
1

Chapter 1

Overview of Embedded
Application Development
for Intel Architecture

Embedded systems, an emerging area of computer technology, combine multiple
technologies, such as computers, semiconductors, microelectronics, and the Internet,
and as a result, are finding ever-increasing application in our modern world. With the
rapid development of computer and communications technologies and the growing use
of the Internet, embedded systems have brought immediate success and widespread
application in the post-PC era, especially as the core components of the Internet of
Things. They penetrate into every corner of modern life from the mundane, such as an
automated home thermostat, to industrial production, such as in robotic automation
in manufacturing. Embedded systems can be found in military and national defense,
healthcare, science, education, and commercial services, and from mobile phones, MP3
players, and PDAs to cars, planes, and missiles.

This chapter provides the concepts, structure, and other basic information about
embedded systems and lays a theoretical foundation for embedded application
development, of which application development for Android OS is becoming the top
interest of developers.

Introduction to Embedded Systems
Since the advent of the first computer, the ENIAC, in 1946, the computer manufacturing
process has gone from vacuum tubes, transistors, integrated circuits, and large-scale
integration (LSI), to very-large-scale integration (VLSI), resulting in computers that are more
compact, powerful, and energy efficient but less expensive (per unit of computing power).

After the advent of microprocessors in the 1970s, the computer-using world
witnessed revolutionary change. Microprocessors are the basis of microcomputers, and
personal computers (PCs) made them more affordable and practical, allowing many
private users to own them. At this stage, computers met a variety of needs: they were
sufficiently versatile to satisfy various demands such as computing, entertainment,
information sharing, and office automation. As the adoption of microcomputers was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81567908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

2

occurring, more people wanted to embed them into specific systems to intelligently
control the environment. For example, microcomputers were used in machine tools in
factories. They were used to control signals and monitor the operating state through the
configuration of peripheral sensors. When microcomputers were embedded into such
environments, they were prototypes of embedded systems.

As the technology advanced, more industries demanded special computer systems.
As a result, the development direction and goals of specialized computer systems for
specific environments and general-purpose computer systems grew apart. The technical
requirement of general-purpose computer systems is fast, massive, and diversified
computing, whereas the goal of technical development is faster computing speed and
larger storage capacity. However, the technical requirement of embedded computer
systems is targeted more toward the intelligent control of targets, whereas the goal of
technical development is embedded performance, control, and reliability closely related
to the target system.

Embedded computing systems evolved in a completely different way. By
emphasizing the characteristics of a particular processor, they turned traditional
electronic systems into modern intelligent electronic systems. Figure 1-1 shows an
embedded computer processor, the Intel Atom N2600 processor, which is 2.2 × 2.2 cm,
alongside a penny.

Figure 1-1. Comparison of an embedded computer chip to a US penny. This chip is an Intel
Atom processor

The emergence of embedded computer systems alongside general-purpose
computer systems is a milestone of modern computer technologies. The comparison of
general-purpose computers and embedded systems is shown in Table 1-1.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

3

Today, embedded systems are an integral part of people’s lives due to their mobility.
As mentioned earlier, they are used everywhere in modern life. Smartphones are a great
example of embedded systems.

Mobile Phones
Mobile equipment, especially smartphones, is the fastest growing embedded sector
in recent years. Many new terms such as extensive embedded development and mobile
development have been derived from mobile software development. Mobile phones not
only are pervasive but also have powerful functions, affordable prices, and diversified
applications. In addition to basic telephone functions, they include, but are not limited to,
integrated PDAs, digital cameras, game consoles, music players, and wearables.

Consumer Electronics and Information Appliances
Consumer electronics and information appliances are additional big application sectors
for embedded systems. Devices that fall into this category include personal mobile
devices and home/entertainment/audiovisual devices.

Personal mobile devices usually include smart handsets such as PDAs, as well
as wireless Internet access equipment like mobile Internet devices (MIDs). In theory,
smartphones are also in this class; but due to their large number, they are listed as a
single sector.

