one is
νk+(π ), k = , , . . . .
By means of transformation

z = x + iy, w = x – iy, T = it, i =
√
–, (.)

system (.) can be transformed into the following complex system:

dz
dT

= λ( – iδ)zw + bz + bzw + bzw + bzw + ( – iδ)zw,

dw
dT

= –
[
λ( + iδ)wz + aw + awz + awz + awz + ( + iδ)wz

]
,

(.)

where

a = α + iβ, a = α + iβ,

a = α + iβ, a = α + iβ,

b = α – iβ, b = α – iβ,

b = α – iβ, b = α – iβ.

(.)

It is obvious that the coefficients of system (.) satisfy the conjugate condition, i.e.,

bij = aij, (i, j) ∈ {
(, ), (, ), (, ), (, )

}
. (.)

We call that systems (.) and (.) are associated.

http://www.advancesindifferenceequations.com/content/2013/1/5
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3 Singular point quantities and center conditions at degenerate singular point
From Theorem . in [], we have

Lemma . For system (.)δ=δ=,we can determine uniquely an extended formal power
series

F(z,w) = zw
∞∑
k=

fk(z,w)
(zw)k

, (.)

such that

dF
dT

∣∣∣∣
(.)δ=δ=

=
∞∑
m=

μ()
m (zw)m+, (.)

where c = , ckk = , k = , , . . . , fk(z,w) =
∑

α+β=k cαβzαwβ , and for any positive integer
m, the mth singular point quantity at the origin μ

()
m can be determined by the following

recursion formulas:

c = ,

when (α = β > ) or α <  or β < , cαβ = ;

else

cαβ =


λ(β – α)
(
(α – β)c–+α,–+β + b(– + α – β)c–+α,–+β

+
(
b(– + α – β) – a( – α + β)

)
c–+α,–+β +

(
b(α – β)

– a(–α + β)
)
c–+α,–+β +

(
b( + α – β) – a(– – α + β)

)
× c–+α,–+β – a(– – α + β)c–+α,–+β

)
, (.)

μ()
m = b(– +m)c–+(+m),–+(+m) +

(
b(– +m) – a( +m)

)
× c–+(+m),–+(+m) + (–am + bm)c–+(+m),–+(+m)

+
(
–a(– +m) + b( +m)

)
c–+(+m),–+(+m) – a(– +m)

× c–+(+m),–+(+m). (.)

Using the recursion formulas to do symbolic computation, we have

Theorem . The first nine singular point quantities at the origin of system (.)δ=δ=

are as follows:

μ
()
 = –a + b,

μ
()
 =

aa – bb
λ

,

μ
()
 = –

aa + ab – ab – bb
λ ,

μ
()
 = –

(a + b)(ab + aab – ab – abb)
λ ,

μ
()
 = –

(ab + aab – ab – abb)(–ab + ab + λ)
λ , (.)

http://www.advancesindifferenceequations.com/content/2013/1/5
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μ
()
 = ,

μ
()
 = –

(ab – ,aabb + ,ab)(–ab – aab + ab + abb)
,λ ,

μ
()
 =

(ab – ab)(ab + ab)(–ab – aab + ab + abb)
,λ ,

μ
()
 =

ab(–,ab + ,ab)(ab + aab – ab – abb)
,,λ .

In the above expression of μ()
k , we have already let μ

()
 = · · · = μ

()
k– = , k = , , . . . , .

From Theorem ., it is easy to get

Theorem . For system (.)δ=δ=, the first nine singular point quantities at the origin
are zero if and only if one of the following conditions holds:

(I) a = b, b = 
a, a = 

b, ab �= ;
(II) a = b, aa = bb, ab = ba,

abb = baa, bb = aa.

Proof Putting condition (I) or (II) into expression (.) can easily complete the proof of
sufficiency.
Now, let us prove the necessity. If a = b = , then μ

()
 = μ

()
 = μ

()
 = μ

()
 = μ

()
 =

μ
()
 = μ

()
 = , μ()

 = –(aa–bb

)

λ . Therefore, μ()
k =  (k = , , . . . , ) yields

a = b, aa = bb, a = b = . (.)

If ab �= , notice that μ
()
 = –a + b = , μ()

 = aa–bb
λ

= , there exist r and
p such that

a = b = r, b = pa, a = pb. (.)

Substituting (.) into expression (.), we get

μ
()
 =

(ab – ab)(– + p)( + p)
λ ,

μ
()
 =

(ab – ab)(– + p)r
λ ,

μ
()
 =

(ab – ab)(– + p)(–ab + ab + λ)
λ ,

μ
()
 = –

(ab – ab)(ab – ,aabb + ,ab)(– + p)
,λ ,

μ
()
 = –

(–ab + ab)(ab – ab)(ab + ab)(– + p)
,λ ,

μ
()
 = –

ab(–,ab + ,ab)(ab – ab)(– + p)
,,λ .

