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1 Introduction

The lattice QCD simulation provides a first-principle approach for the quark hadron world,

and is expected to provide reliable information for the QCD phase diagram study. How-

ever, due to the notorious sign problem, its validity is limited; the fermion determinant

DetDW (µ) appearing in the grand canonical partition function as a part of the probability

weight is in general complex at real chemical potential µ, and the Monte Carlo calculation

do not work.

In order to overcome the difficulty, several methods were proposed for studying the

QCD at finite real chemical potential regions. One novel method was a multi-parameter

reweighting [1], which initiated many studies [2]. Detailed analysis of the determinant ratios

in this formula [3] revealed that the valid range is limited due to the overlap problem. The

imaginary chemical potential method was proposed in refs. [4, 5] and has become a useful

tool; at the imaginary chemical potential the fermion determinant is not complex, but

real. In ref. [6], it is shown that the polynomial fits to extrapolate the imaginary chemical

potential regions to the real ones have large uncertainty for µ/T > 1, where T is the

temperature. See ref. [7] for a nice review of these approaches and the overlap problem,

and ref. [8] for more references on the two methods.

The grand canonical ensemble is thus a difficult subject to treat in lattice QCD because

of the sign problem. The canonical partition function is related to the grand canonical one

through the fugacity expansion and is known to be free from the complex action problem.

The history of the canonical approach in finite density lattice QCD may have started with

a development of a reduction formula for the Dirac determinant [9], which gives naturally a

fugacity expansion of the Dirac determinant. A several studies with the staggered fermion

are done along this line [10–13] and have been taken over by the Wilson fermion [14–18].
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Since it is understood that the inverse transformation of the fugacity expansion is the

Fourier transformation [11] it also becomes a popular method [19–23].

One of the problem of the canonical approach is that the Dirac determinant needs

to be evaluated accurately and frequently, which is the heaviest part of the computation.

One of the solution is to adopt the Taylor expansion [24]. In this paper we perform the

fugacity expansion by a method of the temporal winding number expansion [20, 21], which

is represented as a hopping parameter expansion in temporal direction. By using the

hopping parameter expansion the Dirac determinant can be evaluated with low cost and

we can visit a wide parameter space in β which corresponds to 0.65Tc ≤ T ≤ 3.62Tc. The

canonical partition function is evaluated for Nf = 2 QCD both in the deconfinement and

the confinement temperature regions. After derivation of the canonical partition function

we study the chemical potential dependence of observables like the pressure, the quark

number density and the chiral condensate. We observe a possible signal of the confinement-

deconfinement and chiral restoration phase transition at real chemical potential below the

critical temperature Tc. A preliminary result has been reported in ref. [25].

This paper is organized as follows. In section 2 we briefly review the canonical ap-

proach. Our formulation of the fugacity expansion in terms of the hopping parameter

expansion is discussed in section 3. After mentioning our numerical setup in section 4

our main results are given in section 5 for canonical and grand canonical partition func-

tions. Section 6 is devoted for the chiral condensate in the grand canonical ensemble. A

conclusion is given in section 7.

2 Canonical partition function

It is the well known fact that the grand canonical ensemble and the canonical one are

equivalent each other. This is shown by a simple equation to relate the grand canonical

partition function ZG(µ, T, V ) and the canonical ZC(n, T, V )

ZG(µ, T, V ) =

∞∑
n=−∞

ZC(n, T, V )ξn, ξ = eµ/T . (2.1)

where ξ is the fugacity and this is a so called fugacity expansion formula. The inverse of

this expansion is given by using the Cauchy’s integral theorem

ZC (n, T, V ) =

∮
dξ

2πi
ξ−n−1ZG(ξ, T, V ). (2.2)

Here we would like to emphasize an implicit assumption is made for the inverse trans-

formation (2.2) to work. That is the grand partition function ZG(ξ, T, V ) should have

singularities only at ξ = 0,∞ corresponding to trivial ones at µ/T = ±∞. A phase

transition point ξc is not a singularity of the partition function but it is rather a zero of

ZG(ξ, T, V ) (Lee-Yang zeros [26, 27]) and does not affect the assumption.

