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captures the maximum possible range of changes in surface 
temperature and precipitation for three continental-scale 
regions. We find that, of the CMIP5 GCMs with 6-hourly 
fields available, three simulate the key regional aspects of 
climate sufficiently poorly that we consider the projections 
from those models ‘implausible’ (MIROC-ESM, MIROC-
ESM-CHEM, and IPSL-CM5B-LR). From the remaining 
models, we demonstrate a selection methodology which 
avoids the poorest models by including them in the set only 
if their exclusion would significantly reduce the range of 
projections sampled. The result of this process is a set of 
models suitable for using to generate downscaled climate 
change information for a consistent multi-regional assess-
ment of climate change impacts and adaptation.

Keywords RCM · Ensemble design · Uncertainty · 
CMIP5

1 Introduction

Modelling centres participating in the fifth Coupled Model 
Inter-comparison Project (CMIP5) experiment (Taylor 
et al. 2012) agreed to make available the 6-hourly instan-
taneous fields of prognostic variables from GCMs for use 
as lateral boundary conditions (LBCs) for driving regional 
climate models (RCMs). This provides the opportunity for 
those interested in higher-resolution baseline and future cli-
mates derived by downscaling with multiple combinations 
of global and regional climate models or statistical downs-
caling techniques, allowing exploration of a wide range of 
high-resolution projections for one or more regions of the 
world consistent with the latest GCM-based climate projec-
tions assessed in the Intergovernmental Panel on Climate 
Change (IPCC) Assessment Report 5 (AR5). However, 
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the human and computational resource-intensive nature of 
high-resolution downscaling places a restriction on the size 
of ensembles generated and downscaling the full ensemble 
may not be desirable or necessary to generate a representa-
tive range of future climate conditions relevant to assessing 
risks associated with future climate change. This implies 
the need to develop strategies to sample from the available 
General Circulation Models (GCMs) and Representative 
Concentration Pathway (RCP) scenarios in order to gener-
ate projections that are policy relevant and manageable to 
develop, analyse and disseminate.

This paper explores the selection of GCMs from the 
CMIP5 ensemble in order to identify a subset that is repre-
sentative of the range of future climate outcomes indicated 
by the full ensemble. Such an approach could be adopted 
by large model intercomparison projects such as the Cor-
dinated Regional Downscaling Intercomparison Project 
(CORDEX) (Giorgi et al. 2009).

The selection process also provides the challenge and 
opportunity to discount any models which we find unsatis-
factory in their representation of key processes or features 
of climate. The down-weighting or exclusion of GCMs has 
been explored in a number of studies (e.g. Tebaldi et al. 
2005; Greene et al. 2006; Tebaldi and Sanso 2009; Watter-
son and Whetton 2011; Sexton et al. 2012). However, this 
is a challenging problem with respect to both the practi-
calities of identifying unsatisfactory models, and the more 
philosophical considerations of how we relate apparently 
poor performance to the plausibility of future projections 
(see Knutti 2010; Knutti et al. 2010 for discussion). Criti-
cally, the elimination of some GCMs may narrow the range 
of uncertainty represented by the remaining models (e.g. 
Overland et al. 2011). While this is often considered desir-
able given the policy challenges in responding to projec-
tions with large uncertainty ranges, provision of a falsely 
narrow range of projections may lead to over confidence 
and mal-adaptation. The IPCC is one key institution that 
has avoided attempting to weight or eliminate individual 
models, adopting a ‘one-model-one-vote’ interpretation 
of CMIP3 and CMIP5 projections in its fourth and fifth 
assessment reports, respectively (IPCC 2007, 2013).

Previous examples of weighting or selection on the 
basis of realism have argued that it may be more justifi-
able for specific regions or applications where the key 
aspects of model behaviour can be identified and assessed 
(e.g. Overland et al. 2011; McSweeney et al. 2012). We 
explore whether it is either practical or justifiable to extend 
a regional approach in order to identify a subset of mod-
els which are suitable for use across multiple regions. Such 
an approach would yield practical benefits by reducing 
the overhead of interfacing between GCMs and RCMs for 
modelling groups involved in providing downscaled infor-
mation for more than one region, as well as reducing the 

need for multiple selection studies. Further, projects with a 
global scope such as ISIMIP (Intersectoral-Impacts model 
inter-comparison project) (Warszawski et al. 2013) have 
expressed interests in the use of a consistent set of GCMs 
for downscaling in order to generate datasets with consist-
ently generated uncertainty ranges globally.

We present an approach to selection that considers the 
large-scale performance of the models in the regions of 
interest, with a view to excluding those that are considered 
very unrealistic, while also considering the effect on the 
spread of models in the final subset of eliminating models 
that perform poorly. We demonstrate the application of this 
approach to the selection of 8–10 CMIP5 models that could 
be used in generating climate information for three clima-
tologically diverse continental-scale regions of the world: 
Southeast Asia, Europe and Africa.

Section 2 describes the rationale underlying the pro-
posed methodology. Section 3 describes the CMIP5 model 
data used throughout. In Sect. 4 we explain the evalu-
ation criteria used, assess for each of the three regions 
how well each of the GCMs generates key features of the 
large-scale climate, before applying these results to make a 
multi-regional decision on elimination in Sect. 5. Section 6 
explores the subsequent selection of an ‘optimal’ subset of 
8–10 of the remaining models in order to span most fully 
the range of future outcomes. In Sect. 7 we discuss the ben-
efits and limitations of the approach proposed.

