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1 Introduction

The AdS/CFT duality [1] relates quantum gravity on AdS spacetime to a relativistic quan-

tum field theory on the boundary of AdS. While the canonical example of such duality is

between type IIB string theory on AdS5 × S5 and four dimensional N = 4 SYM, there

are numerous generalizations in various dimensions with less symmetry and a richer spec-

trum. Recently, it has been proposed to apply holography to problems in non-relativistic

quantum field theory with applications to condensed matter physics. Gravitational duals
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of non -relativistic field theories were first proposed [2–5] by studying Einstein theory cou-

pled to massive vectors,1 however it is of some interest to embed such solutions in a UV

finite theory such as string theory or M-theory. There has been significant progress made

in this direction [6–28] and, indeed, this is the motivation for our current work. We will

however take a somewhat different approach and study non-relavistic solutions of N = 2

gauged supergravity in four dimensions, which should be holographically dual to the vacua

of three-dimensional, non-relativistic quantum field theories. We will study gravitational

duals to two kinds of non-relativistic solution, those with Lifshitz scaling [2]

t→ λzt , xi → λxi (1.1)

combined with spatial rotations and those with Schrödinger scaling [3, 4]

x+ → λzx+ , x− → λ2−zx− , xi → λxi (1.2)

combined with Galilean boosts.

It has been well established that, for many internal manifolds, ten or eleven-dimensional

supergravity can be consistently truncated to an effective gauged supergravity in lower di-

mensions. The prototypical examples are the maximal gauged supergravities in four, five

and seven dimensions [29–31], which are believed to be consistent truncations of IIB or

eleven-dimensional supergravity on the appropriate dimensional sphere. For seven dimen-

sional gauged supergravity the consistency of this reduction has been proved [32]. These

truncations keep all the lightest fields of just a subset of the various Kaluza-Klein towers,

and, when further truncated to a more manageable sector, have been used to extract pre-

cise results on holographic renormalization group flows [33, 34]. It should be noted that

while the explicit lift of any given solution to these gauged supergravities to the higher

dimensional theory is theoretically possible, it can be quite technically challenging and in

some cases perhaps prohibitively so.

Another avenue by which one can construct gauged supergravity theories from

string/M-theory is to use a set of fundamental forms on the internal manifold which pos-

sess a closed set of differential and algebraic relations [12, 18, 35–38]. This results in a

truncation which is not so much a restriction to the lightest modes but instead to a singlet

sector under a certain symmetry group. The invariant sector of a coset reduction is a prime

example, but more general geometric structures such as Sasaki-Einstein spaces and nearly

Kahler manifolds also lead to such reductions. If this set of fundamental forms is chosen

judiciously, the spectrum is finite and typically these truncations include massive scalars

and vector fields. For these consistent truncations, the lift to the higher dimensional theory

is trivial since by construction the mapping is provided.

Thanks to these impressive works on consistent truncations, we have the confidence

to explore the parameter space of gauged supergravity in general and, then, to separately

address the question of which subset of parameters admits an embedding into string/M-

theory. We are not aware of a proof that any particular gauged supergravity cannot be

1The original proposal of [2] involved coupling gravity to a two-form potential and a vector field, but in

four dimensions the tensor can be dualized to a scalar.
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embedded into string/M-theory, nor do we have any reason to suspect this may be true. It

should be noted that while consistent truncations are useful for computing supersymmetric

solutions, for non-supersymmetric solutions however, one must be wary of instabilities

which lie outside the consistent truncation [39] and accounting for these can re-introduce

many of the complexities which had been truncated away.

In this paper, we discuss the conditions for supersymmetry for Lifshitz and Schrödinger

vacua in a general N = 2 gauged supergravity with vectors and hypermultiplets and we

then apply the formalism to a specific example. We will work with the canonical example

of four dimensional N = 2 gauged supergravity, namely we will retain just a single vector

multiplet and a single hypermultiplet. The virtue of this approach is that by fixing the

field content of the gauged supergravity but allowing for a quite general gauging, we can

simultaneously scan infinite families of string/M-theory compactifications.2 We find that

while the conditions for supersymmetry produce vacua which are isolated in field space,

they place extremely mild constraints on the charges and in this sense the vacua we find

are somewhat universal.

Specifically, our scalar moduli space is

MSK ×MQ =
SU(1, 1)

U(1)
× SU(2, 1)

SU(2) × U(1)
, (1.3)

and we have two vector fields, the graviphoton and one from the vector multiplet. We

gauge two commuting isometries of the hypermultiplet moduli space allowing for both

electric and magnetic charges, in the sense discussed in section two. The type of vacua we

find in any given theory depends crucially on whether the scalars are gauged electrically

or magnetically, but depends only very mildly on the strength of the gaugings.

We can gauge both compact and non compact isometries of the hypermultiplet

scalar manifold. We have found no interesting supersymmetric non-relativistic solutions

in the case with two non-compact gaugings. We discuss in details the two cases of

a pair of compact gauging, or one compact and one non-compact. Interestingly our

results are essentially identical in both cases, indicating there is most likely a symmetry

principle at work. Specifically, when all gaugings are either electric or magnetic, we find

supersymmetric Lifshitz solutions with scaling parameter z = 2 and we find that there are

no supersymmetric Schrödinger or N = 2 AdS solutions. These results indicate possible

obstacles to constructing supersymmetric holographic RG-flows (along the line of [33, 34])

between AdS and Lifshitz spacetimes.3

On the other hand when the gaugings are a mixture of electric and magnetic, we find

Schrödinger solutions and N = 2 AdS solutions but no Lifshitz solutions. We show that

under mild conditions, we can associate a supersymmetric Schrödinger solution to each

N = 2 AdS4 vacuum. The value of z in the Schrödinger solution is related to the mass

(m) of the massive vector field in the corresponding AdS4 vacuum by z(z + 1) = (mR)2,

as in the original construction in [4].

2Some previous works in gauged supergravity where the charges have been left arbitrary are [40–42]
3Such flows were found in a non-supersymmetric effective theory in [43].
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For a few particular gaugings, these solutions have in fact been found before and in

those cases we find precise agreement. In particular we find the SU(3) × U(1) invariant

N = 2 AdS4 vacuum of [44] and we also reproduce the Schrödinger solution found in [12].

The Lifshitz solutions with z = 2 found in [17, 23] are also probably related to our class of

solutions. Most if not all possible gaugings can be viewed as arising from a consistent trun-

cation of string/M-theory, and, in those cases, by the very nature of consistent truncations,

any solutions of our gauged supergravity can be claimed to be solutions of string/M-theory.

But we leave a detailed analysis of this issue for further work.

This paper is organized as follows. In section two, we review some standard facts about

four dimensional, N = 2 gauged supergravity, largely to establish notation. In section

three we study Lifshitz solutions, deriving and solving the conditions for supersymmetry.

In section four we repeat this analysis for Schrödinger solutions and N = 2 AdS solutions.

In section five we discuss the lift of these gauged supergravity theories to string/M-theory.

2 Four dimensional N = 2 gauged supergravity

In the rest of the paper we will work in the framework N = 2 gauged supergravity in four

dimensions. We refer to [45, 46] for a detailed description of the formalism.

