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1 Introduction

String theory provides a very nice way of realizing solutions to the self-dual Yang-Mills

equations, through the low energy dynamics of Dp/D(p + 4)-brane system. One of the

most remarkable results in [1–3] is that the space of vacua of the worldvolume theory on a

stack of Dp-brane is shown to be isomorphic to the space of solutions generated by so-called

ADHM construction [4].

In the work [5] by Tong and Wong, the ADHM construction for the self-dual instanton

solutions in 5d gauge theories was generalized to include additional charged line defects

whose quantization gives rise to BPS Wilson loops in the gauge theories. It was found

that the line defects admit a brane realization, originally proposed in [6], and interactions

between the instantonic particles and the defects can be described by one-dimensional

N = 4 gauged quantum mechanics (QM) on the branes. In coupling the line defects,

the D0-D4 system for the self-dual instantons was modified by adding an extra D4′-brane

which intersects with the primary stack of D4-branes at a point on the spatial R4. New

strings stretched between the original D0-D4 system and the new D4′-brane provide extra

supermultiplets, as discussed in [7] in the T-dual theory, in the standard ADHM QM. In

particular, the D4-D4′ strings give rise to fermionic degrees of freedom. It was thus argued

in [5, 6] that the path integral involving this fermionic Fock space becomes a generating

function of half-BPS Wilson loops in anti-symmetric tensor representations. This will be

reviewed in section 2.

In this note we will calculate the partition functions of the 5d gauge theories with

the 1d line defects on S1 × R4. They can be interpreted as Witten indices, or generalized

Witten indices with suitable chemical potentials turned on, counting degeneracies of BPS

particles interacting with the defects. On the instanton background, the path integral

of the 5d theories boils down to the Witten index computation in the modified ADHM

quantum mechanics in [5]. The Witten indices of supersymmetric quantum mechanics has
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been extensively studied in [8–10]. We will use these results to compute the partition

functions of our 1d/5d coupled systems. As discussed, those partition functions (or Witten

indices) are expected to be generating functions of BPS Wilson loops in anti-symmetric

representations. The main purpose of this note is to show this property, i.e. (2.3), explicitly.

We will verify that the partition function is indeed a polynomial of degree N in the

fugacity x characterizing the fermion excitations, which naively seems not to be the case due

to superficial singularities of x in its integral expression. Proper treatment of the integration

contour, basically instructed by Jeffrey-Kirwan (JK) residue prescription in [11], removes

all possible singularities. We will prove this for 5d N = 1 SQCD theories and N = 1∗

theories with U(N) gauge group.

We will show that the partition function with the 1d defects obeys a certain func-

tional difference equation which has an intimate connection to a generalization of Baxter

T-Q equation determining the spectrum of the quantum integrable system associated to

Seiberg-Witten geometry of the 5d gauge theories. It also turns out that the partition func-

tion coincides with the 5d version of the qq-character introduced recently by N. Nekrasov

in [12, 13] and the difference equation can be interpreted as a generalized Dyson-Schwinger

equation in the SUSY gauge theory.

Note added. While we are writing this paper, we became aware of the related pre-

prints [13–15] where the regularity of the qq-character was explained using different ap-

proaches.

2 ADHM with Wilson lines

Here we briefly review the ADHM construction of the self-dual U(N) gauge connection in

the presence of 1d line defects, i.e. heavy fermionic particles. For more information see [5].

Without the defects, an explicit description of the self-dual k instantons in the 5d

maximal super Yang-Mills theory is available in the form of a 1d gauged quantum mechanics

living on k D0-branes bound to N D4-branes. The quantum mechanics has U(k) gauge

symmetry for the D0-branes and U(N) flavor symmetry for the D4-branes. Let us consider

N D4-branes separated along one of their transverse directions, say x9 direction. This

theory has SO(4)1 ∼ SU(2)L1 × SU(2)R1 global symmetry rotating the R4 spatial directions

of the D4-branes x1,2,3,4, and also SO(4)2 ∼ SU(2)L2 × SU(2)R2 global symmetry rotating

the four transverse directions to the D4-branes x5,6,7,8. The self-dual instantons in the 5d

gauge theory preserve 8 supersymmetries. We write them as Qaα̇ and Qȧα̇ where α̇, α, ȧ, a

denote the indices for the SU(2)L1 ×SU(2)R1 ×SU(2)L2 ×SU(2)R2 symmetry respectively. The

field content of the quantum mechanics can be read off from the brane configuration. The

fields and their charges are summarized in table 1 in terms of N = 4 supermultiplets. The

Higgs branch of this theory is parametrized by the hypermultiplet scalar fields Zαα̇ and

ωα̇, called ADHM data, subject to the D-term and superpotential constraints. It coincides

with the moduli space of k instantons.