2  Selection rationale

The default ‘one-model-one vote’ approach to interpreting 
ensemble projections can be considered to be precaution-
ary—that is, generally speaking, we cannot confidently 
link the observed shortcomings in the realism of baseline 
simulations directly to the plausibility of that model’s pro-
jections. Therefore when considering projections of future 
change for planning and decision-making purposes, all 
projections should be considered to have a non-negligible 
likelihood of occurring. However, in the context of gen-
erating higher resolution projections for an increasingly 
large ensemble of available GCMs, this is no longer a case 
of ‘should we select?’, but now a question of ‘how should 
we select?’; downscaling all the available projections so 
that all may be considered is simply not an option for most 
experiments, except perhaps those undertaken at the larg-
est climate centres or collaboratively. Given that selection 
is desirable, the equivalent precautionary approach would 
be to select based on a requirement to span the range of 
outcomes most effectively, giving no consideration to each 
model’s relative realism or the plausibility of its projec-
tions. Let us consider a hypothetical ensemble in which 
1 out of the 20 available ensemble members (‘Model X’) 
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displays a clear and distinct shortcoming compared with 
the other 19 models, which leads us to have a consider-
ably reduced confidence in the plausibility of the projec-
tions from that model. In the situation that we can consider 
all 20 models (i.e. we do not need to downscale) and we 
choose to follow the accepted precautionary approach then 
Model X contributes 1/20 of the results of the ensemble. If 
we were to select 5 of those models with no reference to 
any performance metrics, and happened to include Model 
X, then Model X now contributes 1/5 of the results of the 
ensemble. The inherent up-weighting of selected models 
means that we must re-consider the precautionary approach 
that results from our lack of confidence in discounting pro-
jections from models which perform less well in validation.

In reality, making decisions about elimination is diffi-
cult and often subjective. An earlier paper by McSweeney 
et al. (2012) describes a two-stage approach whereby ini-
tially all models were assessed to ensure that they realisti-
cally reproduced key aspects of the regional climate, and 
secondly, a subset of all remaining ‘plausible’ projections 
was selected to span the range of outcomes in surface vari-
ables. However, we suggest that these decisions could be 
restricted to only a few cases by combining our knowledge 
about performance with some information about the future 
projections to identify models which present key decisions. 
Returning to our hypothetical ensemble of 20 models and 
the poorly-performing Model X, we can also consider the 
model’s position in the ensemble of projections. If Model 
X sits well within the range of future projections compared 
with other models, then we could easily avoid including 
this model in favour of others which give similar projec-
tions, but in which we have more confidence, avoiding 
the difficult question of whether the projection should be 
considered implausible. A more significant decision arises 
if the projections from Model X lie outside the range of 
the rest of the ensemble; in this case we must make this 
key decision based on our best knowledge. However, by 
employing this approach we minimise the burden and 
impact of this decision-making process.

This approach to the decision-making is summarised as 
a matrix in Table 1. Here the key decisions occur in allocat-
ing a model its position on the y-axis between ‘implausible’ 
and ‘significantly biased’ if it is classed as an ‘outlier’. Our 
criterion in this situation is that if it is clear that a model 
fails to simulate a large-scale process that is a significant 
driver of the climate of a region, for example extra-tropical 
storm tracks or monsoonal circulations, then this model is 
unlikely to correctly capture how global climate change 
will manifest itself over the region. It may be unlikely, for 
example, to represent realistically future changes in the 
transport of heat or moisture resulting from climate change 
into or out of the region. Where we find evidence of very 
significant shortcomings of this nature in a model then we 
feel it reasonable to class it as ‘implausible’ and elimi-
nate it. However, only these clearly justified process based 
assessments are used to eliminate models. Other aspects 
of performance, such as the realism of surface variables, 
which may indicate shortcomings in key processes, but 
may also reflect less significant errors such as coarse reso-
lution, are not eliminated outright, but classed as ‘biased’ 
or ‘significantly biased’.

The classification of model performance into the four 
categories of ‘Implausible’, ‘Significantly biased’, ‘Biased’ 
and ‘Satisfactory’ allows us to assess models against a 
range of criteria, including both quantitative and qualita-
tive assessments and with reference to results of our own 
analyses as well as those which appear in the literature. 
This classification scheme is designed to allow necessarily 
subjective decisions to be made in a transparent way. We 
use 4 classifications for model performance in this matrix, 
allowing for 2 degrees of ‘biased’ and ‘significantly biased’ 
to reflect a range in performance, but also reflecting the 
relative importance of some aspects over others. We apply 
these classifications based on the framework described in 
Table 2 (the criteria relevant to each region are discussed 
further in Sect. 4). These criteria are based on the underpin-
ning principles for selection proposed in McSweeney et al. 
(2012) based on guidance in Knutti (2010) as follows:

Table 1  Decision making matrix for potential elimination of ensemble members

Model performance Model projections

Outlier Other models predict similar outcomes too.

Model suffers sufficient shortcoming that it signifi-
cantly reduce our confidence in its projections 
(‘Implausible’)

Exclude: we should carefully document justi-
fication for this, however, as exclusion will 
affect the range of outcomes

Exclude: We can avoid using these models 
without much affecting the range of 
projected outcomes

Model suffers significant shortcomings which we 
cannot clearly link to confidence in its projections 
(‘Biases/Significant Biases’)

Include: we do not have strong enough evi-
dence to exclude these outcomes from the 
projections

Exclude: We can avoid using these models 
without much affecting the range of 
projected outcomes

Model performance is satisfactory (‘Satisfactory’) Include Include



3240 C. F. McSweeney et al.

1 3

1. Metrics and criteria for evaluation should be demon-
strated to relate to projection.

2. It may be less controversial to downweight or eliminate 
specific projections that are clearly unable to mimic 
important processes than to agree on the best model.

3. Process understanding must complement ‘broad brush 
metrics’.

After the decision making framework is applied, and 
models eliminated, a further selection process is required 
in order to identify statistically the subset of n models 
which best span the range of the remaining models. Fig-
ure 1 shows how the 3 stages of the selection process that 
we describe compare with the simpler 2-stage process of 
McSweeney et al. (2012).

3  CMIP5 model data

The coupled models analysed are listed in Table S1, where 
the models for which 6-hourly atmospheric fields required 
as lateral boundary conditions (LBCs) for dynamical down-
scaling are available are highlighted (29 of 43 analysed, 
from hereon referred to as ‘LBC-Avail’). The experimen-
tal design of the CMIP5 experiment is described in Taylor 
et al. (2012).