The fields of N = 2 supergravity are arranged into one graviton multiplet, nv vec-

tor multiplets and nh hyper-multiplets. The graviton multiplet contains the metric, the

graviphoton, A0
µ and an SU(2) doublet of gravitinos of opposite chirality, (ψA

µ , ψµ A), where

A = 1, 2 is an SU(2) index. The vector multiplets consist of a vector, AI
µ,, two spin 1/2

of opposite chirality, transforming as an SU(2) doublet, (λi A, λī
A), and one complex scalar

zi. A = 1, 2 is the SU(2) index, while I and i run on the number of vector multiplets

I = 1, . . . , nV, i = 1, . . . , nV. The scalar fields zi parametrise a special Kähler manifold of

complex dimension nV, MSK. Finally the hypermultiplets contain two spin 1/2 fermions

of opposite chirality, (ζα, ζ
α), and four real scalar fields, qu, where α = 1, . . . 2nH and u =

1, . . . , 4nH. The scalars qu parametrise a quaternionic manifold of real dimension 4nH, MQ.

While in the ungauged N = 2 supergravity the vector- and the hyper-multiplets are

decoupled at the two-derivative level, in the gauged theory they have non trivial interactions

as can be seen from the bosonic Lagrangian

Lbos = −1

2
R+ i(N̄ΛΣF−Λ

µνF−Σµν −NΛΣF+Λ
µνF+Σµν)

+gij̄∇µzi∇µz̄
j̄ + huv∇µqu∇µq

v − V(z, z̄, q) , (2.1)

where Λ,Σ = 0, 1, . . . , nV. The gauge field strengths are defined as

F±Λ
µν =

1

2

(
FΛ

µν ± i

2
ǫµνρσF

Λρσ

)
, (2.2)

with FΛ
µν = 1

2 (∂µA
Λ
ν − ∂νA

Λ
µ). In this notation, A0 is the graviphoton and AΛ, with

Λ = 1, . . . , nV, denote the vectors in the vector multiplets. The period matrix NΛΣ is a

function of the vector multiplet scalars.
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gij̄ and huv are the metrics on the scalar manifolds MSK and MQ, respectively. The

covariant derivatives are defined as

∇µz
i = ∂µz

i + ki
ΛA

Λ
µ , (2.3)

∇µq
u = ∂µq

u + ku
ΛA

Λ
µ , (2.4)

where ki
Λ and ku

Λ are the Killing vectors associated to the isometries of the vector and

hypermultiplet scalar manifold, respectively, that have been gauged.

In general, the gauge group can be at most a (1 + nV)-dimensional subgroup G of the

isometry group of the scalar manifold MSK × MQ. If the subgroup G is non-abelian, it

must necessary involve gaugings of the isometries of the vector multiplet space. In this

paper we will work with abelian gaugings, so the vector multiplets are neutral and G can

be identified with 1 +nV isometries of the quaternionic manifold. The Killing vector fields

which generate these isometries admit a prepotential called the Killing prepotential. This

is a set of real functions P x
Λ , where x = 1, 2, 3 is an adjoint SU(2) index, satisfying

Ωx
uvk

u
Λ = −∇vP

x
Λ , (2.5)

where Ωx
uv and ∇v are the curvature and covariant derivative on MQ (see appendix B for

more details on the Killing prepotentials).

The scalar potential couples the hyper and vector multiplets, and is given by

V(z, z̄, q) = (gij̄k
i
Λk

j̄
Σ + 4huvk

u
Λk

v
Σ)L̄ΛLΣ + (fΛ

i g
ij̄fΣ

j̄ − 3L̄ΛLΣ)Px
ΛPx

Σ , (2.6)

where LΛ are the symplectic sections4 on MSK and fΛ
i = (∂i + 1

2∂iK)LΛ, where K is the

vector multiplet Kähler potential.

The full Lagrangian is invariant under N = 2 supersymmetry, with supersymmetry

variations for the fermionic fields given by

δψµA = DµǫA + iSABγµǫ
B + 2i(ImN )ΛΣL

ΣF−Λ
µν γ

νǫABǫ
B , (2.8)

δλiA = i∇µz
iγµǫA − gif

Σ


(
ImN

)
ΣΛ

F−Λ
µν γ

µνǫABǫB +W iABǫB , (2.9)

δζα = iUBβ
u ∇µq

u γµǫAǫABǫαβ +NA
α ǫA , (2.10)

where UBβ
u are the vielbeine on the quaternionic manifold and

SAB =
i

2
(σx) C

A ǫBCPx
ΛL

Λ ,

W iAB = ǫAB ki
ΛL̄

Λ + i(σx) B
C ǫCAPx

Λg
ij⋆
f̄Λ

j⋆ , (2.11)

NA
α = 2UA

αu k
u
Λ L̄

Λ .

In particular the covariant derivative on the spinors contains a contribution from the

gauge fields

DµǫA = DµǫA +
i

2
(σx) B

A AΛ
µP

x
ΛǫB . (2.12)

4In the paper we will use both the symplectic sections (LΛ, MΛ) and the holomorphic sections

(XΛ
, FΛ) = e

−K/2(LΛ
, MΛ) . (2.7)
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In some cases which we analyse later, the supersymmetry variations are not sufficient

to fully determine the solutions, so we also list here the equations of motions. The Einstein

equation is

Rµν − 1

2
gµνR = Tµν , (2.13)

where the energy momentum tensor is given by

Tµν = −gµν

[
gij̄∇ρzi∇ρz̄

j̄ + huv∇ρqu∇ρq
v + ImNΛΣF

Λ
ρσF

Σρσ − V(z, z̄, q)
]

+2
[
gij̄∇µzi∇ν z̄

j̄ + huv∇µq
u∇νq

v + 2 ImNΛΣF
Λ
µρF

Σρ
ν

]
. (2.14)

The equations of motion for the gauge fields are

∂µ(
√−g Im G−µν

Λ ) = −
√−g

2
(gij̄k

i
Λk

j̄
ΣA

Σν + huvk
u
Λk

v
ΣA

Σν) , (2.15)

with G−µν
Λ = N̄ΛΣF

Λµν .

2.1 The canonical model

Having set up the general machinery, we now specialize to a particularly simple example

of N = 2 gauged supergravity in four dimensions, namely that of one vector multiplet

(nV = 1) and one hypermultiplet (nH = 1). In spite of its simplicity, we will see that

it exhibits a rich spectrum of supersymmetric solutions. In this case we take the scalar

manifold of the theory to be

MSK ×MQ =
SU(1, 1)

U(1)
× SU(2, 1)

SU(2) × U(1)
. (2.16)

The vector multiplet sector contains a single complex scalar and a natural choice of

coordinates on MSK is z = τ , where τ parametrizes the upper-half plane. With this choice,

the Kähler potential and the metric are

K = −3 log
[
i(τ − τ)

]
, (2.17)

ds2 =
3

4

dτdτ̄

(Im τ)2
. (2.18)

The four scalars of the hypermultiplet parametrise MQ. There are several alternative

way to choose coordinates on MQ. In this paper, depending on the model we study, we

will consider the following possibilities

a) two complex coordinates

{qu} ↔ (ζ1, ζ2) . (2.19)

With this parametrisation the metric on MQ becomes

ds2 =
dζ1dζ1 + dζ2dζ2

1 − |ζ2|2 − |ζ2|2
+

(ζ1dζ1 + ζ2dζ2)(ζ1dζ1 + ζ2dζ2)

