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Abstract. Dynamic method dispatch is a core feature of object-oriented
programming by which the executed implementation for a polymorphic
method is only chosen at runtime. In this paper, we present a specifica-
tion and verification methodology which extends the concept of dynamic
dispatch to design-by-contract specifications.

The formal specification language JML has only rudimentary means
for polymorphic abstraction in expressions. We promote these to fully
flexible specification-only query methods called model methods that can,
like ordinary methods, be overridden to give specifications a new seman-
tics in subclasses in a transparent and modular fashion. Moreover, we
allow them to refer to more than one program state which give us the
possibility to fully abstract and encapsulate two-state specification con-
texts, i.e., history constraints and method postconditions. Finally, we
provide an elegant and flexible mechanism to specify restrictions on spec-
ifications in subtypes. Thus behavioural subtyping can be enforced, yet
it still allows for other specification paradigms.

We provide the semantics for model methods by giving a translation
into a first order logic and according proof obligations. We fully imple-
mented this framework in the KeY program verifier and successfully ver-
ified relevant examples. We have also implemented an extension to KeY
to support permission-based verification of concurrent Java programs. In
this context model methods provide a modular specification method to
treat code synchronisation through API methods.

1 Introduction

The possibility to override the implementation of a method defined in a super-
type is the essential polymorphism feature of the object orientation paradigm.
The mechanism which chooses at runtime the implementation to be taken for a
method invocation is called dynamic dispatch. Also in the context of design-by-
contract (DbC) [34] and behavioural subtyping [16], different implementations
for the same operation can coexist – if they adhere to a common specification.
It is most natural that not only the implementations but also the specifications
vary from subtype to subtype, for instance by adding implementation-dependent
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aspects. The dynamic dispatch mechanism should, hence, also be available for
the formulation of formal specifications in an equally flexible way.

For instance, the precondition of a method may be weakened in a subclass
according to the principle of behavioural subtyping. When at some place in the
program this method is invoked, the precondition to be established at that point
depends, like the chosen implementing code, on the dynamic type of the receiver
object. Instead of spelling out the definition of this specification element, it
should be possible to refer to it symbolically. Only when the dynamic type of the
object is known, one also knows the actual contract definition.

Having an explicit symbol to represent a component of a method contract also
increases the modularity of the DbC methodology. A method may thus require
in its contract that the precondition for a method call on one of its parameters
holds. The corresponding method call on the parameter is then valid without
the caller needing to know what the condition actually says. This makes specifi-
cations more modular and local since the contracts need not concern themselves
with implementation details from external classes.

In this paper, we propose a universal solution to make dynamic dispatch for
specifications possible by employing multi-state abstract functions/predicates
through Java Modelling Language (JML) model methods. Model methods are
like usual Java methods subject to dynamic dispatch. Since they resemble normal
methods in syntax and semantics, this is a most natural extension to the DbC
paradigm and, hence, should be easily adoptable by programmers.

Although (one-state) model methods are already part of the JML syntax
definition [11,28], they lack a clear semantics and are not fully and soundly
implemented in any JML-based tool. We provide a precise semantics by giving
an explicit logical encoding of overridable model methods in a first-order verifi-
cation logic. This encoding is used in the implementation of our approach within
the KeY program verifier [2,4]. In KeY Java programs and their JML specifi-
cations are translated to proof obligations and then proved correct by the KeY
verification engine that provides a high degree of automation, and allows for user
guided proof interactions where necessary. The work we present here builds on
top of previous work done with KeY to support abstract specifications [45,47].

Other verification systems have similar support for specification abstraction
(see, e.g., [24,29]), but none of them allow the specifier to refer to two or more
program states in one function, i.e., functions refer to one state of the program
only. In turn it is, e.g., impossible to define functions that would fully encapsulate
a non-trivial relation between the pre and post state of the method. We enrich
the concept of abstract predicates by allowing them to refer to more than one
program state. This allows us, in particular, to use model methods to abstract
and encapsulate specification contexts in which more than one program state is
referred to. This is the case for postconditions or history constraints which may
refer to the state before and after a method invocation.

In this context our work provides the following contributions. We define over-
ridable model methods with strict semantics that integrate with the JML spec-
ification methodology. We provide the ability to relate several program states
within one model method. In particular, two-state methods for pre and post
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program states, and no-state methods for defining program independent axioms
and lemmas to further improve modularisation of specifications. The resulting
mechanism is universal enough to be used in any specification artefact (pre- and
postconditions, but also, e.g., framing clauses), and, because of the preserved
dynamic dispatch principle, provides true data encapsulation on specification
level relieving the specifier from enforcing exposure of private data to specifica-
tions. Furthermore, our model methods themselves are equipped with contract
specifications, this in effect provides a modular lemma mechanism for the under-
lying abstract predicates. Finally, within the scope of such lemma annotations,
we provide a flexible mechanism to specify the relationship between supertype
and subtype predicate implementations. Thus one can enforce specification par-
adigms like behavioural subtyping [32] and others, and gains liberty to integrate
such schemes within one program. In the paper we discuss how model meth-
ods are integrated into the KeY Dynamic Logic and how the new specifications
are translated into proof obligations. The new framework has been fully imple-
mented in KeY and we verified relevant examples with the new implementation.
All these examples were either not specifiable and verifiable at all, or extremely
difficult to verify in the previously existing framework.

We have also applied model methods to support modular verification of con-
current Java programs specified with permission annotations [22,38]. In par-
ticular, we have used model methods to provide fully modular and reusable
specifications for Java API synchronisation methods. In this paper we show an
example of how we achieve this.

This paper is an extended and revised version of our paper presented at the
Modularity conference held in Fort Collins, U.S. in March 2015 [39]. In particu-
lar, Sects. 5 and 7 are new in this version, the former discusses how we can specify
behavioural subtyping (or other schemes) in our specification approach, the latter
discusses two use cases for model methods using substantial examples. Further-
more, at its end, Sect. 4 now discusses in more detail how termination clauses
for recursive model methods are checked. Finally, in Sect. 6 we now also briefly
discuss the verification performance gains that can be achieved with abstract
specifications. The complete paper is organised as follows. Section 2 briefly intro-
duces the Java Modelling Language as implemented in KeY. In Sect. 3 we give a
motivating example to demonstrate the use of model methods. The integration of
model methods into dynamic logic is described in Sect. 4, while Sect. 5 discusses
our mechanism to enforce behavioural subtyping in specifications. Sect. 6 shortly
discusses some implementation practicalities and mentions one more small exam-
ple. Section 7 presents two more uses cases of providing generic API specifica-
tions with model methods, Sect. 8 reports on related work, and finally Sect. 9
concludes the paper.
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2 The Java Modeling Language and an Extension

2.1 Basic JML

JML is a behavioural interface specification language realising the DbC princi-
ple [34] for the Java programming language [11,28]. JML annotations reside in
special Java comments starting with the @ sign. The specifications define con-
straints for the implementation of the declarations. A program is called correct
with respect to its formal specification if no run of the program can ever lead to
a state which does not fulfil all specification elements.

JML can be used in different verification scenarios: (1) for runtime verification
when actually running the code, (2) for static deductive functional verification in
which the implementation is formally proved correct with respect to its specifi-
cation. In this paper we concentrate on the latter application case, although the
presented specification concepts can also be integrated into runtime verification
methods.