Home/entertainment/audiovisual devices mainly include network television like
interactive television; digital imaging equipment such as digital cameras, digital photo
frames, and video players; digital audio and video devices such as MP3 players and
other portable audio players; and electronic entertainment devices such as handheld
game consoles, PS2 consoles, and so on. Tablet PCs (tablets), one of the newer types of
embedded devices, have become favorites of consumers since Apple released the iPad
in 2010.

The affordability of consumer electronics truly reflects the cost-effectiveness of
embedded system design.

Table 1-1. Comparison of General-Purpose Computers and Embedded Systems

Item General-purpose
computer systems

Embedded systems

Hardware High-performance hardware,
large storage media

Diversified hardware,
single-processor solution

Software Large and sophisticated OS Streamlined, reliable, real-time
systems

Development High-speed, specialized
development team

Broad development sectors

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

4

Definition of an Embedded System
So far, you have a general understanding of embedded systems from the examples given.
But what is the embedded system? Currently, there are different concepts for embedded
system in the industry.

According to the Institution of Engineering and Technology (IET), embedded
systems are devices used to control, monitor, or assist the operation of equipment,
machinery, or plants. Smartphones, as an important sector of embedded systems, have
the following characteristics:

Limited Resources
The majority of embedded systems have extremely limited resources. On one hand,
the resources referred to here are hardware resources, including computing speed and
processing capability of the CPU, size of the available physical memory, and capacity of
the ROM or flash memory that stores code and data. On the other hand, resources are
also the functions provided by the software. Compared with general operating systems,
embedded operating systems have comparatively simple functions and structure.
Embedded systems’ resource constraints lead to designs that are sufficient, instead of
powerful.

Real-Time Performance
The real-time aspect of embedded systems means tasks must usually be executed in
a certain, predictable amount of time, and maximum execution time limits must
be ensured.

Real time is divided into soft real time and hard real time. Soft real time has less-
stringent requirements; even if the time limit cannot be met in some cases, it won’t
have a fatal impact on the system. For example, a media player system is soft real time.
The system is supposed to play 24 frames in one second, but it is also acceptable when the
system fails in some overloaded conditions. Hard real time has strict requirements.
The execution of tasks must be absolutely ensured in all situations; otherwise the
consequences will be catastrophic. For example, aircraft autopilot and navigation system
are hard real-time systems. They must accomplish a specific task within the certain time
limit; otherwise a major accident, collision, or crash could occur.

Many embedded systems (mobile phones, game consoles, and so on) do not need
real-time guarantees. But real time is the key for some embedded systems, such as
a steel-rolling system in a large steel mill and the real-time alarm system in a large
electrical substation. In these applications, the system must respond to a specific
signal at a given time.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

5

Robustness
Some embedded systems require high reliability. Reliability is also known as robustness,
which is the ability to continue operating in abnormal or dangerous situations. For
example, when an embedded system encounters input errors, network overload, or
intentional attacks, the system must be robust enough that it doesn’t hang or crash, but
operates as usual.

Integrated Hardware and Software
General-purpose computers install software dynamically. The software can be installed
and uninstalled according to the users’ demands. But for embedded systems, software
and hardware are often integrated and sold as a package. This trend is shifting for devices
that are always connected via the Internet, such as smartphones and the Internet of
Things (wearables, for example). In these cases, original device manufacturers (ODMs)
can do regular software updates.

Embedded software is usually built into the hardware ROM and runs automatically
when the system is started. Under normal circumstances, the user cannot easily modify
or delete the software without the aid of special tools to ensure the integrity of the
embedded system. Due to the integration of hardware and software, embedded systems
usually do not have the intellectual property rights issues that general computer systems
have to address. For example, software piracy on consumer electronics such as mobile
phones and digital cameras is almost impossible due to the way the software is installed.
However, this feature also leads to slow upgrading of system software, because it is
difficult to do so.