We now couple the 1d fermionic degrees of freedom to the bulk 5d gauge theory in

such a way to preserve half of the supercharges. So it becomes a half-BPS line defect from
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Multiplet Field U(k) U(N) Multiplet Field U(k) U(N)

Vector At, ϕ, λ
ȧ
α̇ adj 1 (Twisted-)Hyper Y aȧ, λaα̇ adj 1

Hyper Zαα̇, λ
ȧ
α adj 1 Fermi λaα adj 1

Hyper ωα̇, ψ
ȧ k N̄ Fermi ψa k N̄

Table 1. N = 4 supermultiplets of k instantons.

the 5d field theory point of view. The action for the 1d fermion fields χ coupled to the 5d

bulk fields is given by

S1d =

∫
dt χ†(∂t − iAt + Φ +M)χ , (2.1)

where At and Φ are the pullbacks of the gauge and scalar fields in the 5d vector multiplet.

M is the real mass parameter of the fermions, or the background gauge field for the U(1)

global symmetry acting only on χ. We focus on the case with χ in the fundamental

representation of the U(N) gauge group.

The coupling a gauge theory to such 1d fermionic degrees of freedom is a classical way

to define a BPS Wilson loop. The Fock space of the 1d fermions contains the BPS Wilson

loops in representations. Let us insert these 1d fermions into the path integral as

Z1d/5d(M) =

∫
DΨDχ ei(S5d[Ψ]+S1d[Ψ,χ,M ]), (2.2)

where Ψ stands for the 5d fields. If we take L excitations of the fermions χ, it inserts a BPS

Wilson loop in the L-th anti-symmetric representation into the bare partition function [6].

So, the path integral can be schematically written as a polynomial of the fugacity x ≡ eM
counting the number of χ excitations.1

Z1d/5d(x) = x−N/2
N∑
k=0

(−x)kWΛk , (2.3)

where Λk denotes the k-th anti-symmetric representation and the corresponding Wilson

loop is defined as

WR = TrR P exp

[
i

∫
dt (At + iΦ)

]
with R = Λk. (2.4)

Therefore the partition function of the 1d/5d system gives rise to the generating function

of BPS Wilson loops in anti-symmetric tensor representations of the gauge group.

This 1d/5d coupled system admits a brane realization which was first proposed in [6].

In the Type IIA string theory, we consider an additional D4′-brane along x5,6,7,8 and

time directions. Then the quantization of the string mode stretched between the primary

1There could be a global anomaly for the overall U(1) ⊂ U(N) arising from the contribution of the 1d

fermions. Under the large gauge transformation the partition function changes as Z → −Z, which can

be seen from the 1-loop contribution (3.6) of the 1d fermions. However, this anomaly is canceled by the

induced 1d Chern-Simons term at half-integral level in the our brane system [16]. The author thanks Jaume

Gomis for pointing out this issue.
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Multiplet Field U(k) U(N)

(Twisted-)Hyper (ω′)ȧ, ψ′
α̇ k 1

Fermi ψ′
α k 1

Fermi χ 1 N

Table 2. Additional multiplets due to coupling to the 1d fermions.

stack of N D4-branes and the other orthogonal D4′-brane will introduce a set of fermionic

particles in the worldvolume theory on the D4-branes. They transform as the fundamental

representation of the U(N) gauge group. The fermionic degrees of freedom is stuck at the

R4 origin and it has a real mass deformation parameter associated to the relative distance

of D4- and D4′-branes along x9-direction.

When the instantons are coupled to and move around the fermionic degrees of freedom,

they feel a Lorentz force proportional to the self-dual gauge connection. For the review of

the construction for such self-dual connection and also for the derivation of the low energy

effective action on the instanton moduli space in the presence of the fermionic particles,

see [5] and references therein. We will here review for later computation only the additional

field content which are added to the instanton quantum mechanics when coupled to the 1d

fermions.