Now it is free to change the contour to a unit circle ξ = eiθ and the contour integral

turns out to be a Fourier transformation [11]

ZC (n, T, V ) =

∫ 2π

0

dθ

2π
e−inθZG(eiθ, T, V ). (2.3)
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A standard Monte Carlo simulation is possible for the lattice QCD since the chemical

potential is set to pure imaginary µ/T = iθ and the Boltzmann weight is real positive for

two flavors.

Eqs. (2.1) and (2.3) tell us that we construct canonical partition functions from the

grand partition function at pure imaginary chemical potential, which are free from the sign

problem, and that we can obtain the grand partition function at real chemical potential

regions. Note that this is mathematically rigorous formula, and theoretically can be used

at any large values of µ, as long as the right-hand side of eq. (2.1) converges.1

However a difficulty of the sign problem is preserved unfortunately since there remains

a frequent cancellation in plus and minus sign in a numerical Fourier transformation espe-

cially for large particle numbers. In order to get the canonical partition function accurately

for large quark number n we need a very fine sampling of ZG(eiθ, T, V ) in θ. This requires

a heavy computational cost because we need to evaluate the Dirac operator determinant

for the QCD grand partition function. In this paper we shall solve this problem by a direct

expansion of the Dirac determinant in terms of the fugacity.

In ref. [19], the canonical approach was tested on 44 lattice, and the authors further

pursued the canonical approach [20, 21], where the winding number in the expansion is

limited up to six, and the Fourier transformation was done analytically. Then large baryon

number regions are out of the scope.

3 Fugacity expansion by means of hopping parameter expansion

We consider the lattice Nf = 2 QCD grand partition function given in the path integral

form

ZG(ξ, T, V ) =

∫
DU (DetDW (ξ;U))2 e−SG(U), (3.1)

where we adopt the improved Wilson Dirac operator

DW (µ, κ) = 1− κQ(µ), (3.2)

Q(µ) =

3∑
i=1

(
Q+
i +Q−i

)
+ eµaQ+

4 + e−µaQ−4 + T, (3.3)(
Q+
µ

)
xy

= (1− γµ)Uµ(x)δy,x+µ̂,
(
Q−µ
)
xy

= (1 + γµ)U †µ(y)δy,x−µ̂, (3.4)

(T )xy = cSW
1

2

∑
µ,ν

σµνFµν(x)δmn. (3.5)

The term (3.5) is a so called clover term with the Sheikholeslami-Wohlert coefficient

cSW [28], and Fµν is the lattice field strength constructed from the standard clover-shaped

combination of gauge links.

Both the chemical potential e±µa and the hopping parameter κ appear in front of the

temporal hopping term simultaneously. The fugacity expansion of the determinant shall

1It may be possible that a finite convergence radius exists for the expansion eq. (2.1). This situation

corresponds to a physical system where the chemical potential has a upper limit, which can happen in the

Bose-Einstein condensation.
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n=+1

n=+1 n=-1

Figure 1. Schematic diagram of winding loops. Each hop along the positive (negative) time

direction is accompanied by the factor exp(+µ) (exp(−µ)). A hop along any direction includes the

factor κ. When a loop wraps the temporal direction n net times, it gives n winding number. All

closed loops have factors exp(nµNt) = exp(nµ/T ) = ξn where ξ = exp(µ/T ) and n = 0,±1,±2 · · · .

be given by using the hopping parameter expansion. The hopping parameter expansion

originated, to our knowledge, from refs. [29] and [30]; the authors estimated dynamical

fermion effects in the lattice QCD simulations. In ref. [31], the chemical potential was

introduced in a hopping parameter expansion formulation, and a careful treatment of

the small hopping parameter and large chemical potential leads to the high dense QCD

model [32]. The hopping parameter expansion was combined with one link models to study

the feature of finite density QCD [33]. Since the low order hopping parameter expansion

cannot provide reliable information to analyze near the QCD phase transition, an improved

hopping parameter expansion was proposed in ref. [34], where the temporal hopping is

treated exactly, and the spatial hopping expansion was executed, where the method was

employed in the complex Langevin simulation.