(1 − |ζ2|2 − |ζ2|2)2
. (2.20)
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b) one complex and two real coordinates5

{qu} ↔ (ξ, ρ, σ) . (2.21)

Then the metric on MQ is

ds2 =
1

4ρ2
(dρ)2 +

1

4ρ2
[dσ − i(ξdξ̄ − ξ̄dξ)]2 +

1

ρ
dξdξ̄ . (2.22)

The N = 2 theory is completely determined only after the gaugings and the sec-

tions (XΛ, FΛ) have been fixed. These may or may not be compatible with a prepotential

F(XΛ) [47], in that FΛ = ∂XΛ
F . Typically, Kaluza-Klein reductions of string or M-theory,

lead to four dimensional effective actions with a prepotential that is a cubic function of the

XΛ, and both electric and magnetic gaugings. Indeed it is by now well established that in-

ternal fluxes can generate magnetic gaugings in the lower dimensional theory. One can keep

both electric and magnetic gaugings by considering Lagrangians where the hypermultiplet

scalars corresponding to the symmetries that are magnetically realised are dualised into ten-

sors (see for instance [48–50]). However, it is always possible to transform a generic dyonic

gauging into a purely electric one, by a symplectic transformation on the sections (XΛ, FΛ)

(XΛ, FΛ) 7→ (X̃Λ, F̃Λ) = S(XΛ, FΛ) , (2.23)

where the matrix

S =

(
A B

C D

)
(2.24)

is an element of Sp(2+2nV,R). This transformation leaves the Kähler potential invariant,

but changes the period matrix NΛΣ by a fractional transformation

NΛΣ(X,F ) 7→ ÑΛΣ(X̃, F̃ ) = (C +DNΛΣ(X,F ))(A +BNΛΣ(X,F ))−1 . (2.25)

Our strategy will then be to consider purely electric gaugings, allowing for sections

(X̃Λ, F̃Λ) which are a general symplectic rotation of those obtained from the cubic prepo-

tential. More precisely we start by choosing a cubic prepotential

F = −X
3
1

X0
, (2.26)

with sections (Λ = 0, 1)

XΛ = (1, τ) ,

FΛ = (τ3,−3τ2) .
(2.27)

5These two co-ordinate systems are related by

ξ =
ζ2

1 + ζ1

, ρ =
1 − |ζ1|

2 − |ζ2|
2

|1 + ζ1|2
, σ =

i(ζ1 − ζ
1
)

|1 + ζ1|2
.
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The period matrix6 in this case takes the form

NΛΣ =
1

2

(
−τ3 − 3τ2τ̄ 3τ(τ + τ̄)

3τ(τ + τ̄) −3(3τ + τ̄)

)
. (2.29)

This choice corresponds to electric gaugings for both the graviphoton and the vector A1.

A dyonic configuration where the graviphoton is electrically gauged and A1 magnetically

will correspond to a symplectic rotation with

S1 =




1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0


 , (2.30)

while the converse case, with a magnetic graviphoton and electric A1, is obtained by setting

S2 =




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1


 . (2.31)

Finally, purely magnetic gaugings correspond to the rotation

S3 =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


 . (2.32)

We will see that these four different cases lead to very different patterns of solutions.

The first and fourth cases, (2.27) and (2.32), allow for families of Lif4(z) vacua, while the

second and third, (2.30) and (2.31), give families of AdS4 and Schr4(z) vacua.

As already mentioned, we only consider abelian gaugings of the hypermultiplet isome-

tries. From (2.16), it is easy to see that the isometry group of the quaternionic manifold is

SU(2, 1). The full set of corresponding Killing vectors and prepotentials are presented in

appendix B. In fact we will just utilize the following three Killing vectors

k3 = − i

2
(−ζ1∂ζ1 + ζ2∂ζ2 − c.c.) ,

k4 = − i

2
(ζ1∂ζ1 + ζ2∂ζ2 − c.c.) ,

k6 =
i

2
[(1 + ζ2

1 )∂ζ1 + ζ1ζ2∂ζ2 − c.c.] .

(2.33)

6When the holomorphic sections are compatible with the existence of a holomorphic prepotential F(X)

such that FΛ = ∂ΛF(X), the gauge kinetic matrix NΛΣ can be written in terms of derivatives of the

prepotential

NΛΣ = F̄ΛΣ + 2i
ImFΛM ImFΣΥXMXΥ

ImFMΥXMXΥ
. (2.28)

where FΛΣ = ∂2

ΛΣF .
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The vector fields (k3, k4) generate compact isometries while k6 is a non-compact generator.

Since the theory contains two vectors, the graviphoton and the vector in the vector

multiplet, we can gauge at most two isometries. We will consider in detail the case of two

compact gaugings, and also the case of one compact and one non-compact gauging:

1. Two compact gaugings

This case is best described choosing complex coordinates, (2.19), for the hypermulti-

plet. We choose the two U(1)’s associated with the Killing vectors k3 and k4, which

correspond to rotations of the phases of the coordinates ζ1 and ζ2. The two gaugings

are defined as

kΛ = aΛ
(−k3 + k4)

2
+ bΛ

(k3 + k4)

2
, (2.34)

where aΛ and bΛ are the electric (magnetic) charges. The corresponding Killing

prepotentials are

Px
Λ = aΛP

x
a + bΛP

x
b , (2.35)

with

Pa =
1

(|ζ1|2 + |ζ2|2)
√

1 − |ζ1|2 − |ζ2|2




−Im (ζ1ζ2)

Re (ζ1ζ2)
−|ζ2|4+|ζ2|2−|ζ1|2(1+|ζ2|2)

2
√

1−|ζ1|2−|ζ2|2


 , (2.36)

Pb =
1

(|ζ1|2 + |ζ2|2)
√

1 − |ζ1|2 − |ζ2|2




Im (ζ1ζ2)

−Re (ζ1ζ2)
−|ζ1|4+|ζ1|2−|ζ2|2(1+|ζ1|2)

2
√

1−|ζ1|2−|ζ2|2


 . (2.37)

2. One compact and one non compact gauging

For this choice, the coordinates (2.21) are more suitable. The compact isometry

corresponds to the sum of the two commuting compact generators k3 and k4

kξ = i(ξ∂ξ − ξ∂ξ) = −(k3 + k4) (2.38)

while the non compact isometry corresponds to shifts of the coordinate σ

kσ = ∂σ = −1

2
k3 +

3

2
k4 − k6 . (2.39)

The corresponding Killing prepotentials are given by

Pσ =




0

0

− 1
2ρ


 Pξ =




ξ+ξ̄√
ρ

ξ̄−ξ
i
√

ρ
|ξ|2
ρ − 1


 . (2.40)

Then we define the generic gauging as

kΛ = aΛkσ + bΛkξ , Λ = 0, 1 , (2.41)

with Killing prepotential

Px
Λ = aΛP

x
σ + bΛP

x
ξ . (2.42)
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As already mentioned in the Introduction, one could a priori also consider gauging two

non compact isometries of the hypermultiplet manifold, (2.16). These can be chosen to be

the shift of the coordinate σ as defined in (2.39) and

k2 =
1

2
[∂ξ + ∂ξ̄ − i(ξ − ξ̄)∂σ] , (2.43)

corresponding to the sum of the Killing vectors k2 and k7 in (B.1). Such gaugings appear

naturally in some dimensional reduction of type IIA theory on coset and Nearly Kähler

manifolds and provide examples of N = 1 AdS vacua [37, 38, 51]. However, we have

found neither interesting supersymmetric Lifshitz and Schrödinger solutions nor N = 2

AdS vacua in the case of two non compact gaugings.