There are now extra fields in the 1d gauged quantum mechanics coming from the

strings connecting D0- and D4′-branes and also from the strings between D4- and D4′-

branes. These fields are listed in table 2. The fields ω′, ψ′ arise from D0-D4′ strings and

the fields χ are from D4-D4′ strings. The twisted hypermultiplet here means that its matter

content is the same as the standard hypermultiplet, but SU(2)L1 and SU(2)L2 charges are

exchanged. The interaction Lagrangian for these fields was also given in [5, 7].

3 Partition functions

We now consider a supersymmetric partition function of the 5d gauge theory on S1 ×
R4. We turn on the Omega deformation parameters ε1, ε2 introduced in [17] for the R4

rotations and also mass parameters ma for the flavor symmetries. This partition function

can be computed exactly using supersymmetric localization technique. The result was

given in [17, 18].

The partition function after localization takes the form of Z = Zpert ·Zinst, where Zpert

is the perturbative part involving the classical and 1-loop contributions and Zinst is the

instanton contribution. The 1-loop contributions for the vector multiplet and fundamental

hypermultiplets are given by

Zvector
1-loop = (pq; p, q)N∞

N∏
i 6=j

(pqzi/zj ; p, q)∞ , Zhyper
1-loop =

N∏
i=1

Nf∏
a=1

(
√
pqzi/wa; p, q)

−1
∞ , (3.1)

where (x; p, q)∞ ≡
∏∞
i,j=0(1− xpiqj). We defined various fugacities as p = e−ε1 , q = e−ε2 ,

wa = ema , and zi = eai are the gauge holonomies.
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The instanton contribution takes the form of the instanton series expansion as Zinst =∑∞
k=0 q

kZk with the fugacity q for instanton numbers. Zk is the k instanton partition

function and it can be obtained from the partition function (or Witten index) of the

1d quantum mechanics for k instantons reviewed in the previous section. The partition

function of the ADHM quantum mechanics was extensively studied recently in [8]. We

shall review only essential ingredients for our later computation.

It is convenient to first decompose the N = 4 multiplets in the ADHM QM into

N = 2 multiplets and compute contributions from all the N = 2 multiplets. Chiral and

fermi multiplets in representation R of the U(k) gauge group contribute to the partition

function as

Zchiral =
∏
ρ∈R

2 sinh

(
ρ(φ) + 2ε+J + 2ε−J̃ +maFa

2

)−1

,

Z fermi =
∏
ρ∈R

2 sinh

(
ρ(φ) + 2ε+J + 2ε−J̃ +maFa

2

)
, (3.2)

where J is the Cartan generator of the diagonal rotation of SU(2)L1 × SU(2)L2 and J̃ is the

Cartan generator of SU(2)R2 , and Fa are the global symmetry generators. φ is the U(k)

gauge holonomy and ε± ≡ ε1±ε2
2 . The N = 2 vector multiplet contribution is the same as a

fermi multiplet contribution. Collecting all contributions we can compute the k instanton

partition function with and without the line defect.

In the absence of the BPS line defect, the k instanton partition function takes the form

of a contour integral expression [17, 19]:

Zk(a,m; ε1,2) =
1

k!

∮ [
dφI
2πi

]
Zvector
k (φ, a; ε1,2) · Zadj

k (φ, a,m; ε1,2) ,

Zvec
k (φ, a; ε1,2) =

k∏
I,J=1

sinh′ φIJ2 sinh φIJ+2ε+
2

sinh φIJ+ε1
2 sinh φIJ+ε2

2

×
k∏
I=1

N∏
i=1

1

2 sinh φI−ai±ε+
2

,

Zadj
k (φ, a,m; ε1,2) =

k∏
I,J=1

sinh φIJ±m−ε−
2

sinh φIJ±m−ε+
2

×
k∏
I=1

N∏
i=1

sinh
φI − ai ±m

2
. (3.3)

Here the prime on the hyperbolic sine indicates that sinh(x) is omitted when x = 0.

Zvec
k is the contribution from the ADHM fields corresponding to the 5d vector multiplet

contribution and Zadj
k is the contribution from the 5d adjoint hypermultiplet with a mass m.

This contour integral over the U(k) gauge holonomy φI should be carefully evaluated.