Instead of the determinant we consider the hopping parameter expansion of its loga-

rithm

TrLogDW (µ, κ) = TrLog (I − κQ(µ)) = −
∞∑
m=1

κm

m
Tr(Qm(µ)). (3.6)

A non-trivial chemical potential dependence appears when the quark hoppings make a loop

in the temporal direction. If one of the term has a n times winding loop in the positive

temporal direction, the chemical potential dependence is eµanNt where Nt is a temporal

lattice length and this is nothing but enµ/T = ξn (See figure 1). Counting the winding

number in temporal direction for each term in equation (3.6), we get the fugacity expansion

TrLogDW (µ, κ) =
∞∑

n=−∞
wn(κ)ξn, (3.7)

where the coefficient wn(κ) contains O(κm) contributions of hopping term with m ≥ |n|Nt.

We shall explain the second step (3.7) in more detail. Let us consider a contribution

from m quark hoppings given in a matrix form Qm(x, α; y, β), where x, y are site and α, β

– 4 –
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represent spin-color index. Qm is expanded in terms of temporal hopping

Qm(x, α; y, β) =
m∑

k=−m
ekµaX

(m)
k (x, α; y, β), (3.8)

where k is a number of hopping in temporal direction. Negative value corresponds to that

in negative direction. A positive and negative contribution cancels with each other in a

single path and a total contribution turns out to be k. We have X
(m)
k>m = X

(m)
k<−m = 0 from

the definition. The key coefficient X
(m)
k is calculated using a recurrence equation

X
(m+1)
k =

(∑
i

(
Q+
i +Q−i

)
+ T

)
X

(m)
k +

(
Q+

4

)
X

(m)
k−1 +

(
Q−4
)
X

(m)
k+1 (3.9)

starting from an initial condition

X
(0)
0 (x, α; y, β) = δx,yδα,β , X

(0)
k>0 = X

(0)
k<0 = 0. (3.10)

Taking the trace the fugacity expansion coefficient is given by

wn = −
∞∑

m=|n|Nt

κm

m

∑
x,α

X
(m)
nNt

(x, α;x, α), (3.11)

where sum should start with m = Min(4, Ns) for n = 0, with Ns a spatial size of the lattice.

The number 4 corresponds the minimal closed loop, the plaquette. Here we used a fact

that the quark hopping should make a loop for the trace to survive. An explicit algorithm

is given in ref. [35].

Exponentiating the summation we have a determinant

DetDW (µ, κ) = exp

( ∞∑
n=−∞

wn(κ)ξn

)
. (3.12)

The last step is to extract a coefficient zn(κ) in the following relation

exp

(
2
∞∑

n=−∞
wn(κ)ξn

)
=

∞∑
n=−∞

zn(κ)ξn (3.13)

where factor two is for Nf = 2 flavors. Then we get a fugacity expansion of the determi-

nant [20, 21] by means of the hopping parameter expansion

(DetDW (µ, κ))2 =
∞∑

n=−∞
zn(κ)ξn. (3.14)

Although the last step (3.13) is purely a mathematical issue no closed form is known for

zn as a function of wn [20, 21]. We use a numerical Fourier transformation to extract the

coefficient

zn (κ) =

∫ 2π

0

dθ

2π
e−inθ exp

(
2

∞∑
m=−∞

wm(κ)eimθ

)
. (3.15)
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The numerical Fourier transformation can be executed safely by using the multiple precision

calculation [36] without any sign problem. This is because the fugacity dependence of the

determinant or the partition function is given analytically once we evaluate the fugacity

expansion coefficient wn.