3 Supersymmetric Lifshitz solutions

In this section we compute supersymmetric Lif4(z) solutions of N = 2 gauged supergravity

with one hyper-and one vector multiplet. But before reducing to this simple case, we

consider some general features of Lifshitz solutions which hold for a generic number of

multiplets. A four-dimensional space-time with Lifshitz symmetry of degree z

(t , x , y , r ) → (λz t , λ x , λ y , λ−1 r ) , (3.1)

is given by [2]

ds2 = R2

(
r2zdt2 − dr2

r2
− r2dx2 − r2dy2

)
. (3.2)

In order to preserve the scaling symmetry, all the scalar fields zi and qu must be

constant

zi = zi
0 , qu = qu

0 . (3.3)

The interesting terms in the Lagrangian (2.1) (i.e. setting all fermions and scalar derivatives

to zero) are

− 1

2
R + ImNΛΣF

Λ
µνF

µν Σ + huvk
u
Λk

v
ΣA

ΛAΣ − V(z, z̄, q) . (3.4)

As discussed above we will consider exclusively the case of Abelian gaugings and thus only

the scalars in the hypermultiplets are charged.

We look for solutions where the gauge fields have only temporal component [2, 10]

AΛ
t = rzAΛ , (3.5)

so that the only non trivial component of the gauge field strength is

FΛ
r t =

z

2
AΛrz−1 . (3.6)

Einstein’s equations are then algebraic

ImNΛΣA
ΛAΣ = −(z − 1)

z
R2 , (3.7)
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huvk
u
Λk

v
ΣA

ΛAΣ = (z − 1) , (3.8)

V = −z
2 + z + 4

2R2
, (3.9)

and Maxwell’s equations reduce to

huvk
u
Λk

v
ΣA

Σ = − z

R2
ImNΛΣA

Σ . (3.10)

Notice that not all these equations are independent. By contracting Maxwell’s equations

with AΛ we recover one component of Einstein’s equation. Finally, the equations of motion

for the scalar fields require

∂ziVeff = 0 , ∂quVeff = 0 , (3.11)

where we have defined the effective potential

Veff(z, z̄, q) = V(z, z̄, q) − z2

R4
ImNΛΣA

ΛAΣ +
2

R2
huvk

u
Λk

v
Σ(ζ)AΛAΣ . (3.12)

Due to the nature of our ansatz, we obtain algebraic, not differential, equations for cer-

tain real constants. The number of equations precisely matches the number of unknowns:

we have nV constants AΛ corresponding to the electric profile for each gauge field and nV

constraints from Maxwell’s equations. We have ns = 2nV +4nH constants zi
0 , q

u
0 from each

real scalar zi , qu and ns constraints coming from the derivatives of Veff = 0. We have three

constraints from the Rxx, R00, Rrr components of Einstein’s equation but one of these is im-

plied by tracing over the Maxwell equations. Now since there are two constants in the grav-

ity theory (z,Λ), in total we have nV +ns + 2 equations for the same number of constants.

3.1 Conditions for supersymmetric Lifshitz solutions

3.1.1 The gravitino equation

With the choice of frames

e0 = Rrzdt , e1 = Rrdx , e2 = Rrdy , e3 = R
dr

r
, (3.13)

the 0-,1- and 3-components of the gravitino equation (2.8) are7

γ0∂0ǫA +
i

2R
(σx) B

A AΛP x
Λγ

0ǫB +
z

2R
γ3ǫA − iz

2R2
N ǫABγ

03ǫB + iSABǫ
B = 0 , (3.14)

γ1∂1ǫA +
1

2R
γ3ǫA +

iz

2R2
N ǫABγ

03ǫB + iSABǫ
B = 0 , (3.15)

γ3∂3ǫA − iz

2R2
N ǫABγ

03ǫB + iSABǫ
B = 0 , (3.16)

where we have defined

N ≡ ImNΣΛL
ΛAΣ . (3.17)

7Recall that in our conventions the gauge field configurations entering the supersymmetry variations are

given by (3.5) and (3.6), so that FΛ−

rt = z
4
AΛrz−1 and FΛ−

xy = − iz
4

AΛr2 .
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When z = 1 we recover AdS4-spacetime which requires a separate treatment (see

section 4), here will restrict to the Lifshitz case z > 1. We choose a radial profile for the

supersymmetry parameters8

ǫA = r
a
2 ǫ0A (3.18)

where ǫ0A is a constant spinor. Comparing equations (3.14) and (3.16) we find

i

2R
P x

ΛA
Λ(σx) B

A γ0ǫB =
a− z

2R
γ3ǫA , (3.19)

which by compatibility immediately implies z = a and the constraint

P x
ΛA

Λ = 0 . (3.20)

The remaining gravitino equations now give

ǫA =
4iR

1 + z
SABγ

3ǫB , (3.21)

ǫA = − 2iz

R(z − 1)
Nγ0ǫABǫ

B . (3.22)

There are also some compatibility conditions associated to these projectors. First, by

squaring (3.22) we find

|N |2 =
(z − 1)2R2

4z2
⇒ N = eiθ

(z − 1)R

2z
. (3.23)

The phase eiθ can be reabsorbed with a Kähler transformation in the Lagrangian and we

will set it to one in the following.9

We thus have

ǫA = −iǫABγ
0ǫB . (3.24)

The mutual compatibility of the γ3 and γ0 projections gives

ǫA = H B
A γ30ǫB , (3.25)

with

H B
A =

4R

1 + z
SACǫ

CB ≡ hx(σx) B
A , (3.26)

where

hx =
2R i

1 + z
Px

ΛL
Λ . (3.27)

8A phase in the spinor, ǫA ∼ r
a+if

2 ǫ0A, is forbidden by the simultaneous presence of ǫA and its conjugate

ǫA in the supersymmetry conditions and by the fact that the scalars have no radial profile. An r-dependent

phase in ǫA and in the phase θ, that will be shortly introduced, presumably plays a role in solutions

describing renormalization group flows. We should note indeed the similarity of the Lif4(z) supersymmetry

conditions with analogous ones for black holes [52].
9Such Kähler transformation is equivalent to a redefinition of the sections LΛ. In the search for the most

general solution the sections in (2.27) should be allowed to have an arbitrary overall phase eiθ. However,

we have found no interesting Lifschitz solutions with θ 6= 0.
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By squaring (3.21) and (3.25) we obtain

16R2

(1 + z)2
SABS

BC = δC
A , =⇒

3∑

i=1

|hx|2 = 1 ,

H B
A H C

B = δ C
A , =⇒

3∑

x=1

(hx)2 = 1 . (3.28)

These conditions immediately imply
∑3

i=1(Imh
x)2 = 0 and thus

Im hx = 0 , (3.29)

requiring that hx is a real three-vector of length one. Consequently H B
A is an hermitian

matrix with eigenvalues ±1.