Our model validation assesses the historical simula-
tions of the period 1961–1990, while future changes are 
based on the period 2070–2100 relative to 1961–1990 in 
the RCP8.5 experiment in order to use projections with the 
greatest potential signal compared to internal variability. In 
all cases we use a single realisation. All fields are re-grid-
ded to a common 2.5° × 3.75° grid for all analyses except 
those of the storm tracks assessment in section referred 
to in Sect. 4.2 (see Hodges et al. 2011 for a full descrip-
tion of the storm tracking methodology employed) and the 

teleconnections for Africa in Sect. 4.3 (See Rowell 2013, 
for documentation of this analysis).

We analyse all models for which the relevant historical 
and RCP8.5 variables are available, including those which 
we do not have the option to select for downscaling. We 
do this for several reasons. (1) The behaviour of all avail-
able models provides a useful benchmark for those models 
which we can select. (2) It is possible that modelling cen-
tres have provided LBC fields only for their ‘better’ mod-
els, and the comparison might give us some impression of 
this. (3) For the purposes of interpreting the scenarios gen-
erated by downscaling, it is useful to know whether the set 
of models downscaled is representative of the full range of 
CMIP5 projections, rather than just those for which LBC 
data are available. A full set of evaluation figures available 
in the supplementary information in order to all readers to 
consult this information in their own selection studies.

4  Evaluation criteria and results

Our selection of evaluation criteria includes key aspects of 
the large-scale climate of the regions (i.e. relevant to driv-
ing the high resolution downscaling) and also takes advan-
tage of specific CMIP5 regional assessments documented 
in the existing literature. However, we note that for many of 
these existing studies the analysis is limited to only a subset 
of the LBC-avail models due to the lag in data availabil-
ity in the CMIP5 archive. An example of this is the thor-
ough evaluation of the Asian summer monsoon of Sperber 
et al. (2013) in 25 of the CMIP5 GCMs. This limits our 
scope to make use of this potential very valuable source of 
information. We therefore note the outcomes of other stud-
ies where relevant, and use them as supporting evidence for 
our model assessment, but we cannot rely on this evidence 
alone to influence the selection of a model if the assessment 

Table 2  Criteria for performance categories

What might cause a model’s performance to be judged as…

Implausible Significant biases Biases

Very unrealistic 
representation of 
a key large-scale 
circulation fea-
ture e.g. where 
lower tropo-
spheric flow in 
a key region 
is reversed 
compared with 
observations

Very unrealistic representation of a surface climate feature 
(e.g. the annual cycle of rainfall or temperature). The 
poor representation of surface features may indicate a 
failure in the large-scale circulation in the model, but 
might also be a result of the restricted resolution or 
parameterisation errors in the GCM and therefore could 
be improved by downscaling

Substantial systematic biases—i.e. where the position and tim-
ing of features are realistic but magnitude is inaccurate

Where particularly poor performance is indicated in external 
literature but the assessment does not include all models that 
we are selecting from

Very poor representation of a key circulation feature, but 
where other models do not offer much improvement

The model performs relatively less well than almost all other 
models in the ensemble

Some necessary variables/fields that we have assessed for other 
models are missing from the CMIP5 archive

Key aspects cannot be assessed due to missing data
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does not extend to all models. As the body of literature on 
the assessment of CMIP5 models becomes more complete 
over coming years and an increasing volume of well-docu-
mented processed-based evaluation results becomes avail-
able, in future it might be possible to undertake a thorough 
selection exercise based solely on information available in 
existing literature.

Our assessments combine the use of metrics with more 
qualitative assessments (e.g. the visual inspection of clima-
tological fields). In order to combine this information into a 
summary which can be used to make elimination decisions, 
we assess all models on a 4-point qualitative scale for each 
criterion, corresponding with our rationale described in 
Sect. 2. Any aspects of the models behaviour identified as 
‘biased’ (B), ‘significantly biased’ (SB) or ‘implausible’ 
(IP) are indicated in text where the relevant evidence is 
described.

For each region, we assess the realism of the annual 
cycles of rainfall against GPCP (Adler et al. 2003) and 
CMAP (Xie and Arkin 1997) gridded datasets and annual 
cycles of temperature against CRU (Mitchell and Jones 
2005) observations. For this analysis we use 2 metrics 
for each of several sub-regions in each region described 
in Table 3 to describe (a) the pattern correlation of the 
monthly average values with those in observations and (b) 
the root mean square error (RMSE). We use these met-
rics to identify models for visual inspection by highlight-
ing the 5 lowest scores for each metric. It is not clear how 
such metrics could be used solely to assess models due to 
the complexities in identifying appropriate thresholds, or 
indeed ensuring that these are useful metrics in every case, 
but they allow us to reduce the amount of data required for 
visual inspection. Judging the implications of the realism 
of these surface variables for the credibility of the model is 
more problematic—for example, given good representation 

of synoptic-scale dynamics in a global model, downscal-
ing with a regional RCM may improve the representation 
of poorly-resolved local surface characteristics. However, 
in some cases, poor representation of the surface variables 
may be an indicator of large scale deficiencies which would 
be inherited by any RCM. We are also cautious of exclud-
ing models based on metrics where the underlying data 
used to generate these observed climatologies is relatively 
sparse or of poor quality and thus may not provide a good 
estimate of the models’ performance. We therefore only 
apply ‘biased’ or ‘significantly biased’ ratings to models for 
characteristics of surface variables, reserving the ‘implau-
sible’ category for clear deficiencies in large scale features.

The following sections summarise the key aspects of cli-
mate analysed for each region, and the outcomes are sum-
marised in Sect. 4.4.

4.1  Southeast Asia

Following the methodology of McSweeney et al. (2012), 
we look at the monsoon circulation as the main driver of 
seasonal rainfall in the region, as well as extending this 
analysis to include the north-east (winter) monsoon (Fig. 2) 
as well as the south-west (summer) monsoon (Fig. 3).

A key detail of the north-east monsoon is the north-east-
erly near-surface flow (850 hpa winds) over the South China 
Sea directing near-surface flow towards the Malaysian 
peninsula. In many of the CMIP5 models, the flow in this 
region has too strong an easterly component, such that flow 
is directed more towards the coast of Vietnam rather than 
further south towards the Malaysian peninsula—this is par-
ticularly true of the models inmcm4, MIROC-ESM, MIROC-
ESM-CHEM, NorESM-1-M and NorESM-ME (SB), and, to 
a lesser extent, CCSM4, CNRM-CM5, HadGEM2-ES and 
HadGEM2-CC (B). The ‘significant biases’ and ‘biases’ 

Fig. 1  The GCM selec-
tion process demonstrated in 
McSweeney et al. (2012) (left) 
compared with the approach 
proposed in this paper (right)
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categories are used here because this is a relatively subtle 
characteristic of the flow which may be corrected to some 
degree in the higher-resolution RCM simulations.