The fugacity expansion is done for gauge configurations generated at µ0 = 0 or purely

imaginary value. This procedure corresponds to the standard reweighting method

ZG(ξ, T, V ) =

∫
DU

(
DetDW (µ)

DetDW (µ0)

)2

DetDW (µ0)
2e−SG . (3.16)

The quantity we get in the Monte Carlo simulation is

ZG(ξ, T, V )

ZG(ξ0, T, V )
=

〈(
DetDW (µ)

DetDW (µ0)

)2
〉
µ0

=

∞∑
n=−∞

ξn
〈
zn(κ)

z(0)(κ)

〉
µ0

, (3.17)

where

z(0)(κ) = exp

( ∞∑
n=−∞

wn(κ)ξn0

)
, ξ0 = eµ0/T (3.18)

The canonical partition function is given by

ZC(n, T, V ))

ZG(ξ0, T, V )
=

〈
zn(κ)

z(0)(κ)

〉
µ0

. (3.19)

Now we are ready to calculate physical quantities in our canonical approach:

1. Generate gauge configurations at an imaginary chemical potential µ0 by the standard

HMC (Hybrid Monte Carlo) method.

2. Evaluate DetDW (µ) and DetDW (µ0) using eq. (3.12).

3. Perform the Fourier transformation eq.(3.15), and calculate zn, which are averaged

over the generated configurations. We have a canonical partition function ZC .

4. Using these averaged ZC , construct the grand partition function in eq. (2.1) at any

real µ.

4 Numerical setup

We adopt the Iwasaki gauge action and the improved Wilson fermion action with the clover

term. The number of flavors is set to Nf = 2 with degenerate masses. The APE stout

smeared gauge link [37] is used for those in the fermion action including the clover term.

The number of smearing is four and the parameter is set to ρ = 0.1. The clover coefficient

is fixed to cSW = 1.1 [38]. We adopt 83 × 4 lattice. A wide range of β is covered from

high temperature β = 2.1 to low temperature 0.9. It seems to be that both the confining

and deconfining regions are well covered, which is inferred from a behavior of real part of

the Polyakov loop in the left panel of figure 2. The temperature corresponding to β = 1.7

– 6 –
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β κ T/Tc mπ/mρ #conf

0.9 0.137 0.65 0.8992(45) 200

1.1 0.133 0.69 0.9056(45) 300

1.3 0.138 0.72 0.809(12) 100

1.5 0.136 0.83 0.755(13) 100

1.7 0.129 1 0.776(13) 500

1.9 0.125 1.77 0.726(15) 600

2.1 0.122 3.62 0.839(31) 500

Table 1. β and κ for the numerical simulation. mπ/mρ is also given.

Figure 2. Real part of the Polyakov loop as a function of β (left). Both the confining and

deconfining regions are well covered. Right panel is a fluctuation of phase of the Polyakov loop.

β = 1.7 seems to be very near to the critical coupling.

seems to be very near to the critical temperature Tc as is shown the right panel of figure 2

using a fluctuation of phase of the Polyakov loop.

A rough estimate of the temperature is given in the third column by using the gradient

flow method, where we assume that β = 1.7 corresponds to the critical temperature for

Nt = 4. The gradient flow is used to get ratio of the lattice spacings for two neighboring

β at zero temperature.

The hopping parameter is selected in order that the hopping parameter expansion

works well, for which mπ/mρ turns out to be 0.7 - 0.9 as is given in table 1. Maximal order

of the hopping parameter expansion is set to 480 so that max winding number in temporal

direction is 120. Number of independent configuration is 100 - 600 as is shown in the table.

5 Canonical and grand canonical partition function

The first numerical result we get is the canonical partition function ZC(n, T, V ). We plot

log |ZC(n, T, V )/ZC(0, T, V )|/(V T 3) as a function of the quark number n in figure 3. Data

is shown only for quark number n which is multiple of three. The residual data do not

– 7 –
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Figure 3. The canonical partition function log |ZC(n)/ZC(0)|/(V T 3) as a function of the quark

number n. From the top T/Tc = 3.62 (orange), 1.77 (red), 1.0 (magenta), 0.83 (green), 0.72 (dark

green), 0.69 (blue) and 0.65 (black).

contribute to the fugacity expansion (2.1) because of the Z3 symmetry. The partition

function decays very rapidly with n and its behavior changes drastically between β = 1.9

(red) and 1.5 (green). The data above β = 1.9 is fitted very well by a quadratic function.