It is shown in [8–10] that the correct contour choice is given by using Jeffrey-Kirwan (JK)

prescription first introduced in [11] and derived later in [20, 21] for 2d elliptic genera. It

turns out that the poles picked up by the JK prescription are classified by so-called N -

colored Young diagrams. This agrees with the pole prescription in [17]. The extra poles

provided by the adjoint hypermultiplet contribution yield zero residues and thus only the

poles from the standard ADHM fields contribute to the contour integral. See [8] for more

detailed explanation.
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Combining all the nonzero residues, the k instanton partition for a given N -tuple

Young diagrams ~Y = {Y1, Y2, · · · , YN} becomes [22]

Z inst
k =

∑
|~Y |=k

N∏
i,j=1

∏
s∈Yi

sinh
Eij(s)+m−ε+

2 sinh
Eij(s)−m−ε+

2

sinh
Eij(s)

2 sinh
Eij(s)−2ε+

2

, (3.4)

where |~Y | denotes the total number of boxes in ~Y and

Eij(s) = ai − aj − ε2hi(s) + ε1
(
vj(s) + 1

)
. (3.5)

hi(s) and vj(s) are the distance from the position s to the right and bottom ends of i-th

and j-th Young diagrams, respectively.

The insertion of the 1d fermions induces additional multiplets into the quantum me-

chanics listed in table 2. We compute the contribution from these extra multiplets as

Z1d
k (φ, a,M ; ε1,2) =

N∏
i=1

2 sinh
ai −M

2
×

k∏
I=1

sinh φI−M±ε−
2

sinh φI−M±ε+
2

. (3.6)

The full partition function including the contribution from the line defect with mass M is

Z1d/5d = Zvector
1-loopZ

adj
1-loop · Z

1d/5d
inst ,

Z
1d/5d
inst =

∞∑
k=0

qk
1

k!

∮ [
dφI
2πi

]
Zvector
k (φ, a) · Zadj

k (φ, a,m) · Z1d
k (φ, a,M) . (3.7)

The partition function with the 1d fermionic degrees of freedom is a degree N polyno-

mial of the fugacity x = eM , following the discussion in the previous section. The coefficient

of xL in this polynomial is the Wilson loop partition function in the rank L anti-symmetric

representation of the U(N) gauge group. However, one may notice that the line defect

contribution (3.6) in the contour integral contains the numerator factors which depend on

the line defect mass M , so the partition function naively becomes an infinite series in x

when we Laurent expand it around large x. It is thus highly nontrivial to check whether the

partition function indeed becomes a finite polynomial in x as required for being physically

consistent partition function. We will prove in the following sections that the partition

function is a polynomial of degree N in x when we take into account the proper contour

choice basically determined by the JK prescription.

4 N = 1 U(N) theories

We first discuss the pure SYM theory with U(N) gauge group. This theory arises from

the maximal SYM theory at the energy scale much lower than the adjoint hypermultiplet

mass m. We will insert the BPS line defects discussed above into this theory and compute

the partition function.

We can compute the partition function of the pure SYM theory by taking the limit

m → ∞ of the N = 1∗ partition function computed in the previous section. At large m,
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the instanton partition function in (3.7) reduces to

Z
Nf=0
inst =

∞∑
k=0

qk
1

k!

∮ [
dφI
2πi

]
Zvector
k (φ, a) · Z1d

k (φ, a,M) . (4.1)

In this limit, as expected, the adjoint hypermultiplet contribution is truncated and we end

up with the partition function of the pure SYM theory with the 1d fermions.

Let us now evaluate the contour integral and also prove that the partition function of

the 1d/5d coupled system is a finite polynomial in the fugacity x. To perform the contour

integral over k holonomy variables φI , we first need to discuss relevant poles which we

should pick up following the JK residue rule. It was observed in [8] that when we align

a reference charge vector η for the U(1)k ⊂ U(k) gauge group with Fayet-Iliopoulous (FI)

parameter ζ and choose ζ > 0, we should pick up the k poles from chiral multiplets with

non-degenerate charge vectors QI if they satisfy the following constraint:

η = (1, 1, · · · , 1) =

k∑
I=1

aIQI , (4.2)

where aI(> 0) are certain positive integer numbers. Here the pole and the corresponding

charge vector Q are determined by the following equation:

Q(φ) + ε+ + · · · = 0 , (4.3)

if it comes from a chiral multiplet in a N = 4 hypermultiplet, or

Q(φ)− ε+ + · · · = 0 , (4.4)

if it comes from a chiral multiplet in a N = 4 twisted hypermultiplet. By summing over

all possible poles φ∗, we can write the instanton partition function as

Z
Nf=0
inst =

∞∑
k=0

qk
1

k!