Power Constraints
General-purpose computers are often directly connected to AC power. Therefore,
general-purpose computer hardware and software designers can assume that the power
supply is inexhaustible. But for embedded systems that cannot be directly connected
to AC power—for example, mobile phones, electric toys, and cameras—the only power
source is the battery. This means their power consumption is constrained, and so
energy efficiency is important. Cooling is another key factor. In general, more power
consumption within a certain time period causes more heat to be generated, which can
cause problems in some cases such as battery fires, malfunctioning components due to
overheating, and quick losses of electricity.

Difficult Development and Debugging
Compared to hardware and software development of general-purpose computers,
embedded system development has higher technical requirements. For example,
developers of embedded software often must understand the working principles and
mechanisms of the hardware and hardware layers during the development stage. To
debug the code, these developers often must use online simulations, ROM monitors, and
ROM programming tools, which don’t occur in the desktop development.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

6

Typical Architecture of an Embedded System
Figure 1-2 shows a configuration diagram of a typical embedded system consisting of
two main parts: embedded hardware and embedded software. The embedded hardware
primarily includes the processor, memory, bus, peripheral devices, I/O ports, and various
controllers. The embedded software usually contains the embedded operating system
and various applications.

Embedded system

Application Embedded OS

Software

Hardware

Input Output

Embedded
microprocessor

Peripheral
device

Figure 1-2. Basic architecture of an embedded system

Input and output are characteristics of any open system, and the embedded system
is no exception. In the embedded system, the hardware and software often collaborate
to deal with various input signals from the outside and output the processing results
through some form. The input signal may be an ergonomic device (such as a keyboard,
mouse, or touch screen) or the output of a sensor circuit in another embedded system.
The output may be in the form of sound, light, electricity, or another analog signal, or a
record or file for a database.

Typical Hardware Architecture
The basic computer system components—microprocessor, memory, and input and
output modules—are interconnected by a system bus in order for all the parts to
communicate and execute a program (see Figure 1-3).

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

7

In embedded systems, the microprocessor’s role and function are usually the same
as those of the CPU in a general-purpose computer: control computer operation, execute
instructions, and process data. In many cases, the microprocessor in an embedded
system is also called the CPU. Memory is used to store instructions and data. I/O modules
are responsible for the data exchange between the processor, memory, and external
devices. External devices include secondary storage devices (such as flash and hard disk),
communications equipment, and terminal equipment. The system bus provides data
and controls signal communication and transmission for the processor, memory, and I/O
modules.

There are basically two types of architecture that apply to embedded systems: Von
Neumann architecture and Harvard architecture.

Von Neumann Architecture
Von Neumann architecture (also known as Princeton architecture) was first proposed
by John von Neumann. The most important feature of this architecture is that the
software and data use the same memory: that is, “The program is data, and the data is the
program” (as shown in Figure 1-4).

Main memory

CPU (Microprocessor)

Register System bus

Execution unit

I/O modules

Buffer

External device 1 External device 2

Instruction

Instruction

Data

Data

Figure 1-3. Computer architecture

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

8

In the Von Neumann architecture, an instruction and data share the same bus. In
this architecture, the transmission of information becomes the bottleneck of computer
performance and affects the speed of data processing; so, it is often called the Von
Neumann bottleneck. In reality, cache and branch-prediction technology can effectively
solve this issue.

Harvard Architecture
The Harvard architecture was first named after the Harvard Mark I computer. Compared
with the Von Neumann architecture, a Harvard architecture processor has two
outstanding features. First, instructions and data are stored in two separate memory
modules; instructions and data do not coexist in the same module. Second, two
independent buses are used as dedicated communication paths between the CPU and
memory; there is no connection between the two buses. The Harvard architecture is
shown in Figure 1-5.

Memory

Instruction
Instruction register

Controller

Data channel
Input Output

CPU

Instruction 0

Instruction 1

Instruction 2

Instruction 3

Data

Data 0

Data 1

Data 2

Data 3

Figure 1-4. Von Neumann architecture

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

9

Because the Harvard architecture has separate program memory and data memory,
it can provide greater data-memory bandwidth, making it the ideal choice for digital
signal processing. Most systems designed for digital signal processing (DSP) adopt the
Harvard architecture. The Von Neumann architecture features simple hardware design
and flexible program and data storage and is usually the one chosen for general-purpose
and most embedded systems.