In the concept of DbC, there are essentially two constructions: object invari-
ants (annotated to class declarations) and method contracts (annotated to
method declarations). An object invariant is a predicate which defines when its
object is in a valid state. Method contracts formally define the observable behav-
iour of methods, and are composed of one or more of the following. A requires
clause (a.k.a. precondition) defines a condition under which the method may be
invoked and then has the effects of the contract. An ensures clause (a.k.a.
postcondition) defines a condition which holds after the execution of the method.
History constraints are like postconditions that apply to all methods of a class.
An assignable clause (a.k.a. frame) defines which part of the heap may be
written to during the execution of the method. Finally, an accessible clause
defines the part of the heap the method may read from at most. In our nomen-
clature we refer to it as a dependency frame, we explain the details in Sect. 4.

The expression language of JML is an extension of side-effect-free Java
expressions. It adds a handful of specification-only constructs, most notably the
first-order-logic quantifiers (\forall, \exists). Methods may be invoked in
JML expressions if the method does not change existing locations on the heap;
such methods are called pure. In history constraints and postconditions it is
possible to refer to two states of program execution: the state before the method
was invoked and the state after the execution. The before-state is accessed with
the \old operator applied to an expression. Postconditions can also refer to the
result of the method call with the \result keyword.

JML offers several other specification elements (e.g., to handle exceptions)
that are not essential here, hence we omit them.

2.2 JML∗ – Location Sets and Observer Symbols

JML∗ is a recent extension of JML to work with location sets and abstract
predicates. JML supports the concept of so-called store-ref expressions which are
syntactic entities corresponding to sets of locations on the heap. Benjamin Weiß
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proposes in [45,47] to make sets of location first class citizens in JML, to follow
the specification style and verification method of dynamic frames [25]. A new
primitive data type \locset is introduced to represent sets of locations on the
heap. A location is a pair of an object reference together with a non-static field
name, a pair of an array reference together with an integer index, or the name of a
static field. The following set theoretic constructors are introduced: \nothing,
{{·}}, ·∪· to resp. construct the empty set, singletons and set union. The predicate
·⊆· can be used to express a subset relationship. The expression {{o.f}}∪{{o.g}},
for instance, denotes the two element set {(o, f), (o, g)}. Expressions of type
\locset are typically used in assignable or accessible clauses.

JML∗ employs location sets to model relevant segments of the heap. However,
if other approaches that model heap structures differently by means of other
abstract datatypes (like, e.g., in the flexible framework presented in [26]) are
at the base of a specification language, model methods could also be used to
abstract from them.

To model abstractions of the program state, it is useful to add declarations
to the program which exist only for the sake of specification and verification
and which are not visible to the compiler. JML provides two means for this pur-
pose: (1) ghost field declarations, which introduce new, specification-only heap
locations. Their values can and must be updated explicitly by specification-only
statements within the code of the methods, (2) model field declarations which
do not denote locations, but provide abbreviations or abstractions of the state.
Their value is updated implicitly by changing the value of locations that the
model elements depend on. Such state abstractions can be in particular used
to abstract assignable and accessible frames mentioned above. In JML∗

both ghost and model fields can be used for this purpose. While abstracting loca-
tion sets through ghost variables tends to make reasoning easier than with model
fields, the latter provide a cleaner specification style. With model elements, the
specifier needs not explicitly update the specification state of the verified pro-
grams (which on the other hand helps the verification engine to find proofs).
In our examples and explanations to follow we also show how abstractions of
locations sets are achieved with model methods and what are the correspond-
ing issues for behavioural subtyping. Finally, despite that they can be used for
similar purpose, ghost and model fields are in principle independent concepts
as far as the reasoning logic is concerned. Ghost fields have successfully been
used for the specification and verification of dynamic frames within the Dafny
verifier [29].

Model fields [12] are used in other verification approaches (e.g., [11,30,47])
to abstract from implementation details. Apart from being debated about [8],
model fields have obvious shortcomings. First, model fields cannot depend on
any arguments, like methods do, so they are truly only state observing func-
tions rather than state querying functions. Second, as realised in JML∗, any
additional properties (i.e., lemmas) of model fields are specified globally with
class invariants. This destroys modularity, in that (a) the properties are not
explicitly attached to a particular model field, i.e., properties of all model fields
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class Cell {

int val;

/*@ ensures \result == val; @*/

int/*@ pure @*/get(){

return val;

}

/*@ ensures val == v; @*/

void set(int v){val = v;}

}

class Client{

/*@ ensures c.val == v; @*/

static void callSet(Cell c, int v){

c.set(v);

}

}

class Recell extends Cell {

int oval;

/*@ ensures val == oval; @*/

void undo(){val = oval;}

/*@ ensures oval == \old(val); @*/

void set(int v){

oval = val;

super.set(v);

}

}

Fig. 1. Cell/Recell example.

are thrown into one invariant “bag”, (b) consequently, the properties of each
model field often need to be re-proved several times. Because of these reasons,
proper specification inheritance is very limited. In this paper we show how the
notion of a model field is naturally extended to a model method to remedy all
of the mentioned problems. In turn, we provide a fully functional multi-state
abstract predicate mechanism for modular specifications that maintain full data
encapsulation of the specified program, mitigating any need to expose private
data to specifications.

We continue with a motivating example, which should also explain the work-
ings of JML∗ in a more accurate way. More examples are briefly discussed
towards the end of the paper.

3 Motivating Example

We motivate and explain our specification approach by means of a small Java
example. Though small, it captures a typical and intricate situation which occurs
symptomatically when object-oriented programs are extended by classes overrid-
ing methods with additional unforeseen features. Traditionally, such situations
would require that the specification of the original code be re-adjusted to accom-
modate the new behaviour. Using model methods with dynamic dispatch, such
re-adjustment is not needed.

The challenge, shown in Fig. 1, has originally been proposed in [43] and has
been dealt with in [5] using a higher order separation logic. This first figure
shows the program annotated with traditional specification means. Cell objects
encapsulate integer values which can be set using a method set and be retrieved
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using get. The class Recell, which extends Cell, allows an additional one level
undo operation which restores the cell value to the state before the most recent
call to set. The class Client provides a method callSet which indirectly calls
the set method of the Cell argument it receives. This particular indirection
may seem artificial, but indirection is a very natural phenomenon in object
orientation, e.g., in a situation where this operation is done only conditionally
or after some locks have been acquired or in combination with other operations.

The contract of callSet copies the postcondition of Cell.set literally. It
does not guarantee the stronger postcondition of Recell.set if the argument
is of type Recell. The present contract does not suffice to verify the following
test case:

Recell rc = new Recell();
rc.set(4);
Client.callSet(rc, 5);
rc.undo();
assert rc.get() == 4;

While this program would not fail its assertion, the proof for that would not
succeed as the abstraction of callSet by its contract neglects the additional
postcondition oval==\old(val) introduced in Recell and only ensures the
weaker postcondition of Cell.

This could be amended by introducing case distinctions on the type
of the argument in the postcondition of Cell.set. An additional clause
c instanceof Recell==>((Recell)c).oval==\old(c.val) would
achieve this. However, it has significant limitations regarding the modularity
of the specification: (1) Details on the implementation of Recell are revealed
where it is not necessary and should be kept under the hood and, more severely,
(2) the implementation of Recell might not yet be known at the time that
Cell is implemented or specified. Assume Cell and Client are part of a
library and Recell is a user-written extension. How can the library account for
all potential extensions?

This is precisely where abstract predicates in the form of model methods can
be used to solve the issue. In Fig. 2, the example has been reformulated using a
model method setPost (lines 4–6) formalising the postcondition of the method
set (used in line 15). The model method has a body which defines its value. In
this case, it returns true if and only if its argument x is equal to the value stored
in field val. Looking at class Cell alone, no semantic change has been done.

