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Abstract This study aims to model monthly electrical

conductivity (EC) values in the Asi River using artificial

neural networks (ANNs) to evaluate water quality condi-

tions using pH, temperature, water discharge, sodium, sum

of calcium and magnesium concentrations. The results are

compared using multiple linear regression (MLR). Recor-

ded data are available at a gauging site in Antakya, Turkey,

for the period from 1984 to 2008. Comparing the modeled

values by ANNs with the experimental data indicates

that neural network model with seven neurons in hidden

layer provides accurate results (R2 = 0.968, RMSE =

46.927 lS/cm, MAE = 32.462 lS/cm and MRSE =

0.0029 for the training data and R2 = 0.965, RMSE =

50.810 lS/cm, MAE = 37.495 lS/cm and MRSE = 0.0024

for the testing data). The Garson method of the connection

weights of the network was used to study the relative %

contribution of each of the input variables. It was found

that the sum of calcium and magnesium concentration and

temperature had the most effect on the predicted EC. The

results indicate that two proposed models were able to

approximate the EC parameter reasonably well; however,

the ANN was found to perform better than the MLR model.

Keywords Artificial neural networks � Asi River �
Multiple linear regression � Relative importance � Water

quality

Introduction

Water quality is an explanation of chemical, physical, and

biological characteristics of water in relation with intended

use(s) and a set of standards (Gazzaz et al. 2012). Water

quality can be evaluated by a single parameter such as

electrical conductivity (EC) or by a number of critical

parameters (e.g., temperature, pH, EC, turbidity; pathogens,

nutrients, organics, and metals) for certain objective. The

EC is a measurable quantity but their direct measurements

are expensive, time-consuming and expensive. Artificial

neural networks (ANNs) have been applied widely to time

series analyses, including local water quality parameters and

EC values, in which the model is developed even in the

presence of correlation among the variables. ANN is non-

linear, non-parametric model and does not need necessarily

higher physical meaning background of the subject. The

initial model derived from data is a neural network model

that can be built and handled quite easily and quickly. A

disadvantage of ANNs is that they are black box models

unable to provide any insight into the key relationships.

Since statistical regression is the simplest and most

straightforward form of a model, it is usually the first

approach that is adopted for investigating a relationship

between variables. Therefore, MLR was investigated as

possible alternative, and its prediction abilities were com-

pared with ANNmodels. Predictions by theMLR are simply

based on linear and additive associations of the explanatory

variables, and these models are not able to incorporate the

nonlinearities of the parameters. Finally, the importance of
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each of the input parameters is estimated by a technique

given by Garson (1991), which employs the weights

between the artificial neurons produced by the ANN model.

Several studies reported the use of ANN in water quality

prediction (Liong et al. 1999; Diamantopoulou et al. 2005;

Sahoo et al. 2005; Recknagel et al. 2007; El-Shafie et al.

2008; Amiri and Nakane 2009; Bertini et al. 2010; Maier

et al. 2010; Sivapragasam et al. 2010; Pai et al. 2011;

Ghorbani et al. 2012; Najad et al. 2013; Nemati et al. 2015).

The main purpose of this study is to investigate the

applicability ANN methods to estimate the EC, and the

results are compared with MLR. From 11 input candidates,

pH, temperature, water discharge, sodium, and sum of

calcium and magnesium concentrations, for a set of

recorded data from 1984 to 2008 in the Asi River (also

referred to as Orontes River), were used as input parame-

ters to predict EC. Among water quality parameters, EC

concentration is very important in classifying irrigation

water (Singh et al. 2005). The paper also estimates the

relative importance of these input variables.

Materials and methods

Multiple linear regression (MLR)

Multiple linear regression (MLR) is a conventional

approach in the modeling of the relationship between

variables in which the unknown parameters of the regres-

sion model are estimated. MLR fits a linear combination of

the components of a multiple signal x to a single output

signal y, as defined by (1) and returns the residual, r, i.e.,

the difference signal, as defined by (2):

y ¼ a0 þ
Xn

i¼1

aixi ð1Þ

r ¼ y� a1x1 � a2x2 � � � � � anxn � a0 ð2Þ

where the values of parameters ai are unknown a priori and,

in this study, they are determined using the least squares

method to minimize the residual errors, r.