Most models capture the observed broad-scale char-
acteristics of the south-west (SW) monsoon, i.e. that the 
occurrence of strongest flow in the core of the Somali Jet 
is clear, and flow is largely westerly across peninsular 
India before diverting to a south-westerly flow across the 
Bay of Bengal, westerly across continental southeast Asia 
and finally turning directly southerly before reaching the 
Philippines. While most models exhibit some variations on 
these key features, MIROC-ESM-CHEM and MIROC-ESM 
both have a monsoon flow which diverts to a southerly flow 
before reaching continental southeast Asia, representing a 
substantial deviation from the patterns observed. The impli-
cations of this unrealistic representation of the large-scale 
characteristics of the SW monsoon in MIROC-ESM and 
MIROC-ESM-CHEM is that representation of the charac-
teristics of flow over southeast Asia are particularly poor—
notably, the resulting flow over the South China Sea is pre-
dominantly north-westwards instead of north-eastwards as 
seen in observations. We argue that this significant short-
coming suggests strongly that these models will be unable 
to represent the potential implications of changes in the SW 
monsoonal circulation in southeast Asia (Implausible—IP).

The model inmcm4 has an 850 hpa flow which is sig-
nificantly weaker than observations throughout the region, 

although the features are otherwise reasonably realistic 
(Significant Biases—SB), while IPSL-CM5B-LR and MRI-
CGCM3 (SB) both have a very weak Somali jet combined 
with flow over southern Asia which is predominantly west-
erly (compared with the observed flow which is southerly 
around southern India and becomes south-westerly in the 
Bay of Bengal).

Other models which demonstrate errors in the circu-
lation are MIROC5 (flow is directed too southerly over 
continental southeast Asia) (Biases—B), ACCESS1-3, 
which underestimates the strength of the Somali jet (B), 
and FGOALS-g2 and IPSL-CM5A-LR all have flow which 
is significantly too westerly across the Bay of Bengal (B, 
although we note that there are several other models which 
offer only a marginal improvement in this characteristic). 
All GISS models demonstrate a weak Somali jet and sub-
stantially too-strong southerly component of flow into the 
Bay of Bengal (not rated as not an LBC-avail model).

The annual cycles of temperature demonstrate a warm 
bias in most models (Fig. 4). The models bcc-csm1-1-m 
(B) and ACCESS1-3 (B) have the largest warm biases, and 
this is consistent across most sub-regions. EC-EARTH (B) 
conversely demonstrates a cool bias throughout the region, 
but significantly has a much weaker seasonal cycle of tem-
perature than observations. The models’ representations 
of annual rainfall cycles are highly varied (Fig. 4). Whilst 
most models capture the July–August peak in rainfall over 
CSEA realistically (although with tendency to over-esti-
mate the magnitude somewhat), the seasonal cycles in other 
regions such as MPS and BN are generally much poorer. 
Because the performance in these two sub-regions is unre-
alistic in so many of the models, we cannot differentiate 
enough between their performance to class any models as 
having ‘biases’ for these regions. In other regions, models 
which demonstrate particularly poor behaviour compared 
to other models are MIROC-ESM (B) and MIROC-ESM-
CHEM (B), which capture the seasonal cycle poorly in JV 
(not capturing the drier JAS period at all) and PL (peak 
rainfall occurs in SON rather than JJA).

A thorough assessment of the monsoon and seasonal 
rainfall characteristics for a set of CMIP5 and CMIP3 
models can be found in Sperber et al. (2013) a number of 
metrics describing the climatological and interannual/intra-
seasonal variability are presented. The study does not spe-
cifically endeavour to highlight the underperforming mod-
els as we do, but does observe that no individual model can 
be identified as the ‘best’ considering all metrics, based on 
an analysis which highlights the ‘best’ 5 models in each 
category. We reverse their analysis of the listed metrics and 
ask whether any model(s) can be identified as significantly 
‘worse’ by identifying which of the models analysed have 
the lowest scores. First, we identify those models with the 
lowest 5 scores across both CMIP3 and CMIP5 ensembles, 

Table 3  Definitions of regions and sub-region

North South East West

Europe 72.5 35 25 −10

UK UK 60 50 2.5 −10

Scandinavia SCA 72.5 55 25 5

Mediterranean MED 45 35 25 −10

W Europe WEU 55 35 17.5 −10

E Europe EEU 55 35 25 17.5

Africa 36 −35 53 −20

N Africa NAF 36 20 40 −20

W Sahel WSH 20 10 20 −20

E Sahel ESH 20 10 40 20

W Tropical Africa WTA 10 −10 27.5 −20

Horn of Africa HA 15 −15 53 27.5

Southern Africa SA −10 −35 42 10

Southeast Asia (SEA) 25 −11 127 93

Continental SEA CSEA 25 7.5 110 93

Malaysia peninsula and 
Sumatra

MPS 7.5 −6 107 95

Java JV −5 −11 127.5 105

Borneo BN 7.5 −5 125 107.5

New Guinea NG 0 −10 150 130

Phillipines PL 20 5 127.5 120
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and then ask (1) are these lowest scores significantly lower 
than the scores for the majority of other models and (2) 
are other scores close to the values found for lowest scor-
ing models, which should therefore be treated similarly? 
Those models with particularly low scores for any of the 
indices were assessed as having ‘biases’, as errors in their 
representation of present-day variability of the monsoon 
imply that they are unlikely to represent future change in 
monsoon variability realistically (The limited scope of this 
study to a set of available CMIP5 models means that we 
use only the ‘biases’ category). Values for selected metrics 
most relevant to this study are listed in Table 4.