Things change when the class Recell is again added to the scenario. In
Recell, the model method setPost is overridden and adds a condition to the
result obtained by Cell.setPost. By redefining the predicate locally for all
instances of class Recell, the semantics of the contract Cell.set has now
also changed, although syntactically it is the same. As the contract refers to the
post-condition only symbolically, its semantics is left open and can be redefined
by an implementing class. Furthermore, setPost makes use of its two state
declaration in class Recell as the definition relates values from two execution
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int val;2

/*@ ensures \result ==> get()== x;4

@ model two_state
boolean setPost(int x) {6

return val == x;
} @*/8

/*@ ensures \result == val; @*/10

int /*@ pure @*/ get() {

return val;12

}
14

/*@ ensures setPost(v); @*/

void set(int v) { val = v; }16

}

class Recellclass Cell { extends Cell {

int oval;

/*@ model two_state
boolean setPost(int x) {
return super.setPost(x) &&

→ oval == \old(get());

} @*/

/*@ ensures get() == \old(oval); @*/

void undo() { val = oval; }

void set(int x) {
oval = get();

super.set(x);

}

}

Fig. 2. Cell/Recell example annotated with model methods.

states, namely \old(get()) and oval. The two states that this definition
refers to are the pre- and post-state of the method set.

The redefinition of setPost in Recell cannot be arbitrary, however. The
model method has got a contract (line 4) saying that whenever its result is true,
the condition val==x needs to hold. All overriding implementations need to
obey that contract, but may add to it. This ensures behavioural subtyping.

The above example test case can be proved correct if the model method invo-
cation c.setPost(v) is used as postcondition for Client.callSet abstract-
ing away from the actual definition of the postcondition.

Figure 3 shows the scenario including the frame conditions where the frame
has also been abstracted by a single state model method footprint(). Fur-
thermore, the extended version has another model method setPre used to
abstract the concrete precondition of set. In the classes Cell and Recell this
method always returns true. In a new subclass IncreaseCell, it returns true
only if the argument v is greater than the cell’s value val. The precondition is
only satisfied if the value to be set is strictly increased. According to Liskov’s
behavioural subtyping paradigm [16,21,32], this strengthening of the precondi-
tion in a subclass would not be admitted. Using model methods, however, one
can specify such strengthened preconditions without violating the principle since
both methods describe the situation locally for their respective enclosing class.
The method contract in Line 4 in Fig. 2 says what the postcondition setPost
must at least imply, it can thus not be weakened arbitrarily. No contract has
been set up for setPre such that no restriction exists for the implementa-
tion of setPre in subclasses. Model method specifications allow the specifier to
choose flexibly how the implementations of different classes relate to each other –
depending on the need of the verification scenario.

Method frames are also subject to behavioural subtyping. The footprint()
model method is declared and defined once in the superclass Cell to contain all
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class Cell {
int val;

/*@ accessible \nothing;
@ ensures \result ⊆ this.*;
model \locset footprint() {

return this.*; } @*/

/*@ accessible footprint();

@ ensures \result ==> get()== x;

@ model two_state
boolean setPost(int x) {

return get() == x; } @*/

/*@ accessible footprint();
@ model
boolean setPre(int x) {
return true; } @*/

/*@ accessible footprint();
@ ensures \result == val; @*/

int /*@ pure @*/ get() { return val;}

/*@ requires setPre(v);
@ ensures setPost(v);
@ assignable footprint(); @*/

void set(int v) { val = v; }
}

class Recell extends Cell {
int oval;

/*@ model two_state
boolean setPost(int x) {
return super.setPost(x) &&

oval==\old(get());
} @*/

/*@ ensures get()==\old(oval);

→

@ ensures oval == \old(oval);
@ assignable footprint(); @*/

void undo() { val = oval; }

void set(int x) {
oval = get();
super.set(x);

}
}

}

class IncreaseCell extends Cell{
/*@ model
boolean setPre(int v) {
return v > val; } @*/

Fig. 3. Extended Cell/Recell example annotated with footprint specifications.

locations of the Cell object. In the context of the Cell class alone the postcondi-
tion we have specified for footprint() may seem obvious and redundant. How-
ever, it limits the shape of the footprint for the sub-classes with an upper bound,
and this particular postcondition enforces frame related behavioural subtyping on
the methods that refer to this model method in their assignable clauses. Namely,
the footprint of the sub-classing objects can only shrink or stay the same, but it
cannot grow beyond the extension of the super class. In this example, the (syntac-
tical) upper bound of this.* covers the footprints of all classes in Fig. 3, however,
as with other specifications, the subtyping requirement for frames can be limit-
ing. We elaborate on this in Sect. 5, where we discuss how the user can specify the
relationship between of supertype and subtype implementations of model meth-
ods with certain flexibility. If strict behavioural subtyping is required (according
to [32]), it can be achieved, but it is not mandatory in our framework.

4 Translation into Java Dynamic Logic

To verify a Java program, we translate the program and its specification into
proof obligations in Java Dynamic Logic (JavaDL from now on), the logic of
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the KeY theorem prover [2]. JavaDL is a hierarchically typed first order logic
in which the type system contains the reference types of the Java language
(java.lang.Object and its subtypes) together with the types Int1, Bool,
Heap, LocSet and Field. Every type is subtype of the top type Any.

We write f : T1 × . . . × Tn → T to denote a function symbol mapping n
elements of types T1, . . . , Tn to an element of type T . We write s : T if s is
constant symbol or a logical variable symbol. For an n-ary predicate symbol
p, we write p : T1 × . . . × Tn to denote that it represents a relation on these
types. JavaDL uses the standard first-order operators ¬,→,∧,∨,∀,∃, and ↔
for, respectively, negation, implication, conjunction, disjunction, universal and
existential quantification, and equivalence.

Besides the standard first-order operators, JavaDL provides, for every type
T , the membership predicate symbols ·�−T : Any → Bool and ·�−!T :Any → Bool.
The formula t�−T is true if the value of the expression t is of type T or of one of
its subtypes; the formula t�−!T is true if the value of t is of type T but not of any
strict subtype of T . Thus, t �− T in JavaDL is closely related to the expression t
instanceof T in Java and t �−! T to t.getClass() == T.class.

JavaDL is a dynamic logic [20] in which Java program code can be used to
construct formulas. For a Java code fragment π and a formula ϕ, the composition
[π]ϕ is again a formula which holds in a state iff ϕ holds in the corresponding
end state after the execution of π (if it exists)2. The substitution of a term s for
a (program) variable x in a term t is denoted by {x := s}t in which the type of
expression s must be a subtype of the type of x.

In JavaDL, the Java heap memory is modelled using the type Heap imple-
menting the theory of arrays [33]. The elements of Heap are the possible memory
states of the program. Two heap objects are relevant for the evaluation of JML
expressions: The symbol h :Heap holds the current heap state, i.e., the memory
at the current execution point, and variable h0 :Heap refers to the base heap of
the current method frame, i.e., to the memory in the pre-state of the method call.
We assume heaps to be two-dimensional arrays with one index of type Object
and the other of type Field capturing all fields appearing in the program. Every
declaration of a member (field, (model) method) m in class C gives rise to a
function symbol named C::m; in case of a field f this is C::f :Field. In case of a
(model) method m, a function symbol C::m is introduced which takes the heap
as explicit argument. We call such a symbol observer function symbol since it
gives a value which depends on the heap context, but without itself residing in
a location on the heap.

Reading from a location on the heap is done using a family of function sym-
bols selectT :Heap × Object × Field → T for every type T . Two additional vari-
ables self and result exist for the translation of the this reference and the
result value of the method. Their types depend on the proof obligation context.

