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Abstract
In this paper, we present linear differential equations for the generating functions of
the Poisson-Charlier, actuarial, and Meixner polynomials. Also, we give an application
for each case.
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1 Introduction
As is well known, the Poisson-Charlier polynomials Ck(x; a) are Sheffer sequences (see
[–]) with g(t) = ea(et–) and f (t) = a(et – ), which are given by the generating function

C(x, t) = e–t( + t/a)x =
∑

n≥

Cn(x; a)
tn

n!
(a �= ). ()

They satisfy the Sheffer identity

Cn(x + y; a) =
n∑

k=

(
n
k

)
ak–nCk(y; a)(x)n–k ,

where (x)n is the falling factorial (see []). Moreover, these polynomials satisfy the recur-
rence relation

Cn+(x; a) = a–xCn(x – ; a) – Cn(x; a)
(
see []

)
.

The first few polynomials are C(x; a) = , C(x; a) = – (a–x)
a , C(x; a) = (a–x–ax+x)

a .
The actuarial polynomials a(β)

n (x) are given by the generating function of Sheffer se-
quence

F(x, t) = eβt+x(–et ) =
∑

n≥

a(β)
n (x)

tn

n!
(
see []

)
, ()

and the Meixner polynomials of the first kind mn(x;β , c) are also introduced in [] as fol-
lows:
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M(x, t) =
∑

n≥

mn(x;β , c)
tn

n!
= ( – t/c)x( – x)–x–β . ()

In mathematics, Meixner polynomials of the first kind (also called discrete Laguerre
polynomials) are a family of discrete orthogonal polynomials introduced by Josef Meixner
(see [–]). They are given in terms of binomial coefficients and the (rising) Pochhammer
symbol by

mn(x,β , c) =
n∑

k=

(–)k
(

n
k

)(
x
k

)
k!(x – β)n–kc–k (

see []
)
.

Some interesting identities and properties of the Poisson-Charlier, actuarial, and Meixner
polynomials can be derived from umbral calculus (see [–]). Kim and Kim [] intro-
duced nonlinear Changhee differential equations for giving special functions and polyno-
mials. Many researchers have studied the Poisson-Charlier, actuarial and Meixner poly-
nomials in the mathematical physics, combinatorics, and other applied mathematics (for
example, see [, ]).

In this paper, we study linear differential equations arising from the Poisson-Charlier,
actuarial, and Meixner polynomials and derive new recurrence relations for those poly-
nomials from our differential equations.

2 Poisson-Charlier polynomials
Recall that the falling polynomials (x)N are defined by (x)N = (x – ) · · · (x – N + ) for N ≥ 
with (x) = . For brevity, we denote the generating functions C(x, t) and dj

dtj C(x; t) by C and
C(j) for j ≥ .

Lemma  The generating function C(N) is given by (
∑N

i= ai(N , x)(t + a)–i)C, where
a(N , x) = (–)N , aN (N , x) = (x)N , and

ai(N , x) = (x – i + )ai–(N – , x) – ai(N – , x) ( ≤ i ≤ N – ).

Proof Clearly, a(, x) = . For N = , by () we have C() = (– + x(t + a)–)C, which proves
the lemma for N =  (here a(, x) = – and a(, x) = x). Assume that C(N) is given by
(
∑N

i= ai(N , x)(t + a)–i)C. Then

C(N+) =

(
–

N∑

i=

ai(N , x)i(t + a)–i–

)
C +

( N∑

i=

ai(N , x)(t + a)–i

)
(
– + x(t + a)–)C

=

(N+∑

i=

(x – i + )ai–(N , x)(t + a)–i –
N∑

i=

ai(N , x)(t + a)–i

)
C.

This shows that the generating function C(N+) is given by
(

–a(N , x) +
N∑

i=

(
(x – i + )ai–(N , x) – ai(N , x)

)
(t + a)–i

+ (x – N)aN (N , x)(t + a)–N–

)
C.

Comparing with C(N+) = (
∑N+

i= ai(N + , x)(t + a)–i)C, we complete the proof. �
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In order to obtain an explicit formula for the generating function C(N), we need the
following lemma.

Lemma  For all  ≤ i ≤ N , the coefficient‘s ai(N , x) in Lemma  are given by

ai(N , x) = (x)i

(
N
i

)
(–)N–i.