The conditions of supersymmetry are now fully compatible and can be reduced to the

canonical form

ǫ̃A = (σ3)BAγ
0γ3ǫ̃B ,

ǫ̃A = −iǫABγ
0ǫ̃B , (3.30)

by a unitary change of basis, thus demonstrating that any solution would be 1
4 -BPS or,

in other words, preserves two real supercharges. ǭγµǫ gives the Killing vector ∂/∂t as

expected, in agreement with what found in ten-dimensional solutions [17].

3.1.2 The gaugino and hyperino equations

The gaugino equations give

W i ABǫB +
z

R2
N iγ0γ3ǫABǫB = 0 , (3.31)

where

N i ≡ gi j̄ f̄Σ
j̄ ImNΣΛA

Λ , (3.32)

and the gamma matrices can be eliminated using the gravitino conditions to yield
(
− z

R2
N iǫACH B

C +W iAB

)
ǫB = 0 . (3.33)

The hyperino variations give

RNA
α ǫA + iUBβ

u ku
ΛA

ΛǫABǫαβγ
0ǫA = 0 , (3.34)

and, once more, by eliminating the gamma matrices we obtain
(
ǫαβ UAβ

u ku
ΛA

Λ +RNA
α

)
ǫA = 0 . (3.35)

Since the spinors (ǫ1, ǫ2) are independent in a 1
4 -BPS solution, the matrix expressions in

brackets should vanish identically and the hyperino equation becomes

ku
Λ

(
AΛ + 2R L̄Λ

)
= 0 . (3.36)
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3.1.3 Some general properties of the supersymmetry conditions

In total, the full set of conditions for supersymmetric Lifshitz solutions is

3∑

x=1

(hx)2 = 1 , (3.37)

Im hx = 0 , (3.38)

P x
ΛA

Λ = 0 , (3.39)

N =
(z − 1)R

2z
, (3.40)

W iAB =
z

R2
N iǫACH B

C , (3.41)

ku
Λ

(
AΛ + 2R L̄Λ

)
= 0 . (3.42)

A simple way to solve equation (3.42) would be to set AΛ = −2RL̄Λ. Using equa-

tion (3.40), we obtain

− 1

2
ImNΣΛA

ΛAΣ =
z − 1

2z
R2 , (3.43)

which correctly reproduces the equation of motion (3.7). However the condition

ImNΣΛL
ΛL̄Σ ≡ −1/2 , (3.44)

which is valid for all N = 2 supergravities, gives the unphysical value z = −1. We conclude

that, in order to find interesting Lif4(z) solutions, we need to find loci on the hypermultiplet

manifold where the Killing vectors ku
Λ degenerate or become aligned.

In the following we deal with cases where, on the relevant scalar locus, Px
Λ points in

a particular direction in the x space, say the x = 3 direction. Then h1 = h2 = 0 and we

need to require h3 = 1. The full set of gravitino conditions become

P 3
ΛA

Λ = 0 , 2iR P 3
ΛL

Λ = z + 1 ,
2z

R
ImNΣΛL

ΛAΣ = z − 1 . (3.45)

We should also impose the gaugino and hyperino conditions (3.41) and (3.42)

iP 3
Λf̄

Λ
j̄ +

z

R2
ImNΣΛf̄

Λ
j̄ A

Σ = 0 , ku
Λ

(
AΛ + 2R L̄Λ

)
= 0 , (3.46)

and the Maxwell equations (3.10).

3.2 Lif4(z) vacua from canonical gaugings

We now restrict our analysis to the theory with only one vector and one hypermultiplet

and show that there is a Lif4(z) solution in the case of a cubic prepotential with purely

electric gaugings or the case of the symplectic rotation (2.32), which is equivalent to purely

magnetic gaugings. These solutions exist only for z = 2 but with very mild constraints on

the gauging parameters.
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3.2.1 Compact gaugings

We first consider purely electric gaugings. Consider first the hyperino variation (3.42)

[a0(A
0 + 2RL̄0) + a1(A

1 + 2RL̄1)]ζ1 = 0 , (3.47)

[b0(A
0 + 2RL̄0) + b1(A

1 + 2RL̄1)]ζ2 = 0 . (3.48)

As mentioned above, a solution with ζ1 6= 0 and ζ2 6= 0 leads to unphysical values for z.

Similarly the choice ζ1 = ζ2 = 0 does not lead to a solution since all quantities in the

previous formulae are real except for

L(τ) = eK/2(1, τ) , (3.49)

and Im τ = 0 is a singular point of the metric (2.18). We therefore conclude that either

(ζ1, b1) = (0, 0) or (ζ2, a1) = (0, 0). (3.50)

These two choices are clearly symmetric and we choose the latter. On the locus ζ2 = 0 the

only non zero component of the Killing prepotentials is P3
Λ.

From the gravitino conditions (3.45), the gaugino and hyperino conditions (3.46), and

Maxwell’s equation (3.10) we find (with b1 < 0)

A0 = − R√
2(Imτ)3/2

=
432

R2 b31
, (3.51)

A1 = −
2
(
216 b0 − 108 a0 ±

√
11664 a2

0 + R4 b61

)

R2 b41
, (3.52)

Im τ =
R2 b21
72

, (3.53)

Re τ =
A1

A0
, (3.54)

|ζ1|2 =
−a0A0 + b0A0 + b1A1

b0A0 + b1A1
, (3.55)

ζ2 = 0 . (3.56)

The only constraint on the parameters comes from 0 ≤ |ζ1| < 1, which can be satisfied for

a large choice of gauging parameters. We have checked that the second order equations of

motion are all satisfied. The solution found in [17, 23] falls in this class of vacua, which as

we now see exists quite generally for electric gaugings with canonical prepotential.

Similar Lif4(z) solutions also exist if we perform the simultaneous symplectic rotation

(2.32) on A0 and A1, which is equivalent to a cubic prepotential with purely magnetic

gaugings. The sections are now

L(τ) = eK/2(τ3,−3τ2) (3.57)

and we still find a solution for

(ζ1, b1) = (0, 0) or (ζ2, a1) = (0, 0) . (3.58)

– 15 –



J
H
E
P
0
8
(
2
0
1
1
)
0
4
1

Choosing again the second option we find

A0 =
16

R2 b31
, (3.59)

A1 = −2
√

3

b1
, (3.60)

Im τ =
√

3Re τ =
6

R2 b21
, (3.61)

Re τ = −3

4

A0

A1
=

2
√

3

R2 b21
, (3.62)

|ζ1|2 =
−a0A0 + b0A0 + b1A1

b0A0 + b1A1
, (3.63)

ζ2 = 0 , (3.64)

and in addition we have to impose an algebraic relation between the gaugings

a0 =
32 b20 − 8

√
3R2 b0 b

3
1 +R4 b61

32 b0 − 4
√

3R2 b31
. (3.65)

With similar arguments one can check that there are no Lif4(z) solutions with a single

symplectic rotation on justA0, (2.31), or A1, (2.30). In particular, since the SU(3)-invariant

sector of N = 8 gauged supergravity has one electric and one magnetic gauging [39] this

demonstrates that there are no Lif4(z) solutions in this theory.