But this is not the case below β = 1.5. This may correspond to a phase transition.

The plot range is fixed by using the d’Alembert’s convergence condition

lim
n→∞

∣∣∣∣ZC(n+ 3)

ZC(n)
ξ3
∣∣∣∣ < 1, (5.1)

which gives the convergence radius for the fugacity ξ.2 The data are plotted in figure 4 for

1/3 log |ZC(n + 3)/ZC(n)|. If the thermodynamical system exist for QCD the Helmholtz

free energy has a convexity in n, from which we can show a monotonic decrease of the

quantity |ZC(n+ 3)/ZC(n)|. We cut our data at nmax where a monotonic decrease stops3

indicated by vertical dotted lines in the figure. The horizontal dotted lines show maximal

values of the fugacity expected to be within the convergence radius. Since the logarithm is

taken, the line gives our applicable limit for the quark chemical potential µ/T . For example

we can discuss physics safely at −3.2 < µ/T < 3.2 for β = 1.1 and −1.5 < µ/T < 1.5

for β = 2.1 with our method. We notice that nmax is improved only by three even if we

increase the maximal winding number twice as 120→ 240. This may be due to a fact that

the convergence radius of the Taylor expansion (3.6) is unity.

The second physical quantity is the grand partition function. By taking summation for

−nmax ≤ n ≤ nmax in equation (2.1) with n multiple of three, we get the grand partition

function for the real chemical potential. Here we notice that the canonical partition function

ZC(n, T, V ) is a real positive quantity if a Hermitian transfer matrix exists for the lattice

QCD. For example let us consider the Hamiltonian formalism of QCD in the continuum.

The canonical partition function is given by a summation over every energy state with

2For negative quark number we adopt |ZC(n− 3)/ZC(n)|.
3This is due to a failure of the hopping parameter expansion at large quark number since a breakdown

of the monotonic decrease is not seen when the exact formula is adopted for the fugacity expansion [15].
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Figure 4. Log plot of |ZC(n + 3)/ZC(n)| divided by three as a function of the quark number.

limn→∞

∣∣∣ZC(n+3)
ZC(n) exp(3µ/T )

∣∣∣ < 1 gives the d’Alembert’s convergence condition.

fixed quark number n

ZC(n, T, V ) =
∑
E

〈
E,n

∣∣∣∣∣exp

(
−Ĥ
T

)∣∣∣∣∣E,n
〉
, (5.2)

where Ĥ is the QCD Hamiltonian. It is clear the canonical partition functions should be

positive real. However because of lattice artifact and numerical errors, they may deviate

from real number. On the other hand we observed that the absolute value of the partition

function is very stable against the statistical fluctuation and we take it as a tentative

remedy. So instead of equation (2.1) we adopt

ZG(µ, T, V ) =

nmax∑
n=−nmax

|ZC(n, T, V )| ξn (5.3)

for a definition of the grand partition function.4 Here we notice integers divisible by three

contribute to the summation because of the Z3 symmetry. From the partition function we

get the pressure in the grand canonical ensemble

1

T 4
(P (µ/T )− P (0)) =

1

V T 3
log

∣∣∣∣ZG(µ, T, V )

ZG(0, T, V )

∣∣∣∣ . (5.4)

We plot the pressure normalized at µ = 0 in figure 5 as a function of the quark chemical

potential. We observe that the pressure is very small at small chemical potential for low

temperature below Tc as is shown in the right panels of figure 5.