Artificial neural networks (ANNs)

Artificial neural network is a nonlinear black box model

and is a powerful tool for nonlinear problems. The feed-

forward neural network (FFNN) is the widely used neural

network architecture in literature and comprises a system

of neurons, which are arranged in layers. Between the input

and output layers, there may be one or more hidden layers.

The number of neurons in the input and output layers is

equal to the number of input and output variables, but the

number of hidden layers and neurons in hidden layer are

determined by trial-and-error method. Each neuron in a

layer receives weighted inputs from a previous layer and

transmits its output to neurons in the next layer. These are

summed to produce a net value, which is then transformed

to an output value upon the application of an activation

function. Figure 1 represents a three layers structure (MLP)

that consists of (i) input layer, (ii) hidden layer and (iii)

output layer. For more information, see (Nemati et al.

2015).

Relative importance index

Relative importance values and the saliency analysis are

two of the approaches to open up the black box of the

weights associated with the ANN models to gain some

insight into the physical conditions of the site. This paper

uses the relative importance method of the input variables,

as given by the Garson equation (1991). It is based on the

neural net weight matrix. Garson proposed following

equation based on the partitioning of connection weights:

Ij ¼

Pm¼Nh

m¼1

W ih
jmPk¼Ni

k¼1
W ih

kmj j

� �
� Who

mn

�� ��
� �

Pk¼Ni

k¼1

Pm¼Nh

m¼1 W ih
km

�� ��=
Pk¼Ni

k¼1 W ih
km

�� ��
� �

� Who
mn

�� ��
n o

ð3Þ

where Ij is the relative importance of the jth input variable

on the output variable, Ni and Nh are the number of input

and hidden neurons, respectively, and W is the connection

weight, the superscripts i, h and o refer to input, hidden and

Fig. 1 Simple configuration of

multilayer perceptron neural

network (Nemati et al. 2015)
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output layers, respectively, and subscripts k, m and n to

input, hidden and output neurons, respectively. For more

details, see (Ghorbani et al. 2012). The disadvantage of this

method is that the network is not retrained after the

removal of each input. This can lead to erroneous results if

zero is not a reasonable value for the input. The result can

be particulary questionable if the inputs are statistically

dependent, because in general, the effects of different

inputs cannot be separated (Chen et al. 2009).

Model performance evaluation

Four performance criteria are used in this study to assess

the goodness of fit of the models, which are: root mean

square error (RMSE), mean absolute error (MAE), mean

square relative error (MSRE), and coefficient of determi-

nation (R2) (further discussed by Ghorbani et al. 2012).

Study area and data specification

The investigation on EC in this paper is based on water

quality parameters of one gauging station in Asi River.

This river is international river; for this purpose, it has been

divided into three basin districts, which originate in

Lebanon in the Hermel Hills, cross Syria and end in Tur-

key. The location of this river is illustrated in Fig. 2.

The Asi River Basin, which was used to develop the

model, is in southern Turkey in Antakya. Every month,

samples were collected from one location, from the steel

bridge station in Asi River, Turkey, for analysis which was

located between latitude, 36�1500500 North, longitude,

36�2101200 East, and elevation 67 m.

From 11 input candidates, the most important and

selected input variables were pH, temperature, water dis-

charge, sodium, and sum of calcium and magnesium. The

models were then used to predict EC. Concentrations of

these parameters have been measured in 270 streams of Asi

River at the steel bridge station in Antakya, Turkey, and on

a monthly basis for the period of 24 years, from 1984 to

2008. The mean variations of EC and the other parameters

of the gauging site used in this study are monthly intervals

are shown in Fig. 3a–f, which also displays the missing

data. The data are divided into two sets: (i) 80 % of data

(216 months) for training the models; (ii) 20 % of data

(54 months) for testing the models.

The statistical parameters of the water quality data are

given in Table 1. The mean, minimum, maximum, stan-

dard deviation (Std Dev), variance (Var), skewness (Skew)

and kurtosis can describe variability of the data. As

described in Table 1, water temperature is one of the water

quality variables that have a low skewness coefficient.