The skills scores that describe the model climatol-
ogy include the spatial pattern correlation of rainfall and 
850 hpa flow with observations and a suite of metrics 
describing the annual cycle of rainfall including onset, 
peak, withdrawal and duration. We do not use these scores 
to contribute to our analysis due to the overlap with char-
acteristics we have already assessed, but cite the outcomes 
here as supporting evidence. The lowest scoring CMIP5 
models for these climatological metrics were found to be 

MIROC-ESM, MIROC-ESM-CHEM and MRI-CGCM3. 
The two MIROC models scored badly on pattern correla-
tion between model and observed precipitation and 850 hpa 
(as expected given our observations that the 850 hpa flow 
does not extend far enough east) and MRI-CGCM3 scored 
badly on almost all metrics reflecting the annual rainfall 
cycle (this model was also identified as one of the worst 
models in our analysis of annual cycles of rainfall (Fig. 4) 
but we noted that it did not perform significantly worse 
than other CMIP5 models).

The indices relating to interannual variability provide 
an assessment of aspects of the model behaviour that we 
have not already assessed. Sperber et al. calculate the tem-
poral correlation between anomalies of All-India Rainfall 
(AIR) and the Nino3.4 index, finding that only 11 of the 
25 CMIP5 models simulate a statistically significant anti-
correlation (whilst the observed relationship in observed 
datasets is around −0.5, bounds of −0.3 to −0.75 reflect 
inter-decadal range of values). CMIP5 models with low 
scores were MIROC-ESM, inmcm4,FGOALS-g2, GISS-
E2-H and MIROC-ESM-CHEM (B). Sperber et al. also 
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Fig. 2  The north-east (winter) Asian monsoon circulation in 850 hpa flow for ERA40 reanalyses (Uppala et al. 2006) and a sample of CMIP5 
models. For equivalent plots for all available CMIP5 models see figures S1(a) and S1(b) in the online supplementary material
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calculate the pattern correlation between anomalies of 
Nino3.4 and the AIR index. The strong positive correla-
tion of 0.79 indicated by observations is underestimated 
by most models, with models bcc-csm-1, CanESM2, 
HadGEM2-CC, MIROC-ESM, MIROC-ESM-CHEM and 
MIROC5 demonstrating very low or weakly negative cor-
relation (B).

A further pair of indices describes the interannual vari-
ability associated with the east Asian summer monsoon, 
calculated by regressing the June–August Wang–Fan 
(WFN) zonal wind shear index (Wang and Fan 1999) 
against anomalies of observed rainfall and 850hpa wind. 
One CMIP5 model clearly behaves less realistically than 
the others with a negative pattern correlation of rainfall 
anomalies—inmcm4 (B), whilst all other models captured 
the observed positive correlation. Correlations between 
850hpa wind anomalies were consistently positive and 
above 0.65 in CMIP5 models, such that lowest values 
were not considered to be significantly lower than values 
for other models.

4.2  Europe

European weather and climate is dominated by the pas-
sage of frontal systems, dominantly from the south west. 
The passage of these systems (the North Atlantic storm 
track) is sensitive to the local atmospheric dynamics (for 
example, the position of the jet stream, the impact of block-
ing anticyclones which disrupt the path of these systems, 
and, on inter-annual to multi-decadal timescales, the North 
Atlantic Oscillation) as well as ocean currents, specifically 
the Gulf Stream. While current models simulate European 
climate with considerable skill, common errors such as a 
tendency to underestimate blocking frequencies (Woollings 
2010) highlight limitations that should be considered when 
interpreting their projections. We assess the models’ repre-
sentation of the large scale climatological flow at 850 hpa, 
the position and frequency of storm tracks and the annual 
cycles of surface temperature and precipitation in order to 
identify large scale behaviour in the models which is repre-
sented too poorly to be considered credible.
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Fig. 3  The south-west (summer) Asian monsoon circulation in 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models. For equiva-
lent plots for all available CMIP5 models see figures S2(a) and S2(b)
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The climatological seasonal circulation is shown in 
Figs. 5 and 6. The stronger winter flow is often more west-
erly in models than is observed—this is most notable in 
models ACCESS1-3, bcc-csm1-1, BNU-ESM, CanESM2, 
CCSM4, CSIRO-mk3-6-0, FGOALS-g2, IPSL-CM5A-LR, 
NorESM1-M and NorESM1-ME (B). In several models 
the region of strongest flow sits considerably too far south 
towards Spain and the Mediterranean rather than the UK—
this is particularly so in FGOALS-g2 and CSIRO-mk3-6-0 
(SB). 

During summer the flow is weaker and more westerly, 
which is replicated by most models. However, in FGOALS-
g2, the flow remains significantly too far south, such that 
there is no clear westerly flow across the UK (SB) and in 
IPSL-CM5B-LR and MIROC5, there is no clear westerly 
flow across Europe from the Atlantic (IP) (this is also the 
case for all 4 GISS models, but these are not rated as are 
not LBC-avail).

Storm frequency in the Northern Hemisphere mid-lati-
tudes is shown for zonal means in Fig. 7 for CMIP5 models 

Fig. 4  Annual cycle of temperature and precipitation in CMIP5 mod-
els for southeast Asia and its sub-regions (see Table 3 for definition 
of subregions). Colours models where at least one of the 2 metrics (r, 
rmse) lies in the lowest 5 across all available models, and are LBC-
avail. Dark grey ‘dash-dot’ one of the metrics lies in the lowest 5, 

but data are not LBC-avail. Pale grey solid line models are LBC-avail 
and metrics do not lie in lowest 5, pale-grey dotted line, models are 
not LBC-avail and do not have metrics in lowest 5. Black observa-
tions from CRU (temperature) and GPCP and CMAP (precipitation) 
datasets
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and ERA-Interim storm tracks identified using TRACK 
(Hodges et al. 2011). Observations indicate a clear tri-modal 
pattern with peaks in storm tracks at around 40 N (Medi-
terranean), 55–60 N (northern Europe) and 70 N (Arctic 
Circle). Most models overestimate the number of tracks in 
southern Europe (the ‘trough’ in between the Mediterranean 
and northern Europe peaks) and under-estimate the number 
of tracks northern-most latitudes, but most broadly capture 
the tri-modal pattern. Five models clearly behave less realis-
tically than others, mis-representing this geographical distri-
bution in all seasons—MIROC-ESM, MIROC-ESM-CHEM, 
FGOALS-g2, BNU-ESM and bcc-cms1-1 (IP).