1 All numeric primitive Java types int, long, . . . are mapped to Int. We do not
support floating point types.

2 [π]ϕ is thus semantically equivalent to wlp(π, ϕ) of the weakest precondition calcu-
lus [17].
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JML E JavaDL E

this, \result self , result

\old(E) {h := h0}E
E.fieldC,T selectT (h,E,C::field)

E.queryC,T(F1,. . .,Fn) C::query(h,E, F1, . . . , Fn)

E.twostateC,T(F1,. . .,Fn) C::twostate(h, h0, E, F1, . . . , Fn)

Fig. 4. Translation of JML expressions into JavaDL, nameC,T refers to the entity of
type T introduced in class C, queryC,T is a one-state, twostateC,T a two-state model
method.

Figure 4 shows a synopsis of the translation of the most important JML expres-
sions E to their respective counterpart ̂E in JavaDL.

4.1 Model Methods

In JML, expressions can also refer to regular or model methods as long as they
are declared pure. Unlike fields that declare locations on the heap, methods do
not reside in locations on the heap but compute a value which depends on the
values of locations on the heap. Model methods are always automatically con-
sidered strictly pure since they are meant to observe the heap without changing
it. “Strictly” means that not even object creation is allowed that is normally
considered pure behaviour. The reason for also excluding object creation is the
non-determinism it would introduce. If a JML model method and its contract
are defined according to the following general schema (all clauses in [...] are
optional)

class C {
/*@ [private] behavior
@ [requires pre;]
@ [ensures post;]
@ [accessible acc, [acc ];]
@ [measured_by mby;]
@ [two_state] model R m(T1 p1, ..., Tn pn) { return exp; }
@*/

}

then the function symbol C::m :Heap×Heap×C×T1×. . .×Tn → R is introduced
to represent the model method in JavaDL. The symbol takes the current heap,
the base heap, the receiver object and the method parameters as arguments.
The second heap argument is used only if the method is annotated with the
modifier two state. The second argument to the accessible clause is also
only relevant if two state is specified; we come back to the declaration of the
clause shortly in Sect. 4.2. For model methods declared without the two state
modifier, the second quantification over h0 and the second heap argument to
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C::m must be dropped in the formulas in this section. The semantics of the
symbol is coupled to the expression in the return statement by the following
definition axiom.

∀h, h0 :Heap, self : C, p1 : T1, . . . , pn : Tn;
(self �−! C ∧ p̂re → C::m(h, h0, self , p1, . . . , pn) = êxp). (1)

The function symbol C::m is determined by the class (or interface) C in
which the method m has been first declared. All method definitions overriding
that initial declaration refer to the same function symbol (and not to a new
symbol). By constraining the same function, they realise the dynamic dispatch
of model methods. That is, the function symbol is always the same, while its
meaning implied by the exact type of self changes. For any subclass C ′ of C,
another axiom for C::m is added. If C ′ chooses not to override m, an axiom
is added as if the definition with the body of the superclass-method had been
copied. The guard self �−! C (respectively, self �−! C

′ in the axiom for C ′) ensures
that the definition only applies if the receiver object self is exactly of the defining
type. These typing guards make sure that (possibly contradicting) definitions of
the function C::m constrain different parts of its domain. Finally, even though
the axiom is constrained to exact instances of a class C, for all subclasses of C
the axiom is repeated, either by looking up the model method definition freshly
introduced in a subclass, or by copying the definition from the superclass when
the model method is not overridden.

The axiom is also guarded by the precondition p̂re of the contract. It is not
strictly necessary to restrict the domain in which C::m can be applied but we
decided that it is better to allow a specifier to say under which conditions a
model method is defined. Also to deal with welldefinedness and wellfoundedness
(see Sect. 4.3), it is important to be able to restrict the definitions to arguments
for which they make sense.

Our model method body (see above) consists only of a single side-effect-free
return statement and definition (1) can make use of its expression directly.
To extend the framework to methods with non-trivial method bodies, the above
axiom would need to involve a dynamic logic operator and read (for a one-state
model method)

∀h :Heap, self : C, p1 : T1, . . . , pn : Tn; (self �−! C ∧ p̂re →
[

result = self.m(p1, ..., pn);
]

(C::m(h, self , p1, . . . , pn) = result)),

ensuring that the value of the function symbol is the same as the result value of
the method call. This formula points out a crucial advantage of dynamic logic
in comparison to other program logics like Hoare logic: dynamic logic is closed
under all its operators which allows us to state the quantified program formula
directly in JavaDL. That is, the program modality is not required to be a top
level operator, it appears as a sub-formula under the quantifier. In Hoare calculus
this would require using meta-constructs over the program correctness triplet.

Besides its method body, a model method may also have a functional contract
(in particular a postcondition). Unlike the body which defines the value of the
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function symbol, the contract describes a property of the symbol and is not an
axiom, but a theorem. To establish the correctness of the contract theorem, it
suffices to prove that the definition makes the postcondition true, i.e., that

∀h, h0 :Heap, self : C, p1 : T1, . . . , pn : Tn;

(self �−! C ∧ p̂re → {result := C::m(h, h0, c, p1, . . . , pn)} ̂post). (2)

follows from axiom (1).3

If (2) is shown for every class C ′ extending C (with a corresponding type
guard), the statement is shown for all conceivable instances of C. Therefore,
when using the proved contract as additional assumption, it is safe to omit the
type guard self �−! C from (2). This approach is still modular, however, the
verification of C happens independently of that of its subclasses. At the time
of verification, one can even be oblivious to the existence of subtypes. If the
contract is annotated with the Java modifier private,4 it applies to class C
only and is not to be inherited to subclasses. Hence, the proof obligation and
theorem are concerned only with exact instances of the class.

The two-state model method setPost from the motivating example in Fig. 2
is translated into a function symbol Cell::setPost : Heap×Heap×Cell×Int → Bool
which is constrained as follows:

∀h, h0 :Heap, c :Cell, v : Int;
(c �−! Cell → (3)
(Cell::setPost(h, h0, c, v) ↔ Cell::get(h, c) = v))

∧ (c �−! Recell →
(Cell::setPost(h, h0, c, v) ↔ (Cell::get(h, c) = v ∧ (4)

select Int(h, c,Recell::oval) = Cell::get(h0, c))))
∧ (Cell::setPost(h, h0, c, v) → Cell::get(h, c) = v) (5)

True is taken as precondition for setPost as none has been explicitly specified.
Constraints (3) and (4) are model method definitions according to (1); (5) is the
contract theorem after (2). It is obvious that both implementations in Cell and
Recell imply this contract.

3 One also has to show that the method’s framing condition specified with the
assignable clause holds. Recall that model methods are assumed to be strictly
pure, so it would be required to additionally prove that no locations on either of
the two heaps h and h0 are changed or created. This is trivial to show when we
only allow single side-effect-free return statements for model method bodies, so we
omit this here for clarity. However, our implementation does include this check in
the anticipation of also accepting model methods with non-trivial bodies. In Sect. 5
we explain more about assignable frame conditions for regular Java methods in
the context of behavioural subtyping.

4 The modifier is applied to the contract, not the model method declaration itself.
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4.2 Framing

For the sake of a modular proof, the user of an observer symbol should not
have access to its definition (i.e., method body). It may be wise to hide it from
the user (for encapsulation) or its full definition may even not be known in a
modular context in which additional classes may be added later. In order to
reason about observers without access to their definitions, it is crucial that one
is able to deduce that an observer does not change if only heap locations that it
does not depend on have been modified.