Water discharge has a large skewness coefficient; the

minimum and maximum values of the EC have large dif-

ferences. Probably, the mean of the EC data set is heavily

influenced by the presence of a few extreme values.

The data subsets were normalized so that the data rage

fell between -1 and 1. Such scaling of data smooths the

solution space and averages out some of the noise (ASCE

2000). Since results from these normalized models indi-

cated that performance of the models did not change very

much, the results here are represented without normalized

data. The available records of monthly water quality

parameters of Asi River at the steel bridge station suffer

additionally from missing data. Some of appropriate

strategies to treat the missing data are used (Honaker and

King 2010).

Fig. 2 Location of the Asi River
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Results

A typical feed-forward neural network of multilayer per-

ceptrons model has been constructed for predicting the

monthly EC time series. Table 2 shows the best values of

the calibrating parameters for the ANNs. These parameters

were fixed for all runs.

Relative importance

In this study, to determine the relative importance of

temperature (Temp), pH, water discharge (Q), sodium

(Na), and calcium and magnesium (Ca ? Mg) concentra-

tion on EC, the Garson equation (6) was used. The ANN

model architecture refers to the layout of neurons and the

number of hidden layers, as shown in Fig. 1. Table 3

shows the results of ANN model for the training and testing

periods.

In the testing phase, the model with 13 neurons for the

hidden layer rendered comparatively better values of

RMSE, MAE, MSRE, and R2 (60.825 lS/cm, 45.639 lS/
cm, 0.0033, and 0.952, respectively). Table 4 shows the

matrices of weights between input, hidden and output

layers.

Fig. 3 Measured monthly time series of the water quality parameters at the Asi River: a temperature (temp, �C), b pH, c water discharge (Q, m3/

s), d sodium (Na, mg/L), e calcium and magnesium (Ca ? Mg, mg/L), f electrical conductivity (EC, lS/cm)
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Table 5 shows relative importance of the input variables

on EC, and indicates that (Ca ? Mg), Q and pH play the

most significant role on the EC model (with relative

importance of 24.46, 21.97, and 19.67 %, respectively),

whereas Na and temperature have less influential role (with

relative importance of 18.10 and 15.84 %, respectively).

Input combinations

The relative importance of the input variables were used to

determine appropriate input combinations. Different com-

binations of variables (Temp, pH, Q, Na, Ca ? Mg) as

input data, and EC as output of models were presented in

Table 6.

MLR model

The standard form of the MLR model based on Eq. (1) is

used for predicting EC, which included only the first order

of the independent variables pH, Temp, Q, Na, and

Ca ? Mg. Table 7 presents the performance of the MLR

model, and Fig. 4 illustrates the visual comparison between

the observed and predicted values of EC for a typical data

range of 270 data points. Comparison of the results in the

training and testing steps indicated that combination 8 is

the best of EC prediction for MLR model.

ANN model

In the preliminary investigations, the architecture of the

ANN model was identified by trial-and-error procedure. A

three-layer network was selected, and the number of neu-

rons in the hidden layer was determined by training and

testing four models: M1, M2, M3, and M4. The study

tested the following recommendations: model M1 with I

neurons as recommended by Tang and Fishwick (1993),

model M2 with 2I as recommended by Wong (1992), and

model M3 with 2I ? 1 as recommended by Lippmann

(1987), where I is the number of input variables, and model

Table 1 Statistics for water quality parameters of Asi River at the steel bridge station, period 1984–2008