The annual cycles of precipitation and temperature 
(Fig. 8) show a notable negative bias in IPSL-CM5B-LR 

(SB) in winter months of around 5 degrees in UK and Scan-
dinavia. In the case of the IPSL-CM5B-LR cool bias, this 
takes the winter temperature well below 0 °C over the UK, 
and is therefore likely to have significant implications for 
the extent of sea-ice in the northern oceans (SB). All three 
IPSL models demonstrate poor realism of the annual cycle 
of rainfall in most regions, but particularly MED, WEU and 
EEU, where erroneous peaks in JJA rainfall occur (B).

4.3  Africa

The wide range of climate conditions encountered across 
Africa are strongly influenced by the seasonal migra-
tion of the Inter-Tropical Convergence Zone (ITCZ) and 
the associated seasonal rainfalls. For example, the west-
African monsoon brings rainfall to the southern coast of 
west Africa and into the Sahel in summer months. The 
climate of many regions is affected by strong interannual 
variability; teleconnections with major modes of variabil-
ity in sea-surface temperatures (SST) such as ENSO and 
the IOD are found in observations, and are described in 
greater detail in Rowell (2013). The three key aspects of 
African climate that we assess here are the west African 
monsoon circulation, the climatological annual cycles of 
temperature and precipitation for African sub-regions and 
key teleconnections.

Mapped 850 hpa flow indicates that most models cap-
ture the significant features in the flow during DJF (not 
shown) and JJA (Fig. 9). One aspect where we can dif-
ferentiate between the models is their ability to capture 
the west African monsoon—the reversal of flow onto the 
west-African coast from the south and west during JJA. 
While there is considerable variation in the strength and 
direction of this return flow, it is notable that the feature 
does not appear at all in any of the three IPSL models or 
MRI-CGCM3 (as well as non LBC-avail models GISS- 
E2-H, GISS-E2-R-CC, GISS E2-H-CC, and FIO-ESM) 
(SB). We further note that the flow across the African 
region is exaggerated in magnitude in MIROC-ESM and 
MIROC-ESM-CHEM (B).

Assessing the annual cycles of rainfall and tempera-
ture, models tend to simulate, on average, too much rain-
fall, and average temperature tends to be too cool (Fig. 10). 
The three IPSL models and EC-EARTH suffer the largest 
cool biases (although these are not significantly larger than 
in other models). Sub-regionally, EC-Earth shows particu-
larly large cool biases in the two Sahel sub-regions ESH 
and WSH and WTA (B). Rainfall realism is very mixed. In 
the Sahelian regions, models can overestimate peak rain-
fall by 100 % (e.g. GFDL-ESM2G, GFDL-ESM2 M mod-
els, CSIRO-mk3-6-0, in WSH, and MROC5/MIROC-ESM-
CHEM in ESH), or similarly underestimate by almost 80 % 
(e.g. MRI-CGCM3, inmcm4 in WSH, B). Most however, 

Table 4  Indices of summer monsoon variability for CMIP5 models 
from Sperber et al. (2013)

Indian Monsoon E. Asian Summer Monsoon

AIR/N34 Pr pattern corr Pr 850hpa

Observations −0.533 0.798 0.959 0.989

BCC-CSM-1 −0.250 −0.140 0.695 0.93

CanESM2 −0.273 0.014 0.672 0.861

CCSM4 −0.556 0.337 0.789 0.947

CNRM-CM5 −0.307 0.245 0.642 0.894

CSIRO-Mk3.6.0 −0.487 0.162 0.346 0.858

FGOALS-g2 −0.052 0.238 0.739 0.936

GFDL-CM3 −0.442 0.192 0.315 0.867

GFDL-ESM2G −0.289 0.251 0.458 0.972

GFDL-ESM2M −0.187 0.251 0.606 0.955

GISS-E2-H −0.094 0.254 0.586 0.918

GISS-E2-R −0.366 0.379 0.656 0.906

HadCM3 −0.299 0.180 0.773 0.897

HadGEM2-CC −0.335 −0.068 0.787 0.935

HadGEM2-ES −0.344 0.216 0.839 0.949

INM-CM4 −0.033 0.110 −0.047 0.816

IPSL-CM5A-LR −0.700 0.611 0.450 0.708

IPSL-CM5A-MR −0.763 0.636 0.532 0.749

MIROC-ESM 0.088 0.061 0.596 0.694

MIROC-ESM-CHEM −0.104 0.045 0.687 0.882

MIROC4h −0.327 0.529 0.723 0.921

MIROC5 −0.321 0.010 0.567 0.946

MPI-ESM-LR −0.291 0.401 0.283 0.899

MRI-CGCM3 −0.274 0.338 0.819 0.937

NorESM1-M −0.690 0.522 0.811 0.959

Values in bold and italics are those which lie in the lowest 5 across 
all CMIP3 and CMIP5 models studied, values in italics were close 
to those found in the ‘lowest’ models. Highlighted in grey are those 
models which were allocated a ‘biases’ rating as a result of these 
indices. ‘AIR/N34’: Correlation between anomalies of Nino3.4 index 
and All-India rainfall. ‘Pr Pattern Corr’: Spatial correlation of JJAS 
precipitation anomalies obtained from regression with the Nino3.4 
SST. ‘E.Asian Pr’: Negative of Wang–Fan zonal wind shear index 
regressed against JJA precipitation anomalies. ‘E.Asian 850 hpa’: 
Negative of Wang and Fan (1999) zonal wind shear index regressed 
against JJA 850 hpa wind anomalies
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replicate the timing of the rainfall reasonably, with the 
notable exception of FGOALS-S2 (rainy season is late in 
both ESH and WSH, B), NorESM-1 (flat peak in both WSH 
and ESH, B) and bcc-csm1-1 which has no peak JJA rain-
fall in ESH (B). For other regions, WTA, HA and SA per-
formance is mixed and no models emerge as significantly 
‘worse’ than others.