An observer function modelling a model method takes heap argument(s).
However, its valuation depends not on the entire heap(s) but only on a set
of locations on that heap(s). If it can be established that this location set is
interpreted equally in two heaps, the model method must result in the same
value in both states.

To this end, we make use of the accessible clause5 that a model method
may declare. In it, a set of locations acc can be specified describing the locations
upon which the evaluation of a method can depend at most : if all memory
locations in âcc have the same value in both heaps, then the values returned by
the model method must be the same. In JavaDL, every location is a pair of an
object and a field. This subsumes array references and static field references: in
case of arrays the field part is obtained from the Int value representing the index
into the array, for static field references a fixed dummy object reference is used.

Such knowledge is essential for modular verification and data encapsulation:
at verification time, the implementation of a (model) method may not be known
(a situation very common in programming against interfaces), but restrictions
of the set of accessible locations may be part of the contract. Knowing that an
evaluation does not depend on recent changes on the heap lifts both specifications
and proofs to a higher level of abstraction, i.e., the equality of expressions can
be established without knowing their exact definitions.

The fact that two heaps h1, h2 evaluate the locations in âcc equally is formally
expressed by the formula same(h1, h2, âcc) defined by

same(h1, h2, âcc) := ∀o :Object, f :Field;
({(o, f)} ⊆ {h := h1}âcc) → selectAny(h1, o, f) = selectAny(h2, o, f).

This yields the following conditional equality for model methods (in which p̂rei
and âcci abbreviate {h := hi}p̂re and {h := hi}âcc, respectively):

∀h1, h2, h
′
1, h

′
2 :Heap, self : C, p1 : T1, . . . , pn : Tn;

(self �−! C ∧ p̂re1 ∧ p̂re2 ∧
same(h1, h2, âcc1) ∧ same(h′

1, h
′
2, âcc

′
1) →

C::m(h1, h
′
1, self , p1, . . . , pn) = C::m(h2, h

′
2, self , p1, . . . , pn)). (6)

5 We also call it the dependability location set, while other approaches may have still
different name for it, e.g., influence set in [31] that essentially serves the same purpose
of providing the read frame of a method.
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The evaluations of the query symbol must be shown equal under the conditions
that the (1) two pre-state heaps h1 and h2 satisfy p̂re, (2) they evaluate equiv-
alently on the set âcc, and (3) two post-state heaps h′

1 and h′
2 also evaluate

equivalently on âcc′. 6 Like in the case of the functional method contract in (2),
an additional type guard self �−! C may be used when proving the dependency
contract for class C. The stronger version without the type guard may be used
when adding (6) as an assumption in other proofs.

The one-state method get in Fig. 3 has accessible clause this
.footprint(), its concrete one-state instance of (6) therefore has only one
pair of heap variables and reads (after simplification):

∀h1, h2 :Heap, c :Cell; (same(h1, h2,Cell::footprint(heap, c)) →
Cell::get(h1, c) = Cell::get(h2, c)). (7)

For exact instances of Cell, the footprint is defined as the set containing all
object fields (this.*), with val being the only field the same predicate in (7)
is thus equivalent to selectAny(h1, c,Cell::val) = selectAny(h2, c,Cell::val) in that
case.

4.3 Termination

Showing termination for programs is optional, considering the partial correctness
problem alone can be challenging enough. For the definition of model methods,
however, it is a central point that must not be omitted. A model method def-
inition gives rise to a universally quantified axiom claiming that the function
has certain properties even if it may be unsatisfiable. Consider for instance the
problematic declaration

class X { /*@ model int bad() { return this.bad() + 1; } @*/ }

for which the model method would be translated into the axiom

∀h :Heap, self :X ; (self �−! X → X::bad(h, self ) = X::bad(h, self ) + 1),

which is obviously inconsistent. Consistency can be guaranteed if termination
(or wellfoundedness) of all recursive method references is checked. Here, the
measured by clauses are employed to avoid such unsatisfiable recursive defin-
itions. We require that all definitions are primitive recursive. The variant mby
specifies for each method a termination measurement which must be decreased
in all referenced (model) method invocations in exp. To this end, an additional
proof obligation per model method is generated to ensure this. Assuming that
the variant of a model method referenced in exp is mby ′, it has to be shown that
mby ′ is a strict non-negative predecessor of mby , i.e., 0 ≤ mby ′ < mby .
6 Note that there are two separate accessible sets, âcc for the pre-state heap and âcc′

for the post-state heap, as these can be specified separately according to the schema
in Sect. 4.1. If only the post-state heap is referenced in the model method definition,
then only one accessible clause acc is specified with the other one assumed empty
(like for model method setPost in Fig. 3).



Dynamic Dispatch for Method Contracts Through Abstract Predicates 253

In practice, one may also encounter mutually recursive definitions of model
methods. In this case simple integer expressions as termination clauses are in gen-
eral not sufficient. For that reason, we additionally allow tuples of integer expres-
sions with a standard lexicographic order to serve as termination clauses and the
above mechanism is modified accordingly to check the lexicographic ordering of
the expressions instead. Furthermore, to weaken the resulting proof obligations,
we use the welldefinedness checking technique described in [14] exploiting the
logical structure of the expression.

5 Support for Behavioural Subtyping

Behavioural subtyping is a built-in feature of JML: Reasoning modularly in the
face of extensible class hierarchies is impossible if the substitution principle does
not apply. In terms of contracts, this principle means that every (non-private)
method contract introduced in a class must be obeyed by all extending subclasses
as well.

Additional contracts may be specified in subclasses giving new use cases for
a method in this subclass. Hence, by adding new contracts, one can weaken
the overall precondition or strengthen the postcondition. It is, however, not
possible to make the precondition stronger or the postcondition weaker. Frame
conditions specified through the assignable clauses are technically part of
the postcondition, as they are checked with the following formula attached to a
postcondition:

∀o :Object, f :Field; ({(o, f)} ⊆ ̂frame ∨ selectAny(h, o, f) = selectAny(h′, o, f)),

where ̂frame is translation of the clause assignable frame; of the method
under inspection and h with h′ are the method’s pre-state and post-state heaps,
respectively. As a postcondition, the frame condition cannot be weakened either
meaning that the frame cannot grow in subclasses.

Programmers employ inheritance not only to implement behavioural subtyp-
ing [35], but also for purposes like, e.g., code reuse or specialisation. Hence, a
more flexible way to deal with the inheritance of specification clauses is desired
which allows more liberal notions of inheritance. In particular, in the context of
framing subclasses are likely to extend the footprint of the superclass to provide
additional functionality, rather than shrinking it. For example, in our Recell
class in Fig. 3 (page 9) a new field oval is added.

By using model methods one is not bound to behavioural subtyping in the
same rigorous fashion as with pure JML. In addition to the possibility to name
specification artefacts (possibly without knowing their meaning), nothing is a
priori said about the relationship of an abstract predicate definition in one class
and its redefinition in a subclass. These may, in general, be unrelated, i.e., with-
out logical consequence relationship in either way.

In this unrestricted fashion, model methods would be too arbitrary, and
in most practical cases one wants to establish a formal relationship between
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different realisations of the same predicate. To this end, we introduced new
keywords with which consequences can be expressed concisely.

The special postcondition \covariant can be used to specify that any
reimplementation a model method must at least guarantee what is guaranteed
in this implementation. For example, the method postCondition specified as

/*@ model_behaviour
ensures \covariant;
model boolean postCondition() { return R; } @*/

requires all redefinitions to imply R, for instance by returning R in conjunction
with more information. The identifier \covariant is an abbreviation for the
expression \result ==>R. Correspondingly, a method can be specified to be
\contravariant by which the condition R==>\result is abbreviated. For
location sets model methods expressing frames the two keywords express subset
relation instead of implication, so, e.g., \covariant is an abbreviation for
\result ⊆ R.