Data Unit Mean Min Max Std Dev Var Skew Kurtosis

Input

pH – Total 8.18 7.20 8.70 0.20 0.04 -0.77 2.58

Training 8.15 7.20 8.70 0.20 0.04 -0.72 2.91

Testing 8.28 7.84 8.56 0.15 0.02 -0.84 1.03

Temp �C Total 17.38 7 30 5.18 26.82 0.25 -0.84

Training 17.13 7 30 4.98 24.77 0.32 -0.64

Testing 18.37 8 28 5.86 34.39 -0.08 -1.29

Q m3/s Total 18.73 0.30 158.56 22.46 504.56 2.78 10.79

Training 19.96 0.94 158.56 23.72 562.60 2.75 10.17

Testing 13.79 0.30 65.42 15.74 247.61 1.76 2.53

Na mg/L Total 2.07 0.10 4.86 0.66 0.43 1.68 4.89

Training 2.09 0.10 4.86 0.66 0.43 1.93 5.94

Testing 2.02 0.47 3.86 0.67 0.44 0.75 0.74

Ca ? Mg mg/L Total 7.50 2.40 17.12 2.50 6.24 1.15 1.45

Training 7.33 2.40 17.12 2.46 6.05 1.24 2.01

Testing 8.16 4.55 14.45 2.56 6.54 0.94 0.05

Output

EC (lS/cm) Total 907.46 246 1926 258.53 66,835.55 1.19 1.89

Training 888.59 246 1926 258.85 67,005.33 1.30 2.51

Testing 982.93 637 1605 245.26 60,153.81 1.00 0.15

Table 2 Initial parameter setting for implementing the ANN models

General setting

Max epoch 100

Training algorithm TRAINLM

Transfer function TANSIG

Performance function MSE

Adaption learning function LEARNGDM
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M4 with 13 neurons. The ANN was compared based upon

their prediction accuracy to identify the most appropriate

and efficient combinations of inputs. The results showed

that the network geometry with seven hidden neurons is

required for a relatively better performance. This is shown

in Fig. 5.

Table 8 shows the assessment of performance of the

ANN model for the training and testing steps with

Table 3 The results of ANN model for the training and testing periods to the identification of the number of the hidden layer neurons

Hidden layer neurons Training Testing

RMSE (lS/cm) MAE (lS/cm) MSRE R2 RMSE (lS/cm) MAE (lS/cm) MSRE R2

1 38.696 26.579 0.0058 0.978 62.132 45.758 0.0036 0.946

2 38.292 26.453 0.0041 0.979 75.490 54.853 0.0051 0.921

3 29.268 21.986 0.0016 0.987 66.704 49. 399 0.0044 0.937

4 29.704 21.797 0.0014 0.988 85.510 57.912 0.0056 0.905

5 32.545 22.587 0.0027 0.984 68.303 49.710 0.0046 0.935

6 163.452 47.468 0.0383 0.716 66.336 51.863 0.0039 0.952

7 33.454 22.306 0.0022 0.983 83.034 58.628 0.0057 0.906

8 34.270 24.051 0.0018 0.983 80.409 55.735 0.0052 0.915

9 23.118 18.334 0.0008 0.992 83.530 58.452 0.0072 0.914

10 29.332 22.126 0.0017 0.988 75.700 54.671 0.0053 0.921

11 31.489 23.395 0.0023 0.986 84.699 61.667 0.0061 0.911

12 36.626 23.874 0.0021 0.980 90.958 69.391 0.0078 0.873

13 28.807 21.469 0.0012 0.988 60.825 45.639 0.0033 0.952

14 32.265 22.600 0.0014 0.985 89.837 63.844 0.0077 0.888

15 35.851 19.583 0.0013 0.982 90.969 64.190 0.0072 0.874

16 28.891 18.690 0.0011 0.988 80.396 59.224 0.0058 0.908

17 57.688 26.623 0.0054 0.953 78.237 55.822 0.0051 0.919

18 34.488 26.294 0.0026 0.983 68.989 50.402 0.0051 0.927

19 25.498 19.858 0.0010 0.990 79.470 59.119 0.0059 0.909

20 30.914 19.384 0.0011 0.986 81.945 64.283 0.0067 0.904

The results in bold show the selected model

Table 4 Matrices of weights—w1 weights between input and hidden layers, w2 weights between hidden and output layers

w1 w2

Neuron Variable Neuron Variable

pH Temp (�C) Q (m3/s) Na (mg/L) (Ca ? Mg) (mg/L) EC (lS/cm)