∑
φ∗

JK-Resφ∗(Q∗, η)Zvector
k · Z1d

k , (4.5)

where the JK residue at the given poles is defined as [11]

JK-Resφ∗(Q∗, η)
dkφ

QI1(φ) · · ·QIk(φ)
=

{
| det(QI1 , · · · , QIk)|−1 if η ∈ Cone(QI1 , · · · , QIk)

0 otherwise

(4.6)

‘Cone’ denotes the cone formed by the k non-degenerate QI ’s. We also note that there is

no subtle wall-crossing issue in our problem since the poles at infinity have zero residue.

For our U(k) gauged quantum mechanics without the extra fields arising from the

1d defect in table 2, the JK prescription reproduces the Young diagram sum rule of the

instanton partition function given in [17]. One can show that the poles having nonzero JK

residue can be specified by the N -colored Young diagrams ~Y = {Y1, Y2, · · · , YN} with total

size k [8]. Namely, the k poles satisfy

φI = ai + ε+ − rε1 − sε2 with (r, s) ∈ Yi . (4.7)

– 7 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
9

When the extra fields are inserted, their contribution Z1d
k develops additional poles in

the contour integral. The JK pole prescription implies that we should pick up the extra

poles obeying the equation

φI −M − ε+ = 0 , (4.8)

as well as the poles coming from the original ADHM fields. We find that these extra poles

give nonzero contribution to the partition function. Thus the Young diagram sum rule

breaks down, by the JK prescription, when the 1d defect contribution is inserted. This

fact is crucial to make the partition function be a finite polynomial in x.

We also notice that we can in fact pick up at most only one pole of the form (4.8)

among k integral variables φI . Namely, once we choose a pole at φ1 = M + ε+, then the

other poles for k−1 variables (φ2, φ3, · · · , φk) should be chosen within the Young tableaux

classification given in (4.7) with |~Y | = k − 1. One can simply prove this as follows.

We can pick up the first pole at φ1 = M + ε+ and try to pick up the second pole at

φ2 −M − ε+ = 0 or φ2 − φ1 + ε1 = 0, or φ2 − φ1 + ε2 = 0. However, these trial second

poles are absent after the first contour integral for φ1 because they are all canceled by the

zeros at φ1 − φ2 = 0 and at φ2 −M ± ε− = 0 in the numerator factors. Therefore, the

second and the other poles should be independent of M and φ1, and should be taken only

from the Young diagram with size k− 1. The pole of the form (4.8) can be chosen at most

only once.

Now we are ready to show that the partition function Z1d/5d in (4.5) is a degree N

polynomial in the fugacity x. The main idea is to first show that the partition function

has no pole of x and then study asymptotics of the partition function. For convenience,

we assume that the k-th contour includes the poles from Z1d
k as well as the poles in ~Y and

the other k−1 contours enclose the poles only in ~Y .

The residues at the poles in ~Y can have singularities at

M = ai − rε1 − sε2 , M = ai − (r − 1)ε1 − (s− 1)ε2 ,

and zeros at

M = ai − (r − 1)ε1 − sε2 , M = ai − rε1 − (s− 1)ε2 , (and M = ai) ,

for a given (r, s) ∈ Yi. A simple algebra can show that most singularities are canceled by

the zeros and the remaining poles are located at each convex corner in the Yi. Also all the

poles turn out to be non-degenerate.

Suppose that the last k-th contour integral may lead to a simple pole for M corre-

sponding to (l,m) denoting a box located at one of the convex corners in ~Yconvex. Any pole

after the contour integral can arise when the integration contour is pinched by two poles

in the integrand. There are only two sets of poles which can pinch the last contour and

develop the pole at M = ai − lε1 −mε2:

(1) : φk −M − ε+ = 0 , φk − ai + ε+ + lε1 +mε2 = 0

(2) : φk −M + ε+ = 0 , φk − ai − ε+ + lε1 +mε2 = 0 . (4.9)

– 8 –
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The first set (1) of poles cannot pinch the integration contour since the second pole in the

first set does not exist for the (l,m)-th box (located at a convex corner). Furthermore, the

second set (2) cannot pinch the contour as well since both poles are inside the integration

contour following the JK residue rule explained above. Therefore, the last k-th integral

cannot produce any new pole for M . One may worry about the poles at (l − 1,m) and

(l,m − 1) existing before the last contour integral, but they are always canceled by zeros

from the last residue either at φk −M − ε+ = 0 or φk − ai + ε+− lε1−mε2 = 0. The same

argument also holds for all the other possible poles at the convex corners.