4Notice this is not a phase quenching of the Dirac determinant.
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Figure 5. The grand partition function log |ZG(µ, T, V )/ZG(0, T, V )| /(V T 3) as a function of the

quark chemical potential µ/T . See legend for the color and T/Tc correspondence. The pressure

at T/Tc = 0.65 and 0.69 (right panel) are almost overlapped, and also T/Tc = 1.77 and 3.62 (left

panel) are completely overlapped.

Figure 6. Quark number density 〈N̂〉/(V T 3) as a function of the quark chemical potential. The

solid curves are given by eq. (5.7).

The third physical application is the k-th moment of the quark number operator

〈N̂k〉 =
1

ZG(µ, T, V )

nmax∑
n=−nmax

nk |ZC(n, T, V )| ξn. (5.5)

In figure 6, the quark number density 〈N̂〉/(V T 3) is plotted as a function of the real quark

chemical potential µ/T . The data below Tc is consistent with the hadron resonance gas

prediction [39]

〈N̂〉
(V T 3)

∝ sinh
(

3
µ

T

)
(5.6)

as is indicated by the solid line. This property is also understandable as a leading order

– 10 –
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Figure 7. The second cumulant of the quark number 〈N̂2〉c/(V T 3) as a function of the quark

chemical potential. The lower panels plot results for T/Tc = 0.65, 0.69 and 0.72 below Tc. The

upper panel is results for Tc = 0.83 -3.62.

contribution from the fugacity expansion (5.5)

〈N̂〉
(V T 3)

=
1

V T 3

3 |ZC(3, T, V )|
|ZC(0, T, V )|

(
ξ3 − ξ−3

)
+O(ZC(6, V, T ), ZC(3, T, V )2)

=
1

V T 3

6 |ZC(3, T, V )|
|ZC(0, T, V )|

sinh
(

3
µ

T

)
+O(ZC(6, V, T ), ZC(3, T, V )2). (5.7)

The solid line in figure 6 is a plot of this contribution. The data is well described with (5.7)

for T < Tc since ZC(n, T, V ) decays rapidly with n as is shown in figure 3. The sinh function

is not a good description for T ≥ Tc. The number density rises linearly with µ/T near the

origin as is indicated by the free quark gas model [40].

The second cumulant of the quark number density may be a good indicator of a phase

transition. The results are plotted in figure 7. We observe peaks around µ/T ∼ 1 for every

β. We also observe secondary peaks for T/Tc = 0.72 (dark-green) and 0.83 (green) at

larger µ/T , while only a single peak is observed at high temperature T ≥ Tc. Although the

secondary peaks are not shown for T/Tc = 0.65 and 0.69 they exist at µ/T > 3. These peaks

show a distinctive behavior against the quark number cut-off nmax. The first peaks below Tc
are stable even if we vary nmax by 20%. It would be conjectured that the first peaks in the

low temperature side are the physical indication of the confinement-deconfinement phase

transition. Here we notice that the quark mass is not the same for each β. Unfortunately

we cannot exclude a possibility that these first peak corresponds to an onset phenomenon.

We need a further study at lighter quark mass to have a firm conclusion.
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Figure 8. A rough estimate of the first peak of the second cumulant below Tc and its plot in the

µ− T plane. No error estimation is performed.

On the other hand, the second peaks at T/Tc = 0.72, 0.83 and the first peaks above Tc
change their height and position with nmax changes. These peaks would be artifacts due

to the cut-off in quark number in the fugacity expansion.

The position of the first peak below Tc is consistent with a physical expectation that

the position moves to larger µ/Tc as temperature decreases. We plot a rough estimate of

the peak position in µ − T plane in figure 8. We set µc = 0 at T = Tc since β = 1.7 is

very near to the phase transition point at µ = 0. We notice this is a preliminary plot since

the quark mass is not the same between different β and no error estimation is performed.

We observe two points at µ/Tc ∼ 0.73. This is mainly due to an anomalous behavior of

β = 0.9 data for which the peak position is rather low. This may be due to a large lattice

artifact in such a strong coupling region.