In Table 5 we draw on results of an assessment of 36 
key teleconnections affecting Africa manifest as 6 coher-
ent rainfall anomalies with statistically significant cor-
relations to one or more of 6 modes of sea surface tem-
perature (SST) variability (Rowell 2013). The results are 
summarised for each model as the proportion of those 
teleconnections that do not differ significantly from those 
observed at the 10 % level. This metric therefore incorpo-
rates information from a range of teleconnections, includ-
ing whether the models correctly replicate the lack of 
relationship between some of the SST modes and regional 
rainfall. The five models with the lowest overall scores are 
CanESM2, IPSL-CM5A-LR, INMCM4, IPSL-CM5B-LR 
and CMCC-CMS (B).

5  Completing the decision‑making matrix for model 
elimination

Having assessed the models against a range of criteria in 
each region, we summarise this information to provide an 
overall outcome across the three regions (Table 6). The 
overall outcome is allocated based on (a) the lowest rating 
across all criteria assessed and (b) whether those low rat-
ings are given based on more than one of the sub-regions, 
according to the following criteria:

•	 Implausible: Must score ‘implausible’ in at least one 
region and at least ‘significant biases’ in another.

•	 Significant biases: Scores ‘implausible’ in one region, 
but not in any others; or, scores ‘significant biases’ in 
one or more regions, and/or biases in another region.

•	 Biases: Scores ‘significant biases’ in just one region, or 
‘biases’ in 2 or more regions.

It is clear that the performance of models varies 
between regions, and that applying an ‘overall’ score on a 
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Fig. 5  Winter 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Europe. For equivalent plots for all available CMIP5 
models see figures S3(a) and S3(b)
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multi-region basis using the above criteria involves making 
some compromises on the outcomes for individual regions. 
Notably, we do not exclude all models which contain 
an ‘implausible’, only those for which there is evidence 
of ‘significant biases’ or ‘implausible’ characteristics in 
another of the three regions.

Note that for models EC-EARTH and FGOALS-g2 their 
overall scores are lowered by a category reflecting the fact 
that the 850hpa wind components were not available at 
the time of analysis. We now combine this with informa-
tion about the projections in order to complete our decision 
making matrix Table 1).

We can gain an impression of the projections from the 
ensemble, and each models position within the ensem-
ble using scatter plots of the change in mean tempera-
ture between the two 30 year periods of 1961–1990 and 
2070–2099 under RCP 8.5 (ΔT) and similarly the change 
in mean precipitation (ΔP) (Fig. 11). Further, in order to 
capture the variations in spatial patterns of precipitation 
change within each region, we follow the methodology 
used in McSweeney et al. (2012) by calculating the pattern 

correlation between the ΔP fields from each model with 
that of the ensemble median ΔP, providing an indication of 
whether the spatial patterns of change are ‘typical’ (highly 
correlated with ensemble mean) or ‘atypical’ (lowest or 
anti-correlation with the ensemble mean change). This is 
plotted against the root-mean-square of the precipitation 
change, representing the average magnitude of rainfall 
response (Figure S6).

Amongst the ‘implausible’ models that are excluded 
based on performance, we see that MIROC-ESM and 
MIROC-ESM-CHEM can be identified as ‘outliers’ over 
Europe in JJA and SON (the warmest and wettest projec-
tions), and also in Africa in JJA as the wettest (Fig. 11). 
The remaining model classed as ‘implausible’, IPSL-
CM5B-LR, does not lie outside the ensemble range in any 
of our analyses (Fig. 11). So the implication of exclud-
ing these models is greatest for Europe and Africa. For 
Europe we exclude projections with the largest precipi-
tation increases in summer and autumn, but given the 
poor representation of the geographical distribution of 
the storms with which a large proportion of the European 
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Fig. 6  Summer 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Europe (see For equivalent plots for all available 
CMIP5 models see figures S4(a) and S4(b)
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Zonal mean (−5° to 25°) storm track density - CMIP5 models - Historical
DJF
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Fig. 7  Zonal mean storm track density in the CMIP5 models
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rainfall is associated, we argue that excluding these mod-
els, and therefore narrowing the range of projections is 
justifiable. For Africa, the elimination of these models 
does narrow the range of projections in one season (JJA) 
slightly.

Among the models identified as having ‘biases’ and 
‘significant biases’, inmcm4 frequently lies at one end 
of the ensemble range, consistently projecting the least 
warming in almost all regions and seasons. In Europe this 
model also gives the driest projections, whilst in SEA it 

Fig. 8  Annual cycle of temperature and temp and precipitation in 
CMIP5 models for Europe and its sub-regions (see Table 3 for sub-
region definitions). Colours models where at least one of the 2 met-
rics (r, rmse) lies in the lowest 5 across all available models, and are 
LBC-avail. Dark grey ‘dash-dot’ one of the metrics lies in the lowest 

5, but data are not LBC-avail. Pale grey solid line Models are LBC-
avail and metrics do not lie in lowest 5, pale-gray dotted line, models 
are not LBC-avail and do not have metrics in lowest 5. Black Obser-
vations from CRU (temperature) and GPCP and CMAP (precipita-
tion) datasets



3251Selecting CMIP5 GCMs for downscaling

1 3

tends to project amongst the wettest (Fig. 11). Change in 
rainfall projections from the model inmcm4 also appear to 
show relatively low correlations with the ensemble mean 
change particularly for Africa (Figure S6). BNU-ESM 
is out-lying amongst projections for Europe suggesting 
drier projections than most other models (notably in DJF 
it is the only model to project negative mean precipitation 
change), and also indicates amongst the largest increases 
in rainfall for Africa in JJA and SON (this is important 
given that models MIROC-ESM and MIROC-ESM-CHEM 
have similar projections but are considered ‘implausible’ 
do to their poor performance in other regions). IPSL-
CM5A-MR and IPSL-CM5A-LR tend to behave similarly 
to one another in future projections and for southeast Asia 
comprise the models with the largest temperature and pre-
cipitation increases annually. We therefore exclude only 
one of these IPSL models and we retain IPSL-CM5A-MR 
with a ‘biases’ rating in preference to LR which has a ‘sig-
nificant biases’ rating. CSIRO-mk3-6-0 is an outlier as a 
model projecting drying in southeast Asia. We therefore 
retain four models classed as having ‘biases’ or ‘significant 

biases’—CSIRO-mk3-6-0, BNU-ESM, IPSL-CM5A-MR 
and inmcm4.