(.)

ab – ,aabb + ,ab =  and –,ab + ,ab = 
donot simultaneously hold, thus fromμ

()
 = μ

()
 = μ

()
 = ,wehave (i) p = 

 or (ii) aa–

http://www.advancesindifferenceequations.com/content/2013/1/5


Wu and Li Advances in Difference Equations 2013, 2013:5 Page 6 of 10
http://www.advancesindifferenceequations.com/content/2013/1/5

bb = , ab – ab = . At this moment, μ()
 = μ

()
 = μ

()
 = μ

()
 = . Condition (i)

or (ii) combining with μ
()
 =  implies the following conditions, respectively:

a = b, b =


a, a =



b, ab �= ; (.)

a = b, aa = bb, ab = ba, ab �= . (.)

Condition (.) plus (.) is equivalent to condition (II). The proof is completed. �

From the definition of elementary Lie invariants in [], we can obtain

Lemma . All the elementary Lie invariants of system (.)δ=δ= are as follows:

λ, a, b, ab, ab,

ab, aa, bb,

ab, abb, bb,

ba, baa, aa.

(.)

Theorem. For system (.)δ=δ=,all the singular point quantities at the origin are zero
if and only if the first nine singular point quantities are zero, i.e., one of the two conditions
in Theorem . holds. Correspondingly, the two conditions in Theorem . are the center
conditions of the origin.

Proof When condition (I) holds, system (.)δ=δ= has the integrating factor M(z,w) =
(zw)–; when condition (II) holds, system (.)δ=δ= satisfies the conditions of the ex-
tended symmetric principle (Theorem . in []). �

4 Singular point quantities and center conditions at infinity
Lemma . [] For the system

dz
dT

= zn+wn +
n∑
k=

Zk(z,w),

dw
dT

= –wn+zn –
n∑
k=

Wk(z,w),

(.)

where

Zk(z,w) =
∑

α+β=k

aαβzαwβ , Wk(z,w) =
∑

α+β=k

bαβwαzβ , (.)

to any integer s �= , γ �= ,we can derive successively the terms of the following formal series:

F(z,w) = (zw)s
[ ∞∑

k=

f(n+)k(z,w)
(zw)k(n+)

] 
γ

(.)

http://www.advancesindifferenceequations.com/content/2013/1/5
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such that

dF
dT

∣∣∣∣
(.)

=

γ
(zw)n+s

[ ∞∑
k=

f(n+)k(z,w)
(zw)k(n+)

] 
γ – ∞∑

m=

λm

(zw)m
, (.)

and for any integer m,

λm ∼ –sγμm, (.)

where μm is the mth singular point quantity at infinity, ‘∼’ is the symbol of algebraic equiv-
alence, c = , c(n+)k,(n+)k can be taken arbitrarily, k = , , . . . .When α �= β , λm is deter-
mined by the following recursion formulas:

cαβ =


(β – α)(n + )
∑
k,j

{[
nα – (n + )β + (γ s + n +  – k)(n + )

]
ak,j–

–
[
nβ – (n + )α + (γ s + n +  – j)

]
bj,k–

}
× cα+nk+(n+)j–(n+)(n+),β+nj+(n+)k–(n+)(n+), (.)

λm =
∑
k,j

[
(γ s + n +  – k –m)ak,j– – (γ s + n +  – j –m)bj,k–

]
× cnk+(n+)j+(m–n–)(n+),nj+(n+)k+(m–n–)(n+). (.)

Take s = –, γ = , n = , applying Lemma . to system (.)δ=δ= and executing cal-
culation in Mathematica, we have

Theorem. The first seven singular point quantities at infinity of system (.)δ=δ= are
as follows:

μ
(∞)
 = a – b,

μ
(∞)
 = –aa + bb,

μ
(∞)
 =

aa + ab + aab – ab – abb – bb


,

μ
(∞)
 = –

(a + b)(ab + aab – ab – abb)


, (.)

μ
(∞)
 = –

(ab + aab – ab – abb)(–ab + ab + λ)


,

μ
(∞)
 = ,

μ
(∞)
 =

ab(–ab + ab)(ab + aab – ab – abb)


.

In the above expression of μ(∞)
k , we have already let μ

(∞)
 = · · · = μ

(∞)
k– = , k = , , . . . , .

By the similar method used in the proof of Theorem ., we can obtain the following
result.