To efficiently perform memory reads/writes, the processor is not directly connected
to the main memory, but to the cache. Commonly, the only difference between the
Harvard architecture and the Von Neumann architecture is single or dual L1 cache. In the
Harvard architecture, the L1 cache is often divided into an instruction cache (I cache) and
a data cache (D cache), but the Von Neumann architecture has a single cache.

Microprocessor Architecture of Embedded Systems
The microprocessor is the core in embedded systems. By installing a microprocessor
into a special circuit board and adding the necessary peripheral circuits and expansion
circuits, a practical embedded system can be created. The microprocessor architecture
determines the instructions, supporting peripheral circuits, and expansion circuits. There
are a wide range of microprocessors: 4-, 8-, 16-, 32-, and 64-bit, with performance from
MHz to GHz, and ranging from a few pins to thousands of pins.

In general, there are two types of embedded microprocessor architecture: reduced
instruction set computer (RISC) and complex instruction set computer (CISC). The RISC
processor uses a small, limited, simple instruction set. Each instruction uses a standard
word length and has a short execution time, which facilitates the optimization of the
instruction pipeline. To compensate for the command functions, the CPU is often
equipped with a large number of general-purpose registers. The CISC processor features

Program memory

Instruction register

Controller

Data channel
Input Output Address

Data

Address

Instruction

CPU

Instruction 0

Instruction 1

Instruction 2

Instruction 3

Data memory

Data 0

Data 1

Data 2

Data 3

Figure 1-5. Harvard architecture

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

10

a powerful instruction set and different instruction lengths, which facilitates the pipelined
execution of instructions. A comparison of RISC and CISC is given in Table 1-2.

Table 1-2. Comparison of RISC and CISC

RISC CISC

Instruction system Simple and efficient instructions.
Realizes uncommon functions
through combined instructions.

Rich instruction system.
Performs specific
functions through special
instructions; handles
special tasks efficiently.

Memory operation Restricts the memory operation
and simplifies the controlling
function.

Has multiple memory
operation instructions and
performs direct operation.

Program Requires a large amount of
memory space for the assembler
and features complex programs
for special functions.

Has a relatively simple
assembler and features
easy and efficient
programming of scientific
computing and complex
operations.

Interruption Responds to an interrupt only at
the proper place in instruction
execution.

Responds to an
interruption only at the end
of execution.

CPU Features fewer unit circuits, small
size, and low power consumption.

Has feature-rich circuit
units, powerful functions, a
large area, and high power
consumption.

Design cycle Features a simple structure, a
compact layout, a short design
cycle, and easy application of new
technologies.

Features a complex
structure and long design
cycle.

Usage Features a simple structure,
regular instructions, simple
control, and easy learning and
application.

Features a complex
structure, powerful
functions, and easy
realization of special
functions.

Application scope Determines the instruction
system per specific areas, which
is more suitable for special
machines.

Becomes more suitable for
general-purpose machines.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

11

RISC and CISC have distinct characteristics and advantages, but the boundaries
between RISC and CISC begin to blur in the microprocessor sector. Many traditional CISCs
absorb RISC advantages and use a RISC-like design. Intel x86 processors are typical of
them. They are considered CISC architecture. These processors translate x86 instructions
into RISC-like instructions through a decoder and comply with the RISC design and
operation to obtain the benefits of RISC architecture and improve internal operation
efficiency. A processor’s internal instruction execution is called micro operation, which is
denoted as micro-OP and abbreviated mu-op (or written m-op or mop). In contrast, the x86
instruction is called macro operation or macro-op. The entire mechanism is shown
in Figure 1-6.