With these new annotations, it is possible to stipulate behavioural subtyping.
A generic abstract method specification using model methods and behavioural
subtyping would hence read:

/*@ ensures \contravariant;
@ model abstract boolean preCondition();
@
@ ensures \covariant;
@ model abstract two_state boolean postCondition();
@
@ ensures \covariant;
@ model abstract \locset footprint(); @*/

/*@ normal_behaviour
@ requires preCondition();
@ ensures postCondition();
@ assignable footprint(); @*/

void method() { . . . }

Programming languages other than Java have different notions of behavioural
subtyping. In the Eiffel [36] programming language, for instance, preconditions
are – like postconditions – covariant. Using the model method framework, it is
perfectly possible to argue and reason about such constructions also within Java
and JML. With treating variance by annotations, one is more flexible and can
easily choose between different paradigms within the same program. Finally, in
[21] several other notions of behavioural subtyping are surveyed with different
grading in the context of object orientation and class invariants are discussed.

6 Model Methods in Practice

The model methods have been fully implemented in the current official KeY
release 2.4. The translation in the actual implementation is more sophisticated
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/*@ requires \disjoint(footprintUntilLeft(t),t.footprint());
@ ensures \result ==> t.left==null || leftSubTree(t.left);
@ ensures \result ==> footprint()== footprintUntilLeft(t)∪ t.footprint();...
@ accessible footprintUntilLeft(t);
@ measured_by height;
@ model boolean leftSubTree(Treet){

return t == this || (left!= null && left.leftSubTree(t));
}@*/

Fig. 5. An excerpt of the solution to the Tree challenge from [9].

than in our presentation. In particular, the implementation also accounts for the
wellformedness of heap expressions, possible null references, exceptions, object
creation, etc. A lot of the effort has gone into extending the JML∗ parser to
accept the new syntax. On the level of the prover engine, the previously existing
support for model fields and parameter-less observer symbols was extended to
support model methods. In particular, the KeY data structures were changed
to allow for the observer symbols to take additional heap arguments as well as
formal parameter arguments. Consequently, the generation of the corresponding
proof rules and proof obligations changed accordingly. The only really new thing
in terms of the implementation are the contract rules that allow the use of model
method specifications as lemmas. That is, we had to implement generation of
proof rules representing formula (2) for every model method specified with a
contract rule. The implementation of all the other formulas was an extension
and adoption of existing rules for model fields.

The Cell example that we have used in this paper is part of the KeY distrib-
ution, along with other small examples. All of these examples are proven correct
fully automatically by KeY. One particular example that we used as a test bed
when implementing model methods is a binary tree deletion of minimal element
challenge from the VerifyThis 2012 verification competition. Although this chal-
lenge does not, e.g., require the use of two-state model methods or in fact even
inheritance, the solution that uses model methods is far more elegant than all
the other solutions we have (unsuccessfully) tried previously. The challenge and
our solution are described in full in [9], here we only present the essence of our
solution.

The competition challenge is about verifying an iterative procedure for
removing the minimal element from a binary search tree with an obvious recur-
sive linked data structure representation. That is, the class Tree declares field
val for the node value, and two fields, left and right, linking the left and
the right subtrees, with null denoting the leaves of the tree. The essence of our
solution to the challenge is the leftSubTree(Tree t) model method, which
by recursion checks whether the given tree t is one of the sub-tree nodes reach-
able through following the left links from the current node. Through specifying
an appropriate method contract for leftSubTree, this method is delegated to
maintain a set of crucial facts about the binary tree structure. For example,
if the tree t is in fact a node somewhere in the path of left links, then we
know that so is t.left (if not null) or that we can partition the current tree
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footprint between all the tree nodes before t is reached and the footprint of t
itself. These footprints are again defined with model methods. Figure 5 shows an
excerpt of the specification for leftSubTree. The reminder of the solution is
to maintain the validity of the leftSubTree predicate while the tree is being
iterated by the algorithm to find the node to be removed. By the specification
of leftSubTree this removal is guaranteed to only change a small part of the
tree and keep the overall binary search tree structure intact. Because of the use
of several model methods that are recursive and mutually dependent, this chal-
lenge is only provable interactively by the current version of KeY, nevertheless,
model methods were the enabling factor to solve the challenge at all.

Apart from increased expressiveness, model methods also allow one to opti-
mise the verification effort in terms of the size of the underlying proof, espe-
cially in the context of an evolving specification when earlier proof attempts can
be reused to prove subsequent versions of the program correct. This is because
model methods allow us to reason without looking into definitions, at least up to
a certain point. In other words, some part the proof is independent of the spec-
ification and consequently can be reused. The actual effort in a repeated proof
attempt starts only when the model method definitions are expanded and the
proof has to be guided according to these (possibly updated) definitions. Earlier
studies [10] showed that the corresponding gains can be as large as halving the
proof effort when one compares a situation of applying proof reuse enabled by
using abstract specifications (in our case model methods) to a situation when no
proof reuse is possible due to fully concrete specifications that require a complete
new proof with each new version of the specification.

7 Example Use Cases

In this section we describe two somewhat more elaborate use cases for model
methods. The first one is the well known visitor design pattern, the second one
sits in the context of permission-based reasoning about concurrent programs, a
capability recently added to KeY. In both examples model methods are crucial
to provide generic, client independent specifications of library methods that can
be later instantiated for a particular case.

7.1 Specifying the Visitor Design Pattern

The visitor design pattern [19] is particularly well suited to be specified and
verified using abstract predicates as devised in this paper.

The situation is thus: A library defines a class hierarchy in which a number
of classes implement a common interface Component. This interface requires a
method accept(Visitor v). The respective subclasses that implement the
interface realise this acceptance method by delegating the call to a method spe-
cially crafted for this particular subclass within the visitor. By this extra indi-
rection, the visitor pattern thus allows dynamic method dispatch by the type of
its argument (and not of the receiver).
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interface Component {
/*@ public normal_behaviour

requires \invariant_for(v);
requires v.preVisit(this);
ensures \invariant_for(v);
ensures v.postVisit(this);
assignable v.modVisit(this); @*/

void accept(Visitor v);

}

class CompA extends Component {
int val;
void accept(Visitor v) { v.visitA(this);}

}

class CompB extends Component {
String val;
void accept(Visitor v) { v.visitB(this);}

}

interface Visitor {
/*@ ensures \contravariant;

ensures \result ==> \invariant_for(c);
model boolean preVisit(Component c)

{return false;}

ensures \covariant;
ensures \result ==> \invariant_for(c);
model two_state boolean postVisit

(Component c) { return true;}

ensures \covariant;
model \locset modVisit(Component c)

{return \everything;}@*/

/*@ public normal_behaviour

@ requires preVisit(a);
@ ensures postVisit(a);

@ assignable modVisit(a);
@*/

void visitA(CompA a);

/*@ public normal_behaviour
@ requires preVisit(b);
@ ensures postVisit(b);

@ assignable modVisit(b);
@*/

void visitB(CompB b);
}

→

→

→

Fig. 6. Generic library specifications for the visitor pattern.

class LenVisitor implements Visitor {
int len;

/*@ model boolean preVisit(Component c) {
return (len >= 0 && \invariant_for(c)); }

model boolean postVisit(Component c) {
return (len >= \old(len) && \invariant_for(c)); }

model \locset modVisit(Component c) {return this.*;}@*/

void visitA(CompA a){len += Math.abs(a.val);}
void visitB(CompB b){len += b.val.length();}

}

//@ requires \invariant_for(a) && \invariant_for(b);
static void test(CompA a, CompB b) {
LenVisitor lv = new LenVisitor();
a.accept(lv); b.accept(lv);
assert lv.len >= 0;

}

Fig. 7. Using the visitor pattern.
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The use case (the actual visitor implementation) of the pattern is usually not
known at the time the library is defined. Moreover, often there is not only one
visitor, but an application requires multiple different visitor implementations to
perform different (not a-priori known) tasks on the data structure.