Theorem . For system (.)δ=δ=, the first seven singular point quantities at infinity
are zero if and only if condition (I) or (II) is satisfied.

http://www.advancesindifferenceequations.com/content/2013/1/5
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The following result is immediate from Theorems . and ..

Theorem . The degenerate singular point and infinity of system (.)δ=δ= have the
same center conditions.

5 Bifurcation of limit cycles under synchronous perturbation
From Theorems . and ., we have

Theorem . The degenerate singular point of system (.)δ=δ= is a fine focus of order
nine if and only if the coefficients of its associated complex system (.)δ=δ= satisfy

a = b = , a = –


b, b = –



a,

–ab + ab + λ = ,

ab

 – ,aabb + ,ab


 = ,

ab + ab = , ab
(
ab – ab

) �= .

(.)

Theorem . The infinity of system (.)δ=δ= is a fine focus of order seven if and only if
the coefficients of its associated complex system (.)δ=δ= satisfy

a = b = , a = –b, b = –a,

–ab + ab + λ = , ab
(
ab – ab

) �= .
(.)

Actually, when the degenerate singular point of system (.)δ=δ= is a fine focus of order
nine, its infinity is atmost a fine focus of order three; when the infinity of system (.)δ=δ=

is a fine focus of order seven, its degenerate singular point is at most a fine focus of order
three. Therefore, we have

Theorem . By synchronous perturbation at degenerate singular point and infinity, sys-
tem (.) has the limit cycle configurations of {(), } and {(), }.

For the sake of simplicity, we will prove the first case of Theorem .. The other case can
be proved with the same principle.

Theorem . Let the coefficients in (.) satisfy

δ = δ = ε, a = –


, a = ε – iε, a =  – ε – ε – ε – iε,

a = –ε –


i
√


( – 

√
), λ = –




(– + 
√
), (.)

b = a, b = a, b = a, b = a

(accordingly, the coefficients of system (.) are determined by (.), (.) and (.)), where
εi, i = , . . . ,  are small parameters with

 < ε � ε � ε � ε � ε � ε � ε � ε � . (.)

http://www.advancesindifferenceequations.com/content/2013/1/5
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Then for system (.), there are eight limit cycles bifurcating from the degenerate singular
point, and at the same time, there are three limit cycles bifurcating from infinity.

Proof For the degenerate singular point of system (.), from ν(π ) = eπδ , νm+(π , δ) =
νm+(π , ) + δφm+(aαβ ,bαβ , δ), Theorem . and νm+(π ) ∼ iπμm, after computing
carefully, we have the following:

ν(π , δ) –  = πε + o(ε),

ν(π , δ) =
[
–π +ω(ε, ε, ε, ε, ε, ε, ε)

]
ε + o(ε),

ν(π , δ) =
[
–


(– + 

√
)

π +ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) =
[
–
,

√
( – 

√
)

(– + 
√
)

π +ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) =
[
–
,

√
( – 

√
)

(– + 
√
)

π +ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) =
[
–
,

√
( – 

√
)

(– + 
√
)

π +ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) =
[,,√( – 

√
)(– + 

√
)

(– + 
√
)

π

+ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) =
[
–
,,,

√
( – 

√
)(– + 

√
)

,(– + 
√
)

π

+ω(ε, ε, ε, ε, ε, ε, ε)
]
ε + o(ε),

ν(π , δ) = –
,,,

√
( – 

√
)(–, + ,

√
)

,(– + 
√
)

π + o(),

where ωi(ε, ε, ε, ε, ε, ε, ε) are analytic at (, , , , , , ) and ωi(, , , , , , ) = ,
i = , . . . , .
Simultaneously, for the infinity of system (.), we have

ν(π , δ) –  = –πε + o(ε),

ν(π , δ) = πε + o(ε),

ν(π , δ) = –


πε + o(ε),

ν(π , δ) =



√


( – 

√
)π + o().

According to the classical theory of Bautin, there exist eight limit cycles in a small
enough neighborhood of the degenerate singular point and three limit cycles in a small
enough neighborhood of the infinity. �

http://www.advancesindifferenceequations.com/content/2013/1/5
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6 Concluding remarks
We have presented the solution to the problem of bifurcation of limit cycles at degenerate
singular point and infinity for a class of seventh degree polynomial vector field. There are
two important points to make here. Firstly, by computing the first several singular point
quantities with Mathematica and vanishing them, the same center conditions at degener-
ate singular point (Theorem .) and at infinity (Theorem .) are obtained. Secondly, by
synchronous perturbation of degenerate singular point and infinity, the limit cycle config-
urations of {(), } and {(), } are determined. We hope that our work could make some
contributions in this direction.
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