Macro-ops

Processor

Decoder
Micro-ops

(Internal instruction)(x86 instruction)
Execution unit

Execution

result

Figure 1-6. Micro and macro operations of an Intel processor

Normally, a macro operation can be decoded into one or more micro operations to
execute, but sometimes a decoder can combine several macro operations to generate a
micro operation to execute. This process is known as x86 instruction fusion (macro-ops
fusion). For example, the processor can combine the x86 CMP (Compare) instruction and
the x86 JMP (Jump) instruction to produce a single micro operation—the compare and
jump instruction. This combination has obvious benefits: there are fewer instructions,
which indirectly enhances the performance of the processor execution. And the fusion
enables the processor to maximize the parallelism between the instructions and
consequently improve the implementation efficiency of the processor.

Currently, microprocessors used in most embedded systems have five architectures:
RISC, CISC, MIPS, PowerPC, and SuperH. The details follow.

RISC: Advanced RISC Machines (ARM) Architecture
Advanced RISC Machines (ARM) is a generic term for a type of RISC microprocessor.
ARM is designed by the British company ARM Holdings. The company specializes
in the design and development of RISC chips. As a supplier of intellectual property,
the company itself does not manufacture its chips, but licenses its designs to other
partners to produce them. The world’s major semiconductor manufacturers buy ARM
microprocessor cores designed by ARM, add the appropriate external circuits as per
different application sectors, and create their own ARM microprocessor chips.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

12

CISC: x86 Architecture
The x86 series CPUs are the most popular CPUs for desktop PCs. The x86 architecture is
considered CISC. The instruction set was specially developed by Intel for its first 16-bit
CPU (i8086), which was adopted by IBM when it launched the world’s first PC in 1981.
As Intel launched the i80286, i80386, i80486, Pentium, and other products, it continued
to use the x86 instruction set to ensure that legacy applications could be run and protect
and integrate diversified software resources. Therefore, those CPUs are called the x86
architecture.

In addition to Intel, AMD, Cyrix, and other manufacturers have also produced CPUs
based on the x86 instruction set. Those CPUs can run a variety of software developed for
Intel processors, so they are called x86-compatible products in the industry and belong
to the x86 architecture. Intel specifically launched the Intel Atom x86 32-bit processor for
embedded systems. Chapter 2 describes and presents the benefits of the 64-bit Intel Atom
processor, code-named Bay Trail.

Note ■ ia-32, ia-64, intel 64, ia-32, ia-64, and intel64 are intel’s architecture types,
which apply to its processors as well as compatible Cpus.

IA-32 (Intel Architecture-32) means Intel’s 32-bit architecture processor. The
number 32 is the working width of a processor; it can process 32 bits of binary data at
a time. If other processors (for example, the AMD 32-bit CPU) are compatible with this
architecture, they belong to the IA-32 architecture.

IA-64 (Intel Architecture-64) is Intel’s 64-bit architecture. With the 64-bit working
width, its microarchitecture is completely different from the x86 architecture. IA-64 is not
compatible with x86 software, so the x86 software must use various forms of emulation to
run on IA-64, often leading to low efficiency. The architecture is created by HP and
co-developed by HP and Intel. Intel Itanium is a typical IA-64 processor.

Intel64 is a 64-bit x86 architecture with a 64-bit working width. After it was
introduced by AMD, Intel launched a compatible processor named EM64T, officially
renamed Intel64. Almost all Intel CPUs are now Intel64: Xeon, Core, Celeron, Pentium,
and Atom. Contrary to the IA-64 architecture, it can also run x86 instructions.

MIPS Architecture
Microprocessor without Interlocked Piped Stages (MIPS) is also a RISC processor. Its
mechanism is to make full use of the software to avoid data issues in the pipeline. It was
first developed by a research team led by Professor John Hennessy of Stanford University
in the early 1980s and later was commercialized by MIPS Technologies.