It is evident that the component hierarchy and the visitor interface cannot
be specified concretely with all use cases in mind. Even if they were known a
priori, incorporating all possible visitation purposes into one specification would
make that clumsy, unnecessarily large, and non-scalable. That is where model
methods can be used to an advantage: The visitor interface and the component
type hierarchy can be specified with model methods in contracts to leave the
details of the specification open and to be refined in the implementations while
the library specification stays agnostic to these implementations.

Figure 6 shows the general specification setup. The interface Component
is the base type for all components open for visitation. The JML contract of
method accept uses the model methods preVisit and postVisit in the
pre- and postcondition. Two classes CompA and CompB implement the interface
and inherit the contract for their delegating implementations of the accept
method. CompA wraps an integer value while CompB contains a String value.

The visitor interface defines model methods preVisit, postVisit and
modVisit to abstract away from the precondition, postcondition, and the frame
clause of the visit methods. The concrete visitation methods use these model
methods in their abstract contracts and thus remain ignorant of the purpose of
later introduced visitors without loss of precision. To enforce the behavioural
subtyping principle for the possible implementations of the visitor interface,
the three model methods are equipped with subtyping enforcing contracts as
stipulated in Sect. 5. Furthermore, the definitions of these three model methods
are made most general in each case to allow for arbitrary subclass modification
as far as behavioural subtyping is concerned. That is, the false precondition
can always be made weaker, while the true postcondition and \everything
frame can always be made stronger.

However, the framework of components and visitor must fit together. There
are proof obligations to be discharged showing that the accept methods fulfil
the interface’s contracts. Since they just replicate the visitor’s contract as their
own, these conditions are easily proved.

As a concrete example use case of the visitor pattern, Fig. 7 shows a visi-
tor which accumulates the lengths of Components. The implementation named
LenVisitor stores the accumulated length in a field named len. For CompA
the absolute value of the integer field is added to len and for CompB the length
of the string is added. In the test case, it is to be proved that the length field of
the concrete visitor is always positive.

Note that the specification for the visitor interface and the component types
did not have to be changed for the specification of the use case. This is the
essence of using abstract predicates to enable modular design and to reduce the
specification effort. However, it does not necessarily imply a substantial reduction
of the proof effort. As noted at the end of Sect. 6, the use of abstract predicates
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can support proof reuse, but does not in general mean that proofs can be skipped.
In particular, if we were to subclass the LenVisitor class in some simple way
without modifying either of the model methods or the visit methods, we would
still have to reverify the visit methods in the new subclass. The reason is that
these methods, remaining syntactically the same, may still call other methods
declared in the LenVisitor class that can get new implementations in the
subclass of LenVisitor. This reproving can be avoided by proving contracts
not for exact instances a concrete class but for instances of all subclasses as well.
Such stronger proof obligations are more difficult to prove, however, since they
must not depend on overridable definitions from the declared class. The bottom
line is though, that after introducing a new subclass, no superclass has to be
ever re-specified or re-proved to be correct.

7.2 Permission-Based Reasoning with Model Methods

Permission-based reasoning is an established method for verifying concurrent
programs with the design-by-contract style specifications enriched with frac-
tional permission annotations [7]. In the context of concurrent execution, per-
mission annotations protect access to heap locations for each thread, adherence
to these annotations is verified locally for each thread and primarily establishes
non-interference of threads; programs are guaranteed to be free of data races.
Additionally, programs are also verified to satisfy classical DbC functional prop-
erties, however, the scope of such properties is limited; heap locations potentially
modified by other threads can never be relied upon in the context of the local
thread [6].

The main complication in permission-based reasoning are program synchro-
nisation points, e.g., mutual exclusion locks or spawned threads. Permissions are
then transferred between one thread and the lock, or between multiple threads.
In most approaches synchronisation is generally considered to be a primitive
operation of the programming language and the verification logic is equipped
to handle the corresponding program constructs. In particular, in Separation
Logic like approaches [44] the notion of a resource invariant (or monitor) serves
as a primary means to specify the behaviour of (primitive) locks [41]. Using a
would-be Separation Logic-like JML notation, Fig. 8 shows a simple example of
a Java program with synchronized block protecting a single variable counter
for multiple thread use. The monitor keyword specifies the necessary resource
invariant Perm(this.c, 1) – on synchronisation the currently running thread
temporarily receives a full (read and write) permission on the counter variable
granting the thread the right to change the associated memory location. As
stated above, no functional specification can be given for this.c outside of the
synchronized block, in particular in the contract of increase, due to the
lack of a suitable permission.

The synchronized block is a very basic synchronisation method and by
itself provides only a mutual exclusion locking. Supporting more synchronisers,
e.g., a semaphore for shared read access, requires combining synchronized
with additional Java code. To this end, the Java API offers a synchronisation



260 W. Mostowski and M. Ulbrich

public class Counter {
private int c; //@ monitor Perm(this.c, 1);

public void increase() { synchronized(this) { this.c++; } }
}

Fig. 8. An example resource invariant with a permission annotation.

framework, the java.util.concurrent library [27], that provides a collec-
tion of synchronisation mechanisms implemented with more primitive opera-
tions, like compare-and-swap or volatile variables. For most of those API meth-
ods, resource invariants do not scale directly and need extensions. For example,
for a read-write lock the invariant differs depending on the actual lock mode
(read or write). Ultimately, the library methods should have generic specifica-
tions that the clients can instantiate to achieve a particular data protection for
multiple thread access, and model methods provide just the right mechanism to
achieve this.

Supporting permission-based reasoning in the KeY system is achieved by
operating on two heaps simultaneously in JavaDL [37] – the regular memory
heap like before, and an additional permission heap that tracks permissions to
the corresponding heap locations. These two heaps are integrated into the logic,
but they are also made explicit in JML∗ specifications to allow the separation of
functional properties (actual values on the heap) and non-interference properties
(permissions to heap locations). Our definitions from Sect. 4 extend naturally to
account for the additional permission heap, it is handled in a similar fashion as
the pre- and post-heap to support the two state predicates.

In this context, Fig. 9 shows a modular, reusable specification of a lock, which
is then instantiated to protect a shared counter. Interfaces LockSpec and Lock
are our library-level specifications, the Counter class is the client. LockSpec is
simply a specification template for the lock, and in fact it could have been in its
entirety a model interface, but technically it could not yet be supported by KeY.
In LockSpec four methods are declared that clients should instantiate and the
consistent method is defined that ensures the consistency of client provided
specifications. The framing of regular and permission heaps is encapsulated with
further model methods, however, for clarity the figure shows only one of them
(fpPerm).