The thermodynamic quantity

µ

T
= −∂ lnZC(n, T, V )

∂n
(5.8)

as a function of the quark number is one of the most popular quantity in the canonical

approach [13, 17, 21, 24]. We notice the quantity plotted in figure 4 can be interpreted as

an expression of the derivative in terms of the differential

µ

T
= −1

3
(lnZC(n+ 3, T, V )− lnZC(n, T, V )) . (5.9)

In refs. [13] and [17], an S-shape behavior was observed for Nf = 4 and 3. In ref. [21],

the authors see the S-shape behavior for Nf = 4, but not for Nf = 2 in the regions they

searched, although there is some S-shape like structure.

Our results are plotted in figure 9. The data are very consistent with those of ref. [21],

i.e., we see some structure, but cannot confirm the typical S-shape behavior. Signal is very

weak and S-shape curve is obscure. We shall need more statistics to make the signal clear.

6 Hadronic observables

In our procedure, the fugacity expansion is based on the hopping parameter expansion. It

may be possible to expand any hadronic operators in terms of the fugacity. We consider a

– 12 –
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Figure 9. The quark chemical potential µ/T given in terms of the thermodynamic relation as a

function of the quark number.

fugacity expansion of a numerator of some operator vacuum expectation value (VEV)

〈O〉G (ξ, T, V ) =
OG(ξ, T, V )

ZG(ξ, T, V )
, (6.1)

OG(ξ, T, V ) =

∫
DU 〈O〉quark (ξ)DetDW (ξ)2e−SG(U) =

∞∑
n=−∞

OC(n, T, V )ξn, (6.2)

where 〈O〉quark is a Wick contraction of a hadronic operator O in quark fields.

For example, we consider the chiral condensate. It is easy to expand its Wick contrac-

tion in terms of the hopping parameter

〈
ψ̄ψ
〉
quark

= −tr

(
1

DW

)
= −tr

(
1

1− κQ

)
=

∞∑
m=0

κmtrQm. (6.3)

Counting the winding number in temporal direction, we get the fugacity expansion of the

operator 〈
ψ̄ψ
〉
quark

=

∞∑
n=−∞

pn(κ)ξn. (6.4)

Multiplying the determinant contribution (3.12), we apply the same procedure as in sec-

tion 3 to get the fugacity expansion of the integrand

〈
ψ̄ψ
〉
quark

(ξ)DetDW (ξ)2 =
∞∑

n=−∞
on(κ)ξn. (6.5)
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Extraction of the coefficient on from the left hand side is essentially a mathematical pro-

cedure and we use the numerical Fourier transformation

on (κ) =

∫ 2π

0

dθ

2π
e−inθ

( ∞∑
l=−∞

pl(κ)eilθ

)
exp

(
2

∞∑
m=−∞

wm(κ)eimθ

)
. (6.6)

In Monte Carlo simulation we use the reweighting technique and what we calculate is

an expectation value

OG(ξ, T, V )

ZG(ξ0, T, V )
=

〈
〈O〉quark (ξ)

(
DetDW (µ)

DetDW (µ0)

)2
〉
µ0

=

∞∑
n=−∞

ξn
〈
on(κ)

z(0)(κ)

〉
µ0

, (6.7)

where z0 is given in (3.18). The fugacity expansion coefficient is given by the expectation

value
OC(n, T, V ))

ZG(ξ0, T, V )
=

〈
on(κ)

z(0)(κ)

〉
µ0

. (6.8)

Once we have two coefficients ZC(n, T, V ) and OC(n, T, V ), the VEVs of the operator

with the canonical and the grand canonical ensemble are available. The canonical ensemble

VEV is given by taking the ratio of two coefficient

〈O〉C (n, T, V ) =
OC(n, T, V )

ZC(n, T, V )
. (6.9)

The result for the chiral condensate −
∫
d3x

〈
ψ̄ψ
〉
C
/(V T 3) is given in the left panel of

figure 10 as a function of the quark number.