3.2.2 One non-compact gauging

When one isometry is non compact we obtain almost identical results and thus we will be

brief. The non trivial constraints from the hyperino variation are now (3.42)

[a0(A
0 + 2RL̄0) + a1(A

1 + 2RL̄1)] = 0 , (3.66)

[b0(A
0 + 2RL̄0) + b1(A

1 + 2RL̄1)]ξ = 0 . (3.67)

In the case of electric gaugings with L(τ) = eK/2(1, τ) we can solve the hyperino

equations with ξ = 0 and a1=0. The other equations then require

A0 = − R√
2(Imτ)3/2

= − 54

R2 b31
, (3.68)

A1 =
54 b0
R2 b41

− 1

b1
, (3.69)

Im τ =
R2 b21
18

, (3.70)

Re τ =
A1

A0
= −b0

b1
+
R2 b21
54

, (3.71)

ρ = − a0A0

2(b0A0 + b1A1)
= − 27a0

R2b31
, (3.72)

ξ = 0 . (3.73)
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The case of a double symplectic rotation can appear when studying type IIA solutions

with Roman mass. We have L(τ) = eK/2(τ3,−3τ2), we are still forced to set a1 = 0. The

solution is

A0 = − 2

R2 b31
, (3.74)

A1 =

√
3

b1
, (3.75)

Im τ =
√

3Re τ =
3

2R2b21
, (3.76)

Re τ = −3

4

A0

A1
=

√
3

2R2 b21
, (3.77)

ρ = − a0A0

2(b0 A0 + b1A1)
=

a0

R2b31
, (3.78)

ξ = 0 , (3.79)

with the constraint

b0 =

√
3 − 1

2
R2 b31 . (3.80)

Once again we have found no Lif4(z) solutions with a single symplectic rotation. In all

cases we have checked that the second order equations of motion are satisfied.

4 Supersymmetric AdS4 and Schr4(z) solutions

We discuss now the case of AdS4 and Schr4(z) solutions. We treat them simultaneously

since in our formalism the supersymmetry conditions for N = 2 AdS4 and Schr4(z) are

very similar. We will not discuss N = 1 AdS4 solutions,10 where the conditions for super-

symmetry typically require proportionality between ǫ1 and ǫ2.

4.1 The Schr4 space-time

We first recall the form of a Schr4(z) solution [3, 4]

ds2 = R2

(
r2zdx2

+ − 2r2dx+dx− − dr2

r2
− r2dx2

)
, (4.1)

which is invariant under the scaling symmetry

(x+ , x− , x , r ) → (λz x+ , λ
2−z x− , λ x , λ

−1 r ) . (4.2)

This is a solution of Einstein’s equation with a cosmological constant and a massive vector.

We again set all the scalar fields zi , qu to be constant and we deduce the equations of

motion from the Lagrangian (3.4). The gauge fields are now

AΛ
+ = AΛrz . (4.3)

10Examples of this class of solutions in related contexts can be found in [37–39, 51, 53].
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Einstein’s equation is

2huvk
u
Λk

v
ΣA

ΛAΣ − z2

R2
ImNΛΣA

ΛAΣ = 2z2 − z − 1 , (4.4)

V = − 3

R2
, (4.5)

and Maxwell’s equation is

2huvk
u
Λk

v
ΣA

Σ = −z(z + 1)

R2
ImNΛΣA

Σ . (4.6)

In contrast to the Lifshitz solutions, there is no contribution from the gauge fields to the

potential since FµνF
µν = AµA

µ = 0 and thus we have the scalar equations of motion

∂ziV = 0 , ∂quV = 0 . (4.7)

4.2 Conditions for supersymmetric Schr(z) solutions

It is convenient to work with the null frames

e+ =
1

2
Rrzdx+ , e− = R

(
rzdx+ − 2 r2−zdx−

)
, e2 = Rrdy , e3 = R

dr

r
, (4.8)

so that the metric becomes

ds2 = 2e+e− − (e2)2 − (e3)2 . (4.9)

Chosing a spinor that satisfies

γ+ǫA = 0 , (4.10)

the components of the gravitino equation (2.8) reduce to

∂+ǫA +
i

R
(σx) B

A AΛP x
ΛǫB +

1

2R
γ−3ǫA − izN

R2

(
γ3 + iγ2

)
ǫABǫ

B + iSABγ+ǫ
B = 0 ,

∂−ǫA = 0 ,

∂2ǫA − 1

2R
γ23ǫA − iSABγ

2ǫB = 0 ,

∂3ǫA +
1 − z

2R
γ−+ǫA − iSABγ

3ǫB = 0 . (4.11)

We can solve these conditions with

ǫA = r
2−z
2 ǫ0A (4.12)

and

iSABǫ
B = − 1

2R
γ3ǫA , (4.13)

(σx) B
A AΛP x

ΛǫB =
2zN
R

γ3ǫABǫ
B. (4.14)

Consistency of these equations leads to

(
P x

ΛA
Λ + 2zNP x

ΛL̄
Λ
)
(σx) B

A ǫB = 0. (4.15)
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Since γ+ǫ = 0, the gauge field contribution drops out of the gaugino and hyperino equations

Di ABǫB = 0 , (4.16)

NA
α ǫA = 0. (4.17)

When looking for N = 2 AdS4 and Schr4(z) vacua we will consider the spinors (ǫ1, ǫ2)

as independent. The conditions for supersymmetry are then

iSABǫ
B = − 1

2R
γ3ǫA , (4.18)

P x
ΛA

Λ = −2zNP x
ΛL̄

Λ , (4.19)

P x
Λ f̄

Λ
j̄ = 0 , (4.20)

ku
ΛL̄

Λ = 0 , (4.21)

which should be supplemented by Maxwell’s equation (4.6). The spinor bilinear ǭγµǫ

gives the Killing vector ∂/∂−, associated with the number operator, as also found in

ten-dimensional solutions [16].

The AdS solutions have z = 1 and AΛ = 0. Moreover the condition γ+ǫA = 0 is

superfluous and we have four independent real spinors; to these Poincaré supersymmetries

we need to add the four superconformal ones which depend explicitly on (x, y, t). The AdS

Killing spinors satisfy indeed DµǫA = γµǫA. A class of ten dimensional Schrödinger back-

grounds with z = 2 admit additional Poincaré and also superconformal symmetries [16]; it

would be interesting to see if there is a similar phenomenon in N ≥ 2 gauged supergravities.

4.2.1 Relation between AdS4 and Schr4 vacua

A close relation between AdS and Schr4(z) vacua is expected [7, 11, 14] as has been recently

discussed in great detail [24]. Here we will analyse it at the level of gauged supergravity,

focusing on a theory with a single vector multiplet.

Suppose that we start with an N = 2 AdS4 vacuum satisfying (4.18), (4.20) and (4.21).

These conditions do not depend explicitly on the vector fields AΛ and are identical for the

N = 2 AdS4 and Schr(z)4 cases. Therefore, we would expect that for every N = 2 AdS4

solution there exists a corresponding supersymmetric Schr4(z) one, with the same radius

R and the same value for the scalar fields, provided that the Maxwell’s equations (4.6),

the gravitino constraint (4.19), and the equations of motion can be satisfied for a choice of

AΛ. We now show that under mild conditions, this is the case.