Proof By Lemma  we have that

ai(N + , x) = (x – i + )ai–(N , x) – ai(N , x),  ≤ i ≤ N + ,

with a(, x) =  and ai(N , x) =  whenever i > N or i < . Define Ai(x; t) =
∑

N≥i ai(N , x)tN .
Then we have

Ai(x; t) =
(x +  – i)t

 + t
Ai–(x)

with A(x; t) = 
+t . By induction on i we derive that Ai(x, t) = (x)iti

(+t)i+ . Hence, by the fact that


(+t)i+ =
∑

j≥
(i+j

i
)
(–)jtj we obtain that ai(N , x) = (x)i

(N
i
)
(–)N–i, as required. �

Thus, by Lemmas  and  we can state the following result.

Theorem  The linear differential equations

C(N) =

( N∑

i=

(x)i

(
N
i

)
(–)N–i(t + a)–i

)
C (n = , , . . .)

have a solution C(x, t) = e–t( + t/a)x, where (x)i = x(x – ) · · · (x +  – i) with (x) = .

As an application of Theorem , we obtain the following corollary.

Corollary  For all k, N ≥ ,

Ck+N (x; a) =
N∑

i=

k∑

m=

(x)i

(
N
i

)(
k
m

)
(–)N–i+m(i + m – )ma–i–mCk–m(x; a).

Proof By () and Theorem  we have

C(N) =

( N∑

i=

(x)i

(
N
i

)
(–)N–i(t + a)–i

)
∑

�≥

C�(x; a)
t�

�!
.

Since 
(+t)i+ =

∑
j≥

(i+j
i
)
(–)jtj, we obtain

C(N) =
∑

k≥

N∑

i=

k∑

m=

(x)i

(
N
i

)(
k
m

)
(–)N–i+m(i + m – )ma–i–mCk–m(x; a)

tk

k!
.

By comparing coefficients of tk we complete the proof. �
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3 Actuarial polynomials
For brevity, we denote the generating functions F(x, t) = eβt+x(–et ) and dj

dtj F(x; t) by F and
F (j) for j ≥ .

Lemma  The generating function F (N) is given by (
∑N

i= bi(N , x)eit)F , where b(N , x) = βN ,
bN (N , x) = (–x)N , and bi(N , x) = –xbi–(N – , x) + (β + i)bi(N – , x) ( ≤ i ≤ N – ).

Proof Clearly, b(, x) = . For N = , by () we have F () = (β – xet)F , which proves
the lemma for N =  (here b(, x) = β and b(, x) = –x). Assume that F (N) is given by
(
∑N

i= bi(N , x)eit)F . Then

F (N+) =

( N∑

i=

bi(N , x)ieit

)
F +

( N∑

i=

bi(N , x)eit

)
(
β – xet)F

=

( N∑

i=

(β + i)ai(N , x)eit – x
N+∑

i=

bi–(N , x)eit

)
F ,

which shows that the generating function F (N+) is given by

(
βb(N , x) +

N∑

i=

(
–xai–(N , x) + (β + i)bi(N , x)

)
eit – xbN (N , x)e(N+)t

)
F .

Comparing with F (N+) = (
∑N+

i= bi(N + , x)eit)C, we complete the proof. �

Lemma  For all  ≤ i ≤ N , the coefficients bi(N , x) in Lemma  are given by

bi(N , x) = (–x)i
N∑

j=i

(
N
j

)
βN–jS(j, i),

where S(n, k) are the Stirling numbers (for example, see []) of the second kind.

Proof By Lemma  we have that

bi(N + , x) = –xbi–(N , x) + (β + i)bi(N , x),  ≤ i ≤ N + ,

with b(, x) =  and bi(N , x) =  whenever i > N or i < . Define Bi(x; t) =
∑

N≥i bi(N , x)tN .
Then we have

Bi(x; t) =
–xt

 – (β + i)t
Bi–(x)

with B(x; t) = 
–βt . By induction on i we derive that

Bi(x, t) =
(–xt)i

( – βt)( – (β + )t) · · · ( – (β + i)t)
=

(–xt)i

( – βt)i+

i∏

j=


 – jt/( – βt)

.
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Hence, since xk

(–x)(–x)···(–kx) =
∑

n≥k S(n, k)xn (for example, see []), where S(n, k) are the
Stirling numbers of the second kind, we obtain that

Bi(x, t) = (–x)i
∑

j≥i

S(j, i)
tj

( – βt)j+ .

Since 
(+t)i+ =

∑
j≥

(i+j
i
)
(–)jtj, we obtain that

Bi(x, t) = (–x)i
∑

j≥i

∑

�≥

(
j + �

j

)
β�S(j, i)tJ+�.

Thus, by finding the coefficients of tN we complete the proof. �

Thus, by Lemmas  and  we can state the following result.