From this analysis, we are led to conclude that the partition function evaluated using

the JK prescription has no pole in the fugacity x = eM and thus it is a finite polynomial

in x. In addition, the asymptotics of the partition function in (4.1) are

x→ 0 : Zinst(x)→ O(x−N/2) , x→∞ : Zinst(x)→ O(xN/2) . (4.10)

It is therefore obvious that the instanton partition function is a degree N polynomial in x

which agrees with the physics in the presence of the 1d fermionic defects. We emphasize

that the JK prescription was crucial for this proof.

The fact that we can choose at most one pole of the form φI = M + ε+ allows us to

recast the instanton partition function in an interesting expression. Let us define a new

operator as

Y±1(M) : Z5d
inst →

∞∑
k=|~Y |=0

qk
1

k!

∮
~Y

[
dφI
2πi

]
Zvector
k · (Z1d

k )±1, (4.11)

where
∮
~Y means that the integration contours enclose only poles labeled by the given Young

diagrams ~Y . Note that the 5d partition function after acting Y operator on differs from the

physical partition function Z
1d/5d
inst by the contour choice. Z1d/5d uses the JK prescription

to determine its integration contour, while Y uses the Young diagram sum rule.

Using the operator Y, we find that the instanton partition function can be written as

Z
Nf=0
inst (M) = Y(M) + q

1

Y(M + 2ε+)
, (4.12)

where 1
Y ≡ Y−1. In fact, this coincides with the key characteristic of the five-dimensional

qq-character X (x) introduced by N. Nekrasov in his recent paper [13]. See also [14, 15]

for related discussions. It turns out that our instanton partition function Zinst(x) with

the 1d defect is the same as the qq-character X (x), and our operator Y is identical to

his Y-observable.2 More interestingly, the functional difference equation (4.12) acting on

Y (by shifting its argument M by 2ε+) can be interpreted as the quantization of the

defining equation for the Seiberg-Witten curve in the 5d gauge theory [13, 23] with the

Planck constant ε+. In the classical limit ε+ → 0, this relation reduces to the ordinary

equation for the Seiberg-Witten curve. This also agrees with the spectral curve of the

(relativistic-)closed Toda chain studied in [25].

2In the Nekrasov-Shatashvili limit ε → 0, the partition functions Zinst(x) and Y(x) agree with the

functions χ(x) and Y(x) in [23, 24].
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Multiplet Field U(k) U(N)

Fermi ξ k 1

Table 3. Fermi multiplets induced by 5d fundamental hypermultiplet.

We now turn to the U(N) gauge theories with Nf fundamental hypermultiplets. The

hypermultiplets provide additional fermionic zero modes in the instanton background.

These fermionic zero modes can be encoded in extra fermi multiplets in the 1d gauged

quantum mechanics. The extra fermi multiplets are given in table 3.

The partition function computation with the Nf fundamental hypermultiplets is ba-

sically the same as the pure SYM theory cases. We only need to take into account the

contribution from the extra fermi multiplet, which can be written as

Z fund
k (φ,ma; ε1, ε2) =

k∏
I=1

Nf∏
a=1

2 sinh
φI −ma

2
=

k∏
I=1

P(φI) , P(φ) ≡
Nf∏
a=1

2 sinh
φ−ma

2
.

(4.13)

We then find that

Z
Nf

inst =

∞∑
k=0

qk
1

k!

∮ [
dφI
2πi

]
Zvector
k (φ, a) · Z1d

k (φ, a,M) · Z fund
k (φ,ma) . (4.14)

Since the bulk hypermultiplets induce only fermionic fields in the instanton back-

ground, their contribution cannot provide extra singularities to the partition function as

one can see from (4.13). This implies that the contour prescription we have discussed for

the pure SYM cases still holds for the cases with the additional bulk hypers, unless we

have subtle issues related to the small instanton singularity and its regularization.3 We

will discuss only the cases without the subtleties.

Thus, the same argument above for the pure SYM theories proves that the 5d partition

function in the presence of the line defect even with the fundamental hypermultiplets is a

degree N polynomial of the fugacity x. It will give rise to a generating function of BPS

Wilson loop expectation values with the hypermultiplets.