1 0.1995 -0.0012 0.1373 0.9275 1.4209 1 1.3768

2 1.1907 -0.0030 1.6103 0.7860 -0.9184 2 -0.0760

3 2.2265 -2.3097 -3.9405 -0.5259 2.2975 3 0.0198

4 2.5658 0.3476 1.6094 4.4894 -1.2315 4 -0.0619

5 0.0722 0.1275 0.2014 0.3744 0.7229 5 1.5538

6 0.2507 -0.7097 3.4621 0.6780 2.5418 6 -0.7088

7 4.2985 -3.8656 2.4133 -1.9773 0.2988 7 -0.0428

8 0.2527 5.4694 -1.0241 -0.6271 2.1764 8 0.0067

9 0.4967 -4.2698 3.7799 -0.2198 2.3331 9 0.0343

10 -4.4561 -0.0964 -0.7138 -1.8480 -2.1113 10 -0.0603

11 3.8906 3.3156 4.6930 0.7586 -2.6389 11 -0.0506

12 -1.3637 0.3360 0.6167 5.3232 3.7807 12 -0.0539

13 3.7444 1.1158 -2.4746 -0.4803 -1.0091 13 -0.0141
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different combinations of input parameters and structure.

Among the models assessed, combination 1 with seven

hidden neurons resulted in relatively better statistical

measures. The visual comparison of predicted and

observed EC values indicates that the ANN was able to

properly model the variation of the EC parameter.

However, some of the extreme values of EC have been

underestimated or overestimated by the ANN model

showing its relative weakness in the estimation of EC

values (Fig. 6).

Based on the visual comparison, no substantial differ-

ence appears to be observed among the predictive abilities

of the proposed models, and the predicted results for EC

are just as good as those by MLR as shown in Fig. 4. The

overall performance of the MLR and ANN techniques are

presented in Table 9. It is clearly that the ANN model

performed better than the MLR model.

Discussion

Prediction models are considered useful for river basin

management and are used to predict the behavior of water

quality with respect to changes in hydrological conditions.

Neural networks have gained great popularity in time series

prediction because of their robustness and simplicity with

respect to underlying data distributions.

Asi River during its course receives varying levels of

pollution from many diffuse (non-point) and point sources.

This river is intensively used for agriculture owing to the

existence of very fertile soil around the river, contributing

significantly to the regional economy, so it is degraded by

diffuse sources. In addition, nearly 200 industrial plants

and hundreds of small factories are located around or

nearby the river and discharge their effluents into the river

at a rate of 500,000 m3/year (Karakilcik and Erkul 2002),

thus exhibiting large variations in water quality variables.

On the other hand, measuring pH in the Asi River Basin for

the past 24 years has shown that conditions of this river

have also changed.

Water quality data for this analysis were limited to

concentrations of sodium, potassium, calcium, magnesium,

carbonate, chlorate, sulfate, bicarbonate as well as tem-

perature, pH, and water discharge. Since, one of the most

important steps in the development process of a model is

the determination of an appropriate set of inputs, but on the

other hand, inclusion of more inputs to the system increases

system complexity, the input variables were selected and

Table 5 Relative importance of input variables on EC

Input variables Importance (%)

(Ca ? Mg) (mg/L) 24.46

Q (m3/s) 21.97

pH 19.67

Na (mg/L) 18.10

Temp (�C) 15.84

Total 100

Table 6 Combinations investigated for predicting monthly EC time series

Model Input Output

1 (pH)t, (Q)t, (Ca ? Mg)t (EC)t

2 (pH)t, (Na)t, (Ca ? Mg)t (EC)t

3 (pH)t, (Temp)t, (Na)t, (Ca ? Mg)t (EC)t

4 (pH)t, (Temp)t, (Q)t, (Na)t, (Ca ? Mg)t (EC)t

5 (pH)t, (Q)t, (Ca ? Mg)t, (EC)t - 1 (EC)t

6 (pH)t, (Q)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

7 (pH)t, (Q)t -1, (Q)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

8 (pH)t, (Q)t -1, (Q)t, (Ca ? Mg)t - 1, (Ca ? Mg)t, (EC)t - 1 (EC)t

9 (pH)t, (Q)t -1, (Q)t, (Ca ? Mg)t - 1, (Ca ? Mg)t, (EC)t-2, (EC)t - 1 (EC)t

10 (pH)t, (Temp)t, (Q)t, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

11 (pH)t, (Temp)t, (Na)t - 1, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