Multiplying Maxwell’s equations (4.6) by LΛ and using the hyperino condition (4.21)

we find z(z + 1)N = 0. Excluding uninteresting solutions with z = 0 or z = −1 we reduce

the gravitino constraint (4.19) to

P x
Λ A

Λ = N = 0 . (4.22)

We see from equation (4.20) that the f̄Λ
ī

have a common phase. Setting

AΛ = cfΛ
i (4.23)
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where c is a complex constant to make AΛ real, we solve all equations in (4.22). The first

equation becomes equivalent to the gaugino condition (4.20) and the second one follows

from the special geometry identity ImNΛΣL
ΛfΣ

i = 0 [45, 46].

Multiplying Maxwell’s equations (4.6) by AΛ and using the identity ImNΛΣf̄
Λ
j̄
fΣ

i =

−1
2gij̄ [45, 46] we find a quadratic equation for z

z2 + z − 4R2gīihuvk
u
Λk

v
Σf

Λ
i f̄

Σ
ī = 0 (4.24)

and so we find a solution with positive z whenever kΛ
u f

Λ
i is non vanishing. This fact has a

simple interpretation. In the N = 2 AdS4 vacuum we have a massless graviphoton and a

massive vector with m2 = 4gīihuvk
u
Λk

v
Σf

Λ
i f̄

Σ
ī

, as it can be easily checked by diagonalizing

the kinetic term in (3.4). The equation for z can be then written as

z(z + 1) = (mR)2 . (4.25)

We see that the exponent z is related to the mass of the vector fields in the corresponding

AdS4 vacuum, as in the original construction in [4]. Finally, the Einstein’s equation (4.4)

will fix the normalization of AΛ (z ≥ 1 is required for consistency).

This demonstrates that under mild conditions, we can associate a supersymmetric

Schrödinger solution to each N = 2 AdS4 vacuum. These results hold for a generic number

of hypermultiplets.

4.3 AdS4 and Schr4 vacua in the canonical model

From the Lagrangians which arise from consistent truncations of M-theory compactifica-

tions on Sasaki-Einstein manifolds [12] one finds N = 2 AdS4 solutions at the origin of mod-

uli space. In our language, these gauged supergravities correspond to the case of a single

symplectic rotation (2.30) with a particular choices of charges. In this section we focus again

on the theory with one vector and one hypermultiplet. We show that in the case of a single

symplectic rotation, (2.30) or (2.31), there are N = 2 AdS4 and Schr4(z) vacua for a large

set of gauging parameters. We found no N = 2 AdS4 or Schr4(z) vacua in the cases of purely

electric gaugings and of a double symplectic rotation, where we found Lif4(z) solutions.

One also finds other interesting N = 2 AdS4 vacua in the SU(3) sector of the N = 8 the-

ory [39, 44] and here we show that these vacua also exist for a very general set of gaugings.

We will discuss in details the case of a symplectic rotated prepotential corresponding

to an electric-magnetic duality on the vector A1. The case where the graviphoton is

rotated is completely analogous.

4.3.1 Compact gaugings

It is still useful to start with the hyperino equation which is just ku
ΛL

Λ = 0, or, explicitly,

[a0L
0(τ) + a1L

1(τ)]ζ1 = 0 , (4.26)

[b0L
0(τ) + b1L

1(τ)]ζ2 = 0 . (4.27)

Now we have L = eK/2(1,−3τ2), corresponding to an electric-magnetic duality on A1.
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We first consider N = 2 AdS4 solutions and find two different such vacua. One is at

the origin of the hypermultiplets ζ1 = ζ2 = 0 and the vector multiplet scalar τ is fixed by

the gaugino variation to be

τ = i

√
a0 − b0
a1 − b1

. (4.28)

The gravitino equation simply sets the scale of R,

1

R2
=

1

2

√
(a0 − b0)(a1 − b1)3 . (4.29)

There is another N = 2 vacuum away from the origin. If we set ζ1 = 0 we can still

solve the hyperino conditions by choosing

τ = i

√
− b0

3b1
. (4.30)

The gaugino condition then fixes

|ζ2|2 =
3 a0 b1 + a1 b0 − 4 b0 b1

3 a0 b1 + a1 b0
, (4.31)

and the gravitino equation simply sets the scale of R

1

R2
=

3
√

3(a1 b0 − a0 b1)
2

32
√

−b30 b1
. (4.32)

There is an equivalent solution with ζ2 = 0.

An example of the model with one magnetic and one electric gauging is the SU(3)-

invariant sector of N = 8 gauged supergravity. The values of the gauging parameters in

the SU(3)-invariant sector can be determined by comparison with reference [39], where

the action has been written as an N = 2 gauged supergravity. They are proportional

to (a0, a1) = (1, 0) and (b0, b1) = (1/2,−
√

3/2).11 The vacua that we found above have

(ζ1, ζ2) = (0, 0) and (ζ1, ζ2) = (0, 1/
√

3) and the ratio of the values of the potential in the

two vacua is equal to 3
√

3/4. These numbers precisely correspond to those for the N = 8

vacuum with SO(8) global symmetry and the IR N = 2 solution with SU(3)×U(1) global

symmetry in the SU(3)-invariant sector of N = 8 gauged supergravity [39]. We see that

the existence of a pair of N = 2 AdS4 vacua is quite general and holds for almost arbitrary

values of the gaugings.

We now consider Schr4(z) solutions. It is obvious from (4.24) that the solution in the

origin, with (ζ1, ζ2) = (0, 0), can only give solutions with AΛ 6= 0 in the unphysical case

z = 0, z = −1. Both vectors fields are in fact massless at the origin. On the other hand, in

the case with ζ1 = 0 and ζ2 given in (4.31), we can find a solution; from (4.23) and (4.24)

we see that

A0 =
3b1
b0
A1 (4.33)

11To compare with the notations in reference [39] we need to perform a further (purely electric) rotation

on the vectors A0 and A1.
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and that z solves the algebraic equation

z2 + z − 4(3 a0 b1 + a1 b0)(3 a0 b1 + a1 b0 − 4b0b1)

3(a1 b0 − a0 b1)2
= 0 . (4.34)

The equations of motion are satisfied and one of them fixes the value of A1. For a large

choice of gauging parameters we can find physical solutions. We note that the charges

corresponding to the SU(3)-invariant sector yield solutions with z = (−2.56, 1.56).

The case of a rotation of the graviphoton is similar and there are analogous solutions.

In the case of a cubic prepotential with electric gaugings or the case of a double electric-

magnetic rotation instead we found no interesting solutions.

4.3.2 One compact and one non compact gauging

The case where one of the isometry is non compact is almost identical and we will be brief.

Again there are N = 2 AdS4 and Schr4(z) solutions for one electric and one magnetic

gauging. We discuss as before the case of an electric-magnetic duality on A1.

There is an N = 2 AdS4 vacuum for ξ = 0 and

τ = i

√
− a0

3a1
, ρ = − 2a0a1

3a1b0 + a0b1
, (4.35)

with radius
1

R2
=

3
√

3(a1 b0 − a0 b1)
2

8
√

−a3
0 a1

. (4.36)

For the same values of the scalar fields there is a Schr4(z) solution with

A0 =
3a1

a0
A1 (4.37)

and z determined by

z2 + z − 4(3 a1 b0 + a0 b1)
2

3(a1 b0 − a0 b1)2
= 0 . (4.38)

The model with one symplectically rotated vector appears in the Lagrangian cor-

responding to the consistent truncation of M-theory compactified on a Sasaki-Einstein

manifold SE7 [12]. The reduction naturally gives a cubic prepotential and a tensor field;

the tensor field can be dualized to the scalar σ with a simultaneous dualization of A1.