A VEV in the grand canonical ensemble is given by taking fugacity summation with

real chemical potential

〈O〉G (ξ, T, V ) =

∑nmax
n=−nmax

OC(n, T, V )ξn∑nmax
n=−nmax

ZC(n, T, V )ξn
. (6.10)

The chiral condensate −
∫
d3x

〈
ψ̄ψ
〉
G
/(V T 3) is given in the right panel of figure 10 as a

function of the real chemical potential µ/T . The condensate in the figure is a bare quantity

without renormalization. Since we adopted the Wilson fermion, we have an additive correc-

tion for
〈
ψ̄ψ
〉
, which is not subtracted in this paper. From the figure, the chiral restoration

phase transition at finite chemical potential seems to be seen. A relatively large value at

around µ/T = 0 starts to decrease slowly at chemical potential µ/T ∼ 1 for low tempera-

ture. The would-be transition parameter µc/T becomes larger for lower temperature and

smaller for high temperature although we need to notice the quark mass is not the same

for each β. The position of µc/T seems to be consistent with that of the first peak for the

second cumulant in figure 7 below Tc indicated by arrows with corresponding color in the

right panel. The finite chiral condensate above Tc is an artifact due to the chiral symmetry

breaking effect caused by the Wilson term and heavy quark mass. Along the vertical line

at µ = 0 the lattice spacing is varied when changing the temperature so notice that the

magnitude of the lattice artifact is not the same for different temperatures.

The quark number density is also given in terms of the hadronic observable∫
d3
〈
ψ†ψ

〉
/(V T 3), which gives consistent result with that in section 5 up to renormal-

ization factor as is plotted in figure 11.
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Figure 10. The chiral condensate −
∫
d3x

〈
ψ̄ψ
〉
/(V T 3) in the canonical ensemble (left panel) as a

function of the quark number. The right panel is that in the grand canonical ensemble as a function

of the quark chemical potential µ/T . See legend for the color and T/Tc correspondence.

Figure 11. The quark number density
∫
d3x

〈
ψ†ψ

〉
/(V T 3) in the grand canonical ensemble as a

function of the quark chemical potential µ/T .

7 Conclusion

We summarize what has been achieved in this paper to explore the QCD phase diagram:

using the simple fugacity expansion formula derived from the hopping parameter expansion,

combined with the multi-precision numerical calculation [36], we evaluate the canonical

partition functions up to the large quark number. This allows us to calculate high-density

region, i.e., µ/T > 1. In short, we prove that the canonical approach is the most natural

way to extrapolate the imaginary chemical potential method, and indeed it is possible to

study the QCD phase transition regions in a first-principle calculation.

To achieve this task, we performed the fugacity expansion of the grand partition func-

tion by using the hopping parameter expansion. This procedure seems to be valid for quark

numbers around n ∼ 100 for 83 × 4 lattice and mπ/mρ > 0.7. One of the virtue of the

hopping parameter expansion is its low computational cost. We are able to cover a very
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wide temperature region 0.65Tc ≤ T ≤ 3.62Tc both in the confining and deconfining region.

Note that the method is also applied to the numerator of VEVs of hadronic operators, such

as meson propagators, using eq. (6.2), since hadronic operators can be expressed as the

hopping parameter expansion form, whose combination with the fermion determinant has

the form of the fugacity expansion. Taking summation over quark numbers we get a VEV

at the real chemical potential. As an example we evaluate the pressure, the quark number

density and its second cumulant and the chiral condensate. These observables show a phase

transition like behavior at finite chemical potential for low temperature region, which may

correspond to the confinement-deconfinement or the chiral restoration phase transition.

This feature will be clarified in the near future with a high statistic simulation. We would

like to add a comment that we calculate the Polyakov loop in the same procedure and ob-

serve its increase as a function of µ/T below Tc, which shall be reported in the near future.

One of the biggest anxiety in this paper may be an overlap problem due to the reweight-

ing (3.16). We performed a test of this problem by adopting µ0/T = 0.5 for configurations

generation. We find all the results are consistent within the statistical error as we shall

report in the forthcoming paper.
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