Theorem  The linear differential equations

F (N) =
N∑

i=

(
(–x)ieit

N∑

j=i

(
N – 
j – 

)
βN–jS(j, i)

)
F (N = , , . . .)

have a solution F(x, t) = eβt+x(–et ).

Recall that F(x, t) = eβt+x(–et ) =
∑

n≥ a(β)
n (x) tn

n! , which is the generating function for the
actuarial polynomials a(β)

n (x) (see ()). As an application of Theorem , we obtain the fol-
lowing corollary.

Corollary  For all k, N ≥ ,

a(β)
N+k(x) =

N∑

i=

k∑

m=

bi(N ; x)
(

k
m

)
ik–ma(β)

m (x),

where bi(N , x) = (–x)i ∑N
j=i

(N–
j–

)
βN–jS(j, i).

Proof By () and Theorem  we have F (N) = (
∑N

i= bi(N , x)eit)
∑

�≥ a(β)
� (x) t�

�! . Thus,

F (N) =
∑

k≥

N∑

i=

k∑

m=

bi(N , x)
(

k
m

)
ik–ma(β)

m (x)
tk

k!
.

By comparing the coefficients of tN+k we complete the proof. �

4 Meixner polynomials of the first kind
Recall that the rising polynomials 〈x〉N are defined by 〈x〉N = x(x + ) · · · (x + N – ) with
〈x〉 = . For brevity, we denote the generating functions M(x, t) = ( – t/c)x( – x)–x–β and
dj

dtj M(x; t) by M and M(j) for j ≥ , respectively.
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Theorem  The linear differential equations

M(N) =

( N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N–i)

)
M (N = , , . . .)

have a solution M = M(x, t) = ( – t/c)x( – x)–x–β .

Proof We proceed the proof by induction on N . Clearly, the theorem holds for N = . By
() we have M() = (x(t – c)– – (x + β)(t – )–)M, which proves the theorem for N = .
Assume that the theorem holds for N ≥ . Then by the induction hypothesis we have

M(N+)

=
d
dt

( N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N–i)

)
M

=

{( N∑

i=

(–)i+i
(

N
i

)
(x)N–i〈x + β〉i(t – )–i–(t – c)–(N–i)

)
M

+

( N∑

i=

(–)i+(N – i)
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N+–i)

)
M

+

( N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N–i)

)

× (
x(t – c)– – (x + β)(t – )–)M

}
.

After rearranging the indices of the sums, we obtain

M(N+)

=

(N+∑

i=

(–)i(i – )
(

N
i – 

)
(x)N+–i〈x + β〉i–(t – )–i(t – c)–(N+–i)

)
M

+

( N∑

i=

(–)i+(N – i)
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N+–i)

)
M

+

( N∑

i=

(–)i
(

N
i

)
x(x)N–i〈x + β〉i(t – )–i(t – c)–(N+–i)

)
M

+

(N+∑

i=

(–)i
(

N
i – 

)
(x)N+–i(x + β)〈x + β〉i–(t – )–i(t – c)–(N+–i)

)
M.

This implies

M(N+) =

(N+∑

i=

(–)i
(

N + 
i

)
(x)N+–i〈x + β〉i(t – )–i(t – c)–(N+–i)

)
M,

and the induction step is completed. �
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From () we have M(N) =
∑

k≥ mk+N (x;β , c) tk

k! for all N ≥ . Similarly to the previous
section, we have a recurrence relation for the coefficients of mn(x;β , c).

Corollary  For all k, N ≥ ,

mk+N (x;β , c) = (–)N
N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i

∑

�+m+n=k

k!
(i+�–

�

)(N+m–i–
m

)

n!cN–i+m mn(x;β , c).

Proof By Theorem  we have

M(N) =

( N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i(t – )–i(t – c)–(N–i)

)
∑

�≥

m�(x;β , c)
t�

�!
.

Thus, since (t – c)–s = (–)s ∑
�≥

(s+�–
�

)
c–s–�t�, we obtain

M(N) = (–)N
N∑

i=

(–)i
(

N
i

)
(x)N–i〈x + β〉i

×
∑

�≥

∑

m≥

∑

n≥

(
i + � – 

�

)(
N + m – i – 

m

)
mn(x;β , c)

c–N–m+it�+m+n

n!
.

Hence, by finding the coefficients of tk in the generating function M(N) we complete the
proof. �

5 Results and discussion
In this paper, the Poisson-Charlier polynomials, actuarial, and Meixner polynomial are
introduced. We study linear differential equations arising from the Poisson-Charlier, ac-
tuarial, and Meixner polynomials and present some their recurrence relations. Linear dif-
ferential equations for various families of polynomials are derived. Furthermore, some
particular cases of the results are presented.
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