With our normalizations, the gaugings are proportional to (a0, a1) = (6
√

2,−2
√

2) and

(b0, b1) = (−
√

2, 0).12 The AdS vacuum has τ = i and ρ = 4 as in [12] and it corre-

sponds to the eleven dimensional background AdS4 × SE7 with N = 2 supersymmetry.

The Schr4(z) solution has z = (−4, 3), where obviously only the value z = 3 is physical,

and corresponds to the eleven dimensional solution found in [11, 15], which is discussed

from the point of view of the four dimensional theory in section 4 of [12].

12Reference [12] uses a different symplectic rotation given in equation (2.38) of the same reference; the

gauging parameters reported above have been correspondingly rotated with respect to those in [12].
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5 Embeddings into string/M-theory

Having established a wide class of supersymmetric solutions in gauged supergravity, the

natural next step is to embed them into string theory or M-theory. The Lifshitz solutions

of section 3 require purely electric or purely magnetic gaugings. One can achieve a purely

electric gauging in a simple way by first reducing IIB on a Sasaki-Einstein five-manifold

(SE5) [54–57] where one obtains N = 4 gauged supergravity with two vector-multiplets.

Then there is a further truncation [54] to an N = 2 theory with just the universal hyper-

multiplet which is gauged electrically under the graviphoton. Dimensional reduction on a

circle, with a linear profile for a hyper-scalar, introduces a further electric gauging. Specif-

ically, suppose we take a hyper-scalar q in five dimensions and then reduce on the circle

ds25 = ds24 + (dσ +A1)
2 (5.1)

q = kσ + q̃ , (5.2)

where q̃ only depends on the co-ordinates of the four-dimensional space-time. It is easy to

see that in four dimensions we obtain a kinetic term for q̃ of the form

L4 ∼ (dq̃ − kA1) ∧ ∗(dq̃ − kA1) , (5.3)

and so q̃ has electric charge k under A1. In this way one can obtain a four dimensional

N = 2 gauged supergravity theory with cubic prepotential and electric gaugings from IIB

on SE5 × S1. The Lif4(z) solutions found in [17] can probably be understood in this way.

As already discussed in section 4, certain gaugings of the form (2.30) arise from

Sasaki-Einstein reductions of M-theory [12] and also in the SU(3)-invariant sector of the

N = 8 theory [39, 44, 53]. This makes it clear that our Schr4(z) solutions can be embedded

into these theories. It would be interesting to precisely establish which solutions of [9–24]

lie within our class of solutions.

From consistent truncation of type IIA on various nearly-Kähler manifolds and

cosets [36–38], one can obtain N = 2 gauged supergravity with the same scalar manifold

we have considered in this work and a rich spectrum of possible electric and magnetic

non-compact gaugings. In the case of purely non compact gaugings we have found no

non-relativistic, supersymmetric solutions. It would be interesting to understand if this

result holds in general for models with non compact isometries, since these arise naturally

in string compactifications.
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A Spinor conventions

Our conventions closely follow [45, 46]. We work with in signature (+−−−). Spinors have

the following properties

γ5ǫA = ǫA , (A.1)

γ5ǫ
A = −ǫA , (A.2)

ǫA = (ǫA)C , (A.3)

where γ5 = −iγ0γ1γ2γ3 and conjugation is defined on a general spinor λ as

λC = γ0C
−1λ∗ , (A.4)

and

CC† = 1, C2 = −1, Ct = −C. (A.5)

The gamma matrices satisfy

γ0 = γ†0 , (A.6)

γi = γ0γ
†
i γ0. (A.7)

B Hypermultiplet scalar manifold

Here we summarize various facts about the hypermultiplet scalar manifold MQ. The eight

Killing vectors are given by [40, 58]

k1 =
1

2i

(
z2∂z1

+ z1∂z2
− c.c.

)
, k2 =

1

2

(
− z2∂z1

+ z1∂z2
+ c.c.

)
,

k3 =
1

2i

(
− z1∂z1

+ z2∂z2
− c.c.

)
, k4 =

1

2i

(
z1∂z1

+ z2∂z2
− c.c.

)
,

k5 =
1

2

(
(−1 + z2

1)∂z1
+ z1z2∂z2

+ c.c.
)
, k6 =

i

2

(
(1 + z2

1)∂z1
+ z1z2∂z2

− c.c.
)
,

k7 =
1

2

(
− z1z2∂z1

+ (1 − z2
2)∂z2

+ c.c.
)
, k8 =

i

2

(
z1z2∂z1

+ (1 + z2
2)∂z2

− c.c.
)
.

(B.1)

All these Killing vectors are real, (k1, k2, k3, k4) generate compact isometries while

(k5, k6, k7, k8) generate non-compact isometries. With the re-definitions

k1 = −iF1 , k2 = −iF2 ,

k3 = −iF3 , k4 =
i√
3
F8 ,

k5 = F4 , k6 = F5 ,

k7 = F6 , k8 = F7 ,

the commutation relations are [Fi, Fj ] = ifijkFk with

f123 = 1, f147 =
1

2
, f156 = −1

2
, f246 =

1

2
, (B.2)
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f257 =
1

2
, f345 =

1

2
, f367 =

1

2
, (B.3)

f458 =

√
3

2
, f678 = −

√
3

2
. (B.4)

Thus we see that (F1, F2, F3) generate SU(2) and F8 generates a commuting U(1).

The Killing prepotentials can be computed from

Ωx
uvk

u
Λ = −∇vP

x
Λ , (B.5)

where

Ωx = J i
mne

m ∧ en, (B.6)

J i are a triplet of complex structures, ei are frames on MQ and ∇v is a covariant derivative

w.r.t. the SU(2)-connection on MQ. The Killing prepotentials are only well defined up to

a local SU(2) transformation. In a particular gauge, the Killing prepotentials associated

to the compact generators are given by (using r2 = |ζ1|2 + |ζ2|2)

P1 =
1

r2
√

1 − r2




Im (ζ2
1 − ζ2

2 )

−Re (ζ2
1 − ζ2

2)
(r2−2)Re (ζ2ζ1)√

1−r2


 , (B.7)

P2 =
1

r2
√

1 − r2




Re (ζ2
1 + ζ2

2 )

Im (ζ2
1 + ζ2

2 )
(r2−2)Im (ζ2ζ1)√

1−r2


 , (B.8)

P3 =
1

r2
√

1 − r2




2Im (ζ1ζ2)

−2Re (ζ1ζ2)
|ζ1|2(2−|ζ1|2)−|ζ2|2(2−|ζ2|2)

2
√

1−r2


 , (B.9)

P4 = −1

2




0

0
r2

1−r2


 , (B.10)

and those associated to the non-compact generators are

P5 =
1√

1 − r2




Re ζ2
Im ζ2
Im ζ1√
1−r2


 , P6 =

1√
1 − r2




Im ζ2
−Re ζ2

Re ζ1√
1−r2


 , (B.11)

P7 =
1√

1 − r2




Re ζ1
Im ζ1
− Im ζ2√

1−r2


 , P8 =

1√
1 − r2



−Im ζ1
Re ζ1
Re ζ2√
1−r2


 . (B.12)
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