12 (pH)t, (Q)t -1, (Q)t, (Na)t -1, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

13 (pH)t, (Temp)t, (Na)t - 1, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t, (EC)t - 1 (EC)t

14 (pH)t, (Temp)t, (Q)t -1, (Q)t, (Na)t - 1, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t (EC)t

15 (pH)t, (Temp)t, (Q)t -1, (Q)t, (Na)t - 1, (Na)t, (Ca ? Mg)t - 1, (Ca ? Mg)t, (EC)t - 1 (EC)t

Appl Water Sci

123



100

500

900

1300

1700

2100

0 25 50 75 100 125 150 175 200 225 250

EC
 (µ

S/
cm

) 

Time (month)

Observed
Predicted

(a)

0

400

800

1200

1600

2000

0 400 800 1200 1600 2000

pr
ed

ic
te

d 
EC

 (µ
S/

cm
) 

observed EC (µS/cm) 

Training
Best Fit

(b)

600

900

1200

1500

1800

600 900 1200 1500 1800

pr
ed

ic
te

d 
EC

 (µ
S/

cm
) 

observed EC (µS/cm) 

Testing
Best Fit

(c)

Fig. 4 Comparison of predicted

MLR time series with observed

values for EC: a sequence plot,

b scatter plot for the training

dataset, c scatter plot for the

testing dataset

Table 7 The results of MLR model for the training and testing periods

Combination Training Testing

RMSE (lS/cm) MAE (lS/cm) MSRE R2 RMSE (lS/cm) MAE (lS/cm) MSRE R2

1 50.245 36.077 0.0040 0.962 52.019 39.017 0.0028 0.963

2 29.549 21.881 0.0012 0.987 63.544 45.571 0.0035 0.945

3 29.467 21.652 0.0012 0.987 65.339 47. 332 0.0037 0.943

4 29.315 21.422 0.0012 0.987 66.512 48.231 0.0039 0.942

5 234.875 164.986 0.1045 0.176 217.657 159.831 0.0367 0.238

6 50.245 36.082 0.0040 0.962 52.355 39.204 0.0029 0.963

7 50.242 36.094 0.0040 0.962 52.412 39.276 0.0029 0.963

8 49.321 35.077 0.0043 0.964 49.740 36.175 0.0026 0.964

9 231.092 160.391 0.1056 0.196 219.851 161.251 0.0369 0.256

10 29.228 21.473 0.0012 0.987 67.579 48.620 0.0040 0.942

11 29.385 21.741 0.0012 0.987 65.953 47.551 0.0038 0.943

12 29.209 21.583 0.0012 0.987 67.626 48.780 0.0040 0.942

13 28.215 20.515 0.0012 0.988 58.394 40.672 0.0029 0.950

14 29.208 21.565 0.0012 0.987 67.745 48.903 0.0040 0.942

15 28.031 20.383 0.0012 0.988 57.275 39.237 0.0028 0.955

The results in bold show the selected model
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generated from the system description through literature

experience.

In this study, the ANN modeling technique was used to

predict future conditions in this river using pH, tempera-

ture, water discharge, sodium, sum of calcium and mag-

nesium concentrations. The study also includes an

estimation of the relative importance of these variables to

identify important variables affecting the EC parameter.

MLR is investigated as possible alternative and its pre-

diction abilities were compared with ANNs.