The partition function satisfies the relation

Z
Nf

inst(M) = Y(M) + q
P(M + ε+)

Y(M + 2ε+)
. (4.15)

Here the operator Y defined in (4.11) inserts the extra factor Z1d
k into the partition function

Z
Nf

inst and also deforms the integration contour to enclose only the poles labeled by ~Y .

5 N = 1∗ U(N) theories

We now consider the partition function of the N = 1∗ U(N) gauge theories: the N = 1

Yang-Mills theory with an adjoint hypermultiplet. The full partition function is already

3The regularization issue about the small U(1) instanton singularity when Nf ≥ 2N − 2|κ|, where κ is

the Chern-Simons level, has been discussed in literature. See [8, 26, 27] for recent discussions.
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given in (3.7). We shall evaluate the contour integrals and study the properties of the

partition function.

We are led by the JK residue rule to choose poles for the contour integrals of the form

(1) : φI − ai + ε+ = 0 , (2) : φI − φJ ± ε− + ε+ = 0 ,

(3) : φI −M − ε+ = 0 , (4) : φI − φJ ±m− ε+ = 0 . (5.1)

The first line comes from the standard ADHM fields whereas the second line comes from

the extra twisted hypermultiplets added by the bulk adjoint hypermultiplet and the 1d line

defects. If one chooses all the poles solely in the first line, they can be classified by the

N -colored Young diagrams ~Y with total size k as in (4.7). On the other hand, we can also

choose the poles only in the second line and then they can be classified by a single Young

diagram Ỹ with size k, i.e.

φI = M − ε+ + r̃(ε+ +m) + s̃(ε+ −m) with (r̃, s̃) ∈ Ỹ . (5.2)

The first case corresponds to all k instantons bound to the stack of N D4-branes, while

the second case corresponds to all k instantons bound to a single D4′-brane.

We will first show that k poles for the k contour integrals should be selected such that

when we choose k′ of them from a size k′ Young diagram Ỹ , the other k−k′ poles must be

chosen from ~Y with size k−k′. There are no other poles having nontrival residue, and thus

the relevant poles for our contour integrals of U(k) holonomies are completely classified by

two classes of Young diagrams ~Y and Ỹ with size k − k′ and k′ respectively. Let us show

this below.

Suppose that the first k′ poles are selected only from the Ỹ with size k′ and take the

form of (5.2). Then for the next contour integral, we can choose the poles in the set (4)

of (5.1), which increases the size of Ỹ by +1, or in the set (1), which starts new Young

diagrams ~Y , or lastly in the set (2). The pole corresponding to (3) is absent in this case.

We want to show that the last cases for the set (2) have zero residues since the poles are

canceled by zeros in the integrand. The poles in the set (2) take the following forms

φI − φJ ± ε− + ε+ = 0

→
{
φI −

(
M−ε++(r̃−1)(ε++m) + s̃(ε+−m)

)
−m± ε− = 0

φI −
(
M−ε++r̃(ε++m) + (s̃−1)(ε+−m)

)
+m± ε− = 0

for I > J and (r̃, s̃) ∈ Ỹ .

We note that these poles are always canceled by the zeros in the numerator factors,

φI −M ± ε− = 0 and φI − φJ ′ ±m ± ε− = 0 with J ′ ≤ k′. Similar argument holds when

we first choose k′ poles only from ~Y and perform the next contour integral. This shows

that the poles are classified by two classes of Young diagrams ~Y and Ỹ with |~Y | = k − k′
and |Ỹ | = k′.

Let us now prove that the N = 1∗ partition function has no pole in M (or equivalently

x). We first consider k′ < k integrals evaluated by taking residues at the poles in the class

of the ~Y and then attempt to perform the (k′ + 1)-th contour integral. The discussion

for the pure SYM cases in the previous section implies that (k′ + 1)-th integral will not
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develop any pole in M independent of the adjoint mass parameter m. But we may find a

new class of poles depending on both M and m which are not excluded by the analysis for

the pure SYM cases. We need to show that these poles are also absent after computing

the remaining integrals over φI>k′ .

Apparently, the first k′ + 1 integrals cannot yield the new class of poles if we take

residues for them at the poles in ~Y since those poles are independent of M and m. Also,

even if we take the residue for the (k′+1)-th integral at the pole φk′+1 = M + ε+, it cannot

produce the new class of poles since the factors which depend on both M and m (and

independent of φI>k′+1) appear only in the numerator.