Like ARM, MIPS Technologies provides MIPS microprocessor cores to
semiconductor companies through intelligence property (IP) cores and allows them
to further develop embedded microprocessors in the RISC architecture. The core
technology is a multiple-issue capability: split the idle processing units in the processor to
virtualize as another core and improve the utilization of processing units.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

13

PowerPC Architecture
PowerPC is a CPU in the RISC architecture. It derives from the POWER architecture,
and its basic design comes from the IBM PowerPC 601 microprocessor Performance
Optimized with Enhanced RISC (POWER). In the 1990s, IBM, Apple, and Motorola
successfully developed the PowerPC chip and created a PowerPC-based multiprocessor
computer. The PowerPC architecture features scalability, convenience, flexibility, and
openness: it defines an instruction set architecture (ISA), allows anyone to design
and manufacture PowerPC-compatible processors, and freely uses the source code of
software modules developed for PowerPC. PowerPC has a broad range of applications
from mobile phones to game consoles, with wide application in the communications
and networking sectors such as switches, routers, and so on. The Apple Mac series used
PowerPC processors for a decade until Apple switched to the x86 architecture.

SuperH
SuperH (SH) is a highly cost-effective, compact, embedded RISC processor. The
SH architecture was first developed by Hitachi and was owned by Hitachi and ST
Microelectronics. Now it has been taken over by Renesas. SuperH includes the SH-1, SH-
2, SH-DSP, SH-3, SH-3-DSP, SH-4, SH-5, and SH-X series and is widely used in printers,
faxes, multimedia terminals, TV game consoles, set-top boxes, CD-ROM, household
appliances, and other embedded systems.

Typical Structure of an Embedded System
The typical hardware structure of an embedded system is shown in Figure 1-7.
A microprocessor is the center of the system, with storage devices, input and output
peripherals, a power supply, human-computer interaction devices, and other necessary
supporting facilities. In an actual embedded system, the hardware is generally tailor-
made for the application. To save cost, the peripherals may be quite compact, and only
the basic peripheral circuits are retained for the processor and applications.

D/A, A/D Embedded
microprocessor

Universal
interface

I/O ROM

Power supply RAM

Human-computer interaction interface

Figure 1-7. Typical hardware structure of an embedded system

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

14

With the development of integrated circuit design and manufacturing technology,
integrated circuit design has gone from transistor integration, to logic-gate integration,
to the current IP integration or system on chip (SoC). The SoC design technology
integrates popular circuit modules on a single chip. SoC usually contains a large number
of peripheral function modules such as microprocessor/microcontroller, memory, USB
controller, universal asynchronous receiver/transmitter (UART) controller, A/D and D/A
conversion, I2C, and Serial Peripheral Interface (SPI). Figure 1-8 is an example structure
of SoC-based hardware for embedded systems.

MicroprocessorJTAG

SoC

Storage device

Peripheral device

Mouse/keyboard

LCD/touch screen

Network device

Sensor

DA/AD conversion

Flash

ROM

SDRAM

Processor core

MMU Cache

Bus control/
arbitration

USB controller

Power management

Interruption
controller

Memory controllerLCD controller

Clock generator

UART

USB device

SPI

12C

Real-time clock

Timer/PWM

Bridge and DMA

A
H
B
b
u
s

A
H
B
b
u
s

Figure 1-8. Example of an SoC-based hardware system structure

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

15

A system on a programmable chip (SoPC) advocates that an electronic system be
integrated onto a silicon chip with programmable logic technology. Therefore, SoPC
is a special type of SoC, in that the main logic function of the entire system is achieved
by a single chip. Because it is a programmable system, its functions can be changed via
software. It can be said that the SoPC combines the benefits of the SoC, programmable
logic device (PLD), and field-programmable gate array (FPGA).

One of the development directions of embedded system hardware is centered
on SoC/SoPC, where a hardware application system through the minimum external
components and connectors is built to meet the functional requirements of applications.

Typical Software Architecture
Like embedded hardware, embedded software architecture is highly flexible. Simple
embedded software (such as electronic toys, calculators, and so on) may be only a few
thousand lines of code and perform simple input and output functions. On the other
hand, complex embedded systems (such as smartphones, robots, and so on) need
more complex software architecture, similar to desktop computers and servers. Simple
embedded software is suitable for low-performance chip hardware, has very limited
functionality, and requires tedious secondary development. Complex embedded systems
provide more powerful functions, need more convenient interfaces for users, and require
the support of more powerful hardware. With the improvement of hardware integration
and processing capabilities, the hardware bottleneck has gradually loosened and even
broken, so embedded system software now tends to be fully functional and diversified.
Typical, complete embedded system software has the architecture shown in Figure 1-9.