Comparison between the models indicated that the inter-

action input with delay time is no more responsible for EC

estimation than the individual variables, so increasing the

amount of memory was not found to be a significant

explanatory variable. The modeling results also indicated that

Hidden Layer Input Layer Output layer 

(EC)t 

(pH)t 

(Q)t 

(Ca+Mg)t 

Fig. 5 Implementation of the ANN model

Table 8 The results of ANN model for the training and testing periods

Model Combination ANN structure Training Testing

RMSE (lS/cm) MAE (lS/cm) MSRE R2 RMSE (lS/cm) MAE (lS/cm) MSRE R2

M1 1 3–3–1 54.233 37.038 0.0078 0.956 52.884 39.096 0.0027 0.964

2 3–3–1 29.032 21.906 0.0011 0.987 53.567 38.685 0.0028 0.957

3 4–4–1 31.250 22.530 0.0013 0.986 79.776 57.930 0.0051 0.921

4 5–5–1 29.529 20.874 0.0017 0.987 79.968 58.917 0.0059 0.916

5 4–4–1 226.569 158.135 0.0990 0.237 239.501 189.308 0.0503 0.106

6 4–4–1 53.519 36.224 0.0079 0.957 54.015 40.377 0.0030 0.964

7 5–5–1 61.070 40.172 0.0130 0.951 54.629 40.295 0.0029 0.956

8 6–6–1 54.917 37.448 0.0075 0.958 58.988 44.082 0.0036 0.958

9 7–7–1 218.862 149.392 0.1015 0.280 224.605 172.649 0.0403 0.205

10 6–6–1 26.311 18.850 0.0027 0.990 79.588 59.155 0.0054 0.928

11 6–6–1 31.862 24.153 0.0025 0.986 63.616 48.868 0.0037 0.954

12 7–7–1 25.239 19.811 0.0010 0.990 60.499 45.853 0.0035 0.957

13 7–7–1 27.662 19.236 0.0009 0.989 68.463 43.999 0.0037 0.947

14 8–8–1 26.819 19.550 0.0017 0.989 70.771 50.782 0.0044 0.937

15 9–9–1 29.014 19.508 0.0009 0.988 75.386 53.129 0.0048 0.906

M2 1 3–6–1 47.735 32.915 0.0033 0.966 61.648 45.878 0.0032 0.965

2 3–6–1 28.388 21.306 0.0011 0.988 67.449 49.453 0.0045 0.935

3 4–8–1 28.630 21.636 0.0012 0.988 73.525 56.551 0.0049 0.934

4 5–10–1 28.412 20.283 0.0013 0.988 81.366 63.141 0.0061 0.911

5 4–8–1 228.632 155.749 0.0891 0.227 231.697 168.142 0.0404 0.166

6 4–8–1 45.090 30.965 0.0042 0.970 58.251 43.695 0.0040 0.962

7 5–10–1 49.874 35.539 0.0108 0.963 58.883 43.238 0.0028 0.957

8 6–12–1 48.184 31.168 0.0058 0.966 64.933 44.350 0.0038 0.941

9 7–14–1 222.108 158.157 0.1005 0.266 230.857 170.797 0.0411 0.169

10 6–12–1 36.933 26.210 0.0025 0.982 80.253 53.879 0.0050 0.914

11 6–12–1 26.058 17.895 0.0009 0.990 89.945 65.723 0.0068 0.901

12 7–14–1 46.308 24.902 0.0032 0.968 57.847 43.301 0.0031 0.957

13 7–14–1 28.245 20.672 0.0010 0.988 56.532 39.782 0.0032 0.953

14 8–16–1 28.738 20.921 0.0016 0.988 74.360 56.926 0.0056 0.938

15 9–18–1 24.350 16.087 0.0009 0.991 70.105 51.684 0.0044 0.933
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similar performances were obtained with MLR and ANNs in

the testing step, but better performance indices were achieved

with ANN models in both steps, suggesting that it could be

successfully applied for EC predicting. Despite the accuracy

ofMLRmodels being slightly lower than theANNmodel, the

MLR was superior to other artificial intelligence models in

giving a simple equation for the phenomenonwhich shows the

relationship between the input and output parameters. The

ANN model can generate output values in continuous form,

which makes water quality assessment more comprehensible,

so this model was selected as the best fitting.

For the modeling and analysis of EC, only monthly

data were available and used in this study, which might

not be sufficient for accurate modeling and model

assessment, for monthly data may not include all extreme

conditions.