For the (k′ + 2)-th integral, one finds that only the following pair of poles can pinch

the integration contour C, which is determined by the JK prescription,

φI −M ±m = 0 6∈ C , φI − (ai + ε+ − lε1 − nε2) = 0 ∈ C ,

and produce the poles in the new class at M = ai + ε+ − lε1 − nε2 ±m. The indices i and

(l, n) run over all the convex corners in ~Yk′+1 ⊃ ~Yk′ , where the subscript k in ~Yk denotes

the total size of ~Y . However, these poles are also canceled by zeros in the numerators of

the form

φI − φJ ±m− ε+ + ε1,2 = 0 at φI=k′+1 = M + ε+ and φJ = ai + ε+ − rε1 − sε2

with (r, s) ∈ ~Yk′ . Therefore, the (k′ + 2)-th contour integral cannot yield any pole in M .

The same analysis repeats for I > k′+2 until I=k. The poles in the new class at

M + (r̃ − 1)(ε+ +m) + (s̃− 1)(ε+ −m) = ai + ε+ − lε1 − nε2 ±m,

for (r̃, s̃) ∈ Ỹ of size I − k′ − 1, can be generated by the φI>k′+2 integral. However, they

are all canceled by the zeros in the numerator factors, φI−1 − φJ ±m± ε− = 0, at

φI−1 = M − ε+ + r̃(ε+ +m) + s̃(ε+ −m) and φJ = ai + ε+ − rε1 − sε2

where (r, s) ∈ ~Yk′ . So we conclude that the partition function has no pole in M . Moreover,

it follows from two asymptotics at x→∞ and x→ 0 as shown in (4.10) that the partition

function is indeed a degree N polynomial of the fugacity x.

The N = 1∗ partition function also satisfies an interesting functional difference equa-

tion [13] acting on the operator Y,

Z inst(M) =
∑
Ỹ

q|Ỹ |
∏
s∈Ỹ

sinh E(s)±ε−
2

sinh E(s)±ε+
2

×
∏
s∈Ỹconvex Y

(
M + F (s)

)∏
s∈Ỹconcave Y

(
M + F (s) + 2ε+

) , (5.3)

where Y is defined in (4.11) with the additional contribution from the adjoint hypermulti-

plet. Ỹconvex and Ỹconcave represent two sets of boxes at the convex and concave corners in

Ỹ , respectively, as depicted in figure 1, and

E(s) = A+

(
h(s) +

1

2

)
−A−

(
v(s) +

1

2

)
, F (s) = A+(i− 1) +A−(j − 1) (5.4)

with A± ≡ ε+ ±m and s = (i, j).
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2 ~Yconvex

2 ~Yconcave

Figure 1. ~Yconvex: boxes in convex corners, ~Yconcave: boxes in concave corners.

6 Conclusion

In this note we have computed the partition functions of the five-dimensional supersymmet-

ric gauge theories which we can obtain through supersymmetric couplings to 1d fermionic

degrees of freedom. We have also proved that the partition function is a finite Laurent poly-

nomial in the fugacity x counting the fermion number. This is an essential requirement for

being a physical partition function containing the 1d fermionic Fock space.

One natural question would be whether our approach for BPS line defects generalizes

to the gauge theories with other classical gauge groups. The ADHM construction for the

instantons in the SO(N) and Sp(N) gauge theories are known in [3, 28], and one can

naturally couple the additional degrees of freedom in [5] as we did for U(N) cases. It will

be interesting to study properties of the line defect partition functions and their relation

with the Seiberg-Witten geometry of SO(N) and Sp(N) theories.

Small instanton singularity requires proper regularization scheme, like ADHM gauged

quantum mechanics for U(N) gauge theory without matters and defects. Physically rele-

vant regularization for the instanton singularity has not been well-studied in the presence

of BPS operators such as Wilson lines in various representations. It is desirable to un-

derstand a general UV prescription for small instantons in the gauge theories with and

without (non-)local operators. Our result provides a natural UV prescription for Wilson

lines in anti-symmetric representations which may help to answer that question.

Finally, one can also consider gauge theories that contains multiple defects of different

dimensionalities. For example, a 5d guage theory coupled to both the line defects in our

note and codimension two defects discussed in [29, 30] turns out to be supersymmetric. It

will be interesting to investigate the partition function of this combined system and its role

in the gauge theory and the associated integrable model.
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