The state predicate of the lock defines the state of the permissions on the
heap for when the lock is engaged and when it is released. The client defines
the lock state over just one permission to the val field of the Counter class.
The lock state is expressed using a symbolic permission data type [22] denoted in
[[...]]. When not engaged, the lock holds the full permission to the val field,
when locked the permission is temporarily transferred from the lock object to
the currently running thread \ct. The status predicate provides an abstrac-
tion of the lock state – directly stated read and/or write permissions that the
lock grants, here a write permission to the val field. The predicate also serves
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public interface LockSpec {
//@ accessible<permissions> fpPerm(); . . .; model \locset fpPerm();

//@ accessible. . .; model boolean state(boolean locked);
//@ accessible. . .; model boolean status(boolean locked);
//@ accessible. . .; model two_state boolean lockTr();
//@ accessible. . .; model two_state boolean unlockTr();
/*@ ensures \result;

accessible. . .;
model final two_state boolean consistent() { return
(\old(state(false)) && \old(status(false)) && lockTr() ==>

(state(true) && status(true))) &&
(\old(state(true)) && \old(status(true)) && unlockTr() ==>

(state(false) && status(false))); } @*/ }

public interface Lock {
//@ public instance ghost LockSpec spec;

//@ requires spec.status(false);
//@ ensures spec.status(true) && spec.lockTr();
//@ assignable<permissions> spec.fpPerm(); . . .
public void lock();

//@ requires spec.status(true);
//@ ensures spec.status(false) && spec.unlockTr();
//@ assignable<permissions> spec.fpPerm(); . . .
public void unlock();

}

public class Counter implements LockSpec {
private int val;
private Lock lock; //@ invariant lock.spec == this && . . .;

/*@ model boolean state(boolean locked) { return \perm(val) ==
locked ? [[ \ct, lock ]] : [[ lock ]]; } @*/

/*@ model boolean status(boolean locked) { return locked ?
\writePerm(\perm(val)) : !\readPerm(\perm(val)); } @*/

/*@ model two_state boolean lockTr() { return \perm(val) ==
\transferPermAll(lock, \ct, \old(\perm(val))); } @*/

/*@ model two_state boolean unlockTr() { return \perm(val) ==
\returnPerm(\ct, lock, \old(\perm(val))); } @*/

//@ requires status(false); ensures status(false);
//@ assignable<permissions> fpPerm(); . . .
public void increase() { lock.lock(); val++; lock.unlock(); }

}

Fig. 9. An example of a generic specification of a mutual exclusion lock and the cor-
responding client instantiation (strongly abbreviated for clarity, full version of the
example is available with the development version of the KeY system).
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as a token that indicates whether the lock is engaged or not. The transfer predi-
cates lockTr and unlockTr define the permission transfers that occur on lock
engaging and releasing. They are two state because they describe the rela-
tion between the permissions before and after the call to the lock and unlock
methods of the lock. The client defines the transfer functions to fully transfer the
permission to val between the lock and the current thread. Through its sim-
ple postcondition, the consistent predicate ensures that there is consistency
between the above methods. Namely, the application of the transfer function
lockTr to an unlocked state and status of the lock should result in a locked
one, and vice versa. Then, the fpPerm predicate defines the frame of the per-
mission heap that the specification works with – only the permissions to the
val field are changed. The specifications of the lock itself merely points to the
predicates defined in the LockSpec interface. The binding between the client
instantiated lock specification and the lock is provided by the spec ghost field of
Lock – the client refers itself as holding the specification. Finally, the top-level
specification for the increase method simply states that it should be used only
when the lock is not already engaged. The verification of increase establishes
that all concurrent accesses to the val field are non-interfering.

Our specification does not enforce the lock to be a mutual exclusion or a
shared one, this distinction is only made by the client. Particular API instances of
the Lock interface would have such distinction embedded in the implementation,
like the ReentrantReadWriteLock that provides two sub-locks for the shared
and exclusive access. A fully configurable specification that can be related to
particular implementations of the lock, like presented in [3], would require further
extensions of our specification shown here. Still, the example we presented here
is a typical use case for model methods to provide generic, client independent
specifications for the purpose of reasoning about data non-interference.

8 Related Work

Parkinson and Bierman have presented in [43] a separation logic framework for
programs with inheritance improving on their earlier paper [42]. One of the
declared goals and actual achievements of the paper was to avoid repetition
of proofs of a method unless it has been overridden. Our motivating example
presented in Sect. 3 has been taken from this publication. The approach put for-
ward in [43] rests on the differentiation of static versus dynamic specifications.
Dynamic specifications correspond in our solution to contracts for model meth-
ods, while static specifications are reflected in the definitions of model methods.
Another contribution of [43] is the extension of the concept of an abstract pred-
icate to abstract predicate families in their (higher order) specification logic.
The publication [5] also uses the example from [43]. The authors present an
approach in higher-order logic separation logic, formalised in Coq, that allows
even more powerful quantifications than can be achieved with abstract predicate
families. Their proofs are interactive. The specification and verification frame-
work for Eiffel function delegates presented by Nordio et al. [40] allows reasoning
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about programs using function objects by means of fixed abstract specification
predicates for pre-/post- and frame-conditions. In comparison, in our approach
there are no predefined predicates or place holders for particular specification
elements, we simply provide a flexible mechanism to define, overload, and use
abstract predicates anywhere in the specification and allow for arbitrary compo-
sition of these predicates, and additionally we provide a flexible mechanism to
optionally enforce behavioural subtyping. Both approaches, however, allow for
the use of two-state predicates.

Cok presents in [13] a survey on using model fields and methods in JML spec-
ifications. Overriding of model fields is covered, but they are not used as a means
to abstract away from method contracts. The Dafny language and verification
system [29] uses functions to define abstraction predicates which correspond to
our model methods. Until recently the Dafny language did not support sub-
typing [1], and it does not support two-state predicates. In [10], the authors
abstract from contract components by predicates to decouple deductive reason-
ing about programs from the applicability check of contracts. This increases
the reuse potential of proofs in case of changing specifications and, thus, makes
the program verification process more modular. However, subtyping between
predicates is not considered. Darvas [14,15] covers the issue of queries in spec-
ifications in a logical setting similar to ours. In particular, welldefinedness and
wellfoundedness are treated in depth. We employ techniques from his thesis to
conduct termination proofs in our approach. The approach does not distinguish
between contracts (postconditions) and definitions (method bodies) and needs a
satisfiability check for the specifications. An advantage of our approach is that
satisfiability of the model method description does not need to be shown as the
return statement always gives an explicit witness to the value of the method.
Inheritance and two-state predicates are not considered by Darvas.

The first occurrence of calculus rules for dynamic dispatch of regular method
invocations in program verification is by Soundarajan [46], the concept has since
been introduced into many verification tools for languages with polymorphism.

In the context of concurrent reasoning using permissions we mentioned the
mechanism of resource invariants commonly used in Separation Logic based
approaches [43]. This encapsulation idea has been later developed towards the
notion of concurrent abstract predicates, now used in at least two Separation
Logic formalisms [18,23]. Concurrent abstract predicates provide essentially the
same functionality for Separation Logic as model methods in our work, namely
they enable data and specification encapsulation and generic library specifica-
tions that can be instantiated by clients.

9 Conclusion

We have presented a specification style which uses overridable model methods
to abstract away from concrete method specifications and, hence, allows us to
refer to them symbolically. Our specifications give rise to proof obligations with
dynamic frames as presented in [45,47]. We go a step further than [45,47] by
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enabling fully flexible state queries with parameters and by providing means for
two-state specifications and a fully modular lemma mechanism for model meth-
ods via contracts. The main contribution of this work is that model methods
make the concept of modular method specification more flexible and in some
cases the verification performance can be improved. Dynamic method dispatch
gives model methods a semantics that depends on the typing context. Behav-
ioural subtyping [16] can canonically be preserved using method contracts, but
the approach is more flexible and also allows for contract relationships that do
not adhere to behavioural subtyping. In cases where behavioural subtyping or
another scheme of specification inheritance should be preserved we provided a
flexible mechanism that can enforce that.
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