Application Application layer

System service layer

OS layer

Hardware abstraction layer

File system

Bootloader Board support
packages

Device drivers

Hardware

Task managementGUI

OS

Figure 1-9. Software architecture of an embedded system

An embedded software system is composed of four layers, from bottom to top:

1. Hardware abstraction layer

2. Operating system layer

3. System service layer

4. Application layer

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

16

Hardware Abstraction Layer
The hardware abstraction layer (HAL), as a part of the OS, is a software abstraction layer
between the embedded system hardware and OS. In general, the HAL includes the
bootloader, board support package (BSP), device drivers, and other components. Similar
to the BIOS in PCs, the bootloader is a program that runs before the OS kernel executes. It
completes the initialization of the hardware, establishes the image of memory space, and
consequently enables the hardware and software environment to reach an appropriate
state for the final scheduling of the system kernel. From the perspective of end users,
the bootloader is used to load the OS. The BSP achieves the abstraction of the hardware
operation, empowering the OS to be independent from the hardware and enabling the OS
to run on different hardware architectures.

A unique BSP must be created for each OS. For example, Wind River VxWorks BSP
and Microsoft Windows CE BSP have similar functions for an embedded hardware
development board, but they feature completely different architectures and interfaces.
The concept of a BSP is rarely mentioned when various desktop Windows or Linux
operating systems are discussed, because all PCs adopt the unified Intel architecture;
the OS may be easily migrated to diversified Intel architecture-based devices without
any changes. The BSP is a unique software module in embedded systems. In addition,
device drivers enable the OS to shield the differences between hardware components and
peripherals and provide a unified software interface for operating hardware.

Operating System Layer
An OS is a software system for uniformly managing hardware resources. It abstracts
many hardware functions and provides them to applications in the form of services.
Scheduling, files synchronization, and networking are the most common services
provided by the OS. Operating systems are widely used in most desktop and embedded
systems. In embedded systems, the OS has its own unique characteristics: stability,
customization, modularity, and real-time processing.

The common embedded OS contains embedded Linux, Windows CE, VxWorks,
MeeGo, Tizen, Android, Ubuntu, and some operating systems used in specific fields.
Embedded Linux is a general Linux kernel tailored, customized, and modified for mobile
and embedded products. Windows CE is a customizable embedded OS that Microsoft
launched for a variety of embedded systems and products. VxWorks, an embedded real-
time operating system (RTOS) from Wind River, supports PowerPC, 68K, CPU32, SPARC,
I960, x86, ARM, and MIPS. With outstanding real-time and reliable features, it is widely
used in communications, military, aerospace, aviation, and other areas that require
highly sophisticated, real-time technologies. In particular, VxWorks is used in the Mars
probes by NASA.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

17

System Service Layer
The system service layer is the service interface that the OS provides to the application.
Using this interface, applications can access various services provided by the OS. To some
extent, it plays the role of a link between the OS and applications. This layer generally
includes the file system, graphical user interface (GUI), task manager, and so on. A GUI
library provides the application with various GUI programming interfaces, which enables
the application to interact with users through application windows, menus, dialog boxes,
and other graphic forms instead of a command line.

Application Layer
The application, located at the top level of the software hierarchy, implements the system
functionality and business logic. From a functional perspective, all levels of modules in the
application aim to perform system functions. From a system perspective, each application
is a separate OS process. Typically, applications run in the less-privileged processor mode
and use the API system schedule provided by the OS to interact with the OS.

Special Difficulties of Embedded Application
Development
As mentioned earlier in this chapter, embedded systems are generally resource
constrained, real time, and robust. These characteristics make application development
on embedded systems more difficult than development on general-purpose computers.