Table 8 continued

Model Combination ANN structure Training Testing

RMSE (lS/cm) MAE (lS/cm) MSRE R2 RMSE (lS/cm) MAE (lS/cm) MSRE R2

M3 1 3–7–1 46.927 32.462 0.0029 0.968 50.810 37.495 0.0024 0.965

2 3–7–1 28.290 20.150 0.0010 0.988 68.804 51.447 0.0041 0.937

3 4–9–1 35.554 23.422 0.0040 0.981 68.799 48.919 0.0050 0.924

4 5–11–1 27.950 20.513 0.0011 0.988 85.786 65.313 0.0065 0.917

5 4–9–1 215.918 154.270 0.0930 0.304 273.532 211.553 0.0623 0.002

6 4–9–1 50.701 36.167 0.0070 0.963 52.710 40.295 0.0028 0.963

7 5–11–1 59.052 39.978 0.0161 0.950 70.247 52.268 0.0041 0.946

8 6–13–1 55.986 33.696 0.0104 0.955 55.217 40.659 0.0029 0.959

9 7–15–1 216.991 151.167 0.1079 0.303 219.832 167.045 0.0434 0.235

10 6–13–1 25.443 19.917 0.0010 0.990 60.022 45.372 0.0034 0.960

11 6–13–1 29.708 23.050 0.0012 0.988 74.154 55.094 0.0058 0.923

12 7–15–1 37.707 26.204 0.0020 0.979 90.157 63.413 0.0062 0.904

13 7–15–1 30.814 22.108 0.0013 0.988 78.551 52.415 0.0046 0.924

14 8–17–1 33.695 25.014 0.0020 0.984 70.503 51.086 0.0047 0.929

15 9–19–1 32.288 22.608 0.0031 0.985 69.888 49.134 0.0040 0.927

M4 1 3–13–1 47.708 33.445 0.0062 0.968 54.089 42.375 0.0030 0.957

2 3–13–1 26.739 20.477 0.0011 0.989 56.442 40.758 0.0031 0.950

3 4–13–1 29.983 21.508 0.0014 0.986 64.433 45.708 0.0045 0.938

4 5–13–1 26.724 20.227 0.0011 0.989 70.424 50.549 0.0045 0.925

5 4–13–1 223.271 155.173 0.0872 0.256 260.513 196.732 0.0505 0.090

6 4–13–1 43.473 29.601 0.0022 0.972 74.739 53.080 0.0050 0.929

7 5–13–1 45.551 31.815 0.0027 0.970 72.960 55.703 0.0045 0.932

8 6–13–1 55.986 33.696 0.0104 0.955 55.217 40.659 0.0029 0.959

9 7–13–1 217.129 154.870 0.1092 0.311 212.224 168.452 0.0400 0.261

10 6–13–1 25.443 19.917 0.0010 0.990 60.022 45.372 0.0034 0.960

11 6–13–1 29.708 23.050 0.0012 0.988 74.154 55.094 0.0058 0.923

12 7–13–1 21.227 15.425 0.0008 0.993 60.986 48.743 0.0036 0.954

13 7–13–1 36.899 26.053 0.0038 0.982 56.947 43.573 0.0029 0.956

14 8–13–1 31.250 21.056 0.0014 0.985 65.652 51.468 0.0046 0.944

15 9–10–1 35.760 24.159 0.0019 0.982 80.522 57.109 0.0049 0.923

The results in bold show the selected model
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Conclusion

The general objective of this study is to predict

monthly EC time series using local water quality

parameters of pH, temperature, water discharge,

sodium, and sum of calcium and magnesium. The

recorded data at one station located in Asi River, at a

gauging site in Antakya, Turkey, are used to investi-

gate the performance of two modeling strategies:

ANNs, and MLR for the estimation of the EC amounts.

This study also employs the Garson equation to assess

the relative importance of these input variables. The

modeling study employed different input combinations,

and model performances have been estimated by means

of several indicators. The results indicated that rea-

sonable prediction accuracy was achieved for these

models.
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Fig. 6 Comparison of predicted

ANN time series with observed

values for EC: a sequence plot,

b scatter plot for the training

dataset, c scatter plot for the

testing dataset

Table 9 Comparison of the performances of MLR and ANN models

Model

MLR ANN

RMSE (lS/cm)

Training 49.321 46.927

Testing 49.740 50.810

MAE (lS/cm)

Training 35.077 32.462

Testing 36.175 37.495

MRSE

Training 0.0043 0.0029

Testing 0.0026 0.0024

R2

Training 0.964 0.968

Testing 0.964 0.965
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