The resource-constrained nature of embedded systems means they have fewer
resources, lower CPU operation speed and processing, and less RAM than general-
purpose systems. Embedded systems store code and data in ROM or flash instead of on
hard drives and have less capacity than hard disks. Most dedicated-purpose embedded
systems, especially embedded operating systems, also feature very simple functions
compared to general-purpose computers. These resource constraints require developers
of embedded hardware to select more rational configurations for chips and peripherals.
They must consider resource utilization more carefully than they would when developing
for the desktop environment.

The embedded interaction poses special requirements for application development.
General desktop computers use the GUI windows, icons, menus, and pointers (WIMP),
including common interactive elements such as buttons, toolbars, and dialog boxes.
WIMP has strict requirements for interactive hardware; for example, it requires the
display to be a certain resolution and size, and the mouse or similar devices must support
the pointing operation. However, the interactive hardware of many embedded systems
does not meet WIMP’s requirements. For example, an MP3 player’s display is too small,
with inadequate resolution; ABS has no display; and most embedded systems do not have
a mouse or touch screen to complete the pointing operation (for example, basic mobile
phones do not have touch screens). Because the interaction for embedded applications is
very special, we cannot completely adopt the WIMP interface.

Chapter 1 ■ Overview Of embedded appliCatiOn develOpment fOr intel arChiteCture

18

The special user experience and reliability features of embedded systems add to the
difficulty of the application development. For example, users expect the startup time for
embedded systems to be much shorter than for general-purpose computers. Compared
with general-purpose computer systems, it is also more difficult for embedded systems
to ensure reliability. When a task problem occurs, embedded systems do not have the
Task Manager, Kill command, or similar tools to terminate the faulty process. Obviously,
embedded systems have less tolerance for errors than general systems.

Embedded systems generally do not support native code development. Software
development on general-purpose computers usually has native development, compiling,
and operation. It is not suitable for embedded systems because they do not have enough
resources to run development and debugging tools. Therefore, embedded system
software usually uses cross-compile development, which generates execution code on
another hardware platform.

The cross-compile development environment is built on the host, whereas the
embedded system is called the target machine. The cross-compile, assemble, and link
tools on the host create the executable binary code, which is not executable on the host:
only on the target machine. The executable file is downloaded to the target machine. The
development environment on the host doesn’t completely reflect the environment on
the target machine, so debugging and fault diagnosis of the target machine can be time
consuming. The nonnative development model of embedded systems leads to certain
challenges for application development.

Summary
This chapter discussed principles for embedded systems, the architecture of SoC, and
some pros and cons of platforms such as ARM and x86/x64. Application developers for
PCs often ignore the hardware and focus completely on their software, because the two
entities are quite independent. However, developers cannot ignore embedded system
hardware. Due to the unique features of SoC, constrained resources, and integration
of hardware and software, developers need to understand the working principles and
mechanisms of the hardware and hardware layers in order to design efficient applications
for the SoC (for example, ARM and x86 have different hardware). The next chapter
presents a detailed discussion on the Intel embedded hardware platform including the
Intel Atom processor, the Intel embedded chipset, SoC, and the reference platform.

	Chapter 1: Overview of Embedded Application Development for Intel Architecture
	Introduction to Embedded Systems
	Mobile Phones
	Consumer Electronics and Information Appliances

	Definition of an Embedded System
	Limited Resources
	Real-Time Performance
	Robustness
	Integrated Hardware and Software
	Power Constraints
	Difficult Development and Debugging

	Typical Architecture of an Embedded System
	Typical Hardware Architecture
	Von Neumann Architecture
	Harvard Architecture

	Microprocessor Architecture of Embedded Systems
	RISC: Advanced RISC Machines (ARM) Architecture
	CISC: x86 Architecture
	MIPS Architecture
	PowerPC Architecture
	SuperH
	Typical Structure of an Embedded System

	Typical Software Architecture
	Hardware Abstraction Layer
	Operating System Layer
	System Service Layer
	Application Layer

	Special Difficulties of Embedded Application Development
	Summary