The remaining models with ‘biases’ or ‘significant 
biases’– bcc-csm-1, CanESM2, EC-EARTH, FGOALS-g2, 
IPSL-CM5B-LR, NorESM1-M and MPI-ESM-LR—do not 
lie outside the range of outcomes according to our analy-
sis, and therefore we conclude that we can exclude these 
models. These outcomes are summarised in the completed 
decision-making matrix (Table 7).

6  Sampling ranges of future projections

6.1  Sampling methodology

In order to identify the ‘optimal’ sample of n models from 
the remaining 16 models which are both LBC-avail, and 
have not been rejected as a result of analysis in Sect. 4, 
we explore how randomly selected samples span the range 
of outcomes across the 3 regions and all seasons. While 
we have a remit to select 8–10 models, it is useful to 
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Fig. 9  Summer 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Africa. For equivalent plots for all available CMIP5 
models see figures S5(a) and S5(b)
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understand the potential added benefit of additional mod-
els, or how well a smaller subset might perform, so we 
explore values of n between 3 and 13.

For each value of n, we randomly sample 500 unique com-
binations of n models, and calculate the fraction of the range 
of changes in surface temperature and precipitation that are 
spanned by the subset at each 3.75 × 2.5° grid-cell. This 

metric is from hereon described as the Fractional Range Cov-
erage (FRC). A regional average of the FRC is calculated for 
each season, and annually. The range of regional FRC values 
at each sample size is shown in Fig. 12. As would be expected, 
for smaller sample sizes, the range of coverage varies more 
with sample, highlighting the greater need for careful selection 
when the number of models to be downscaled is very small.

Fig. 10  Annual cycle of temperature and precipitation in CMIP5 
models for Africa and its sub-regions (see Table 3 for definition of 
subregions). Colours models where at least one of the 2 metrics (r, 
rmse) lies in the lowest 5 across all available models, and are LBC-
avail. Dark grey ‘dash-dot’ one of the metrics lies in the lowest 5, 

but data are not LBC-avail. Pale grey solid line Models are LBC-avail 
and metrics do not lie in lowest 5, pale-gray dotted line, models are 
not LBC-avail and do not have metrics in lowest 5. Black Observa-
tions from CRU (temperature) and GPCP and CMAP (precipitation) 
datasets
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Typically, a sample size of 8–10 of the remaining 16 
models yields a precipitation FRC value of around 0.9–0.95 
in the ‘best samples’ (i.e. the top whisker for each sample 
size) in the SEA and Europe regions and can be as low as 
0.85 for Africa (the lower values for this region may reflect 
it relatively large size); the equivalent FRC for temperature 
is 0.95–1.0 for all regions. In a smaller sample of models 
(5–6) these values drop to around 0.75–0.9, and 0.7–0.85 
for precipitation (SEA/Europe and Africa, respectively) and 

remain high at above 0.95 for temperature across regions 
SEA and Europe, and around 0.9–0.95 for Africa. Maxi-
mum FRC across samples at each size reaches close to 1.0 
for temperature when n = 8–10, but for precipitation only 
when n is 12 or 13.

6.2  How well do the optimal n models span the range 
of outcomes?

For each sample size, region and season, the upper 
whisker of the box-plots might be considered to represent 
the optimal subset of that size, for that specific region and 
season. However, here we require a single sample at each 
size which provides the greatest average FRC across all 
regions, seasons and both variables. In order to identify 
an optimal sample we normalise the fractional-coverage 
values at each grid-cell by the mean and standard devia-
tion of the 500 samples for each value of n (Normalised 
Fractional Range Coverage—NFRC), and re-calculate the 
regional averages. Each sample thus has a score which is 
the averaged NFRC across all regions, seasons and the 2 
variables. Due to the lesser probability of capturing the 
range of changes in precipitation compared with tempera-
ture noted above, the precipitation values were weighted 
×2 compared with those for temperature. The ‘optimal 
sample’ for each value of n is simply the sample with the 
largest average NFRC.

An optimal sample might be that which gives the best 
coverage over a region, multiple regions, or globally. We 
may find a lower level FRC for each region within the 
pan-regional or global optimal samples than in the optimal 
sample chosen specifically for that region, and all three val-
ues are indicated in Fig. 12. Note that our remit here is to 
identify a set specifically for the 3 regions (the pan-regional 
optimum), but we explore the implications of extending 
this to a global optimum for context.

The loss of FRC for any region that is incurred by broad-
ening our requirement for an optimum from the regional to 
pan-regional, and then to satisfy a global range is explored 
here. The pan-regional ‘optimal sample’ typically achieves 
a value for each region, season and variable well-within 
the upper quartile of the 500 samples. Extending our opti-
misation criteria to a global generally leads to a small loss 
of fractional range coverage at each region, as would be 
expected. This reduction is relatively larger in temperature 
than for precipitation; for temperature, there is relatively lit-
tle loss in FRC between the regional and pan-regional opti-
mal sample, and then a greater loss between pan-regional 
and global. This is reversed for precipitation, where we see 
a greater disparity between regional and pan-regional than 
between pan regional and global, which reflects the dif-
ferences in the spatial characteristics between rainfall and 
temperature.

Table 5  Summary of CMIP5 model representation of key telecon-
nection relationships in Africa

After Rowell (2013). The lowest scoring 5 models are highlighted in 
italics

Model Number of Teleconnections 
represented (of 36)

MPI-ESM-P 30

HadGEM2-AO 29

GFDL-ESM2G 29

NorESM1-ME 29

MPI-ESM-LR 29

HadGEM2-CC 29

MPI-ESM-MR 28

MIROC5 28

HadGEM2-ES 27

ACCESS1.0 27

BNU-ESM 26

ACCESS1.3 26

bcc-csm1-1-m 25

CMCC-CESM 25

NorESM1-M 25

IPSL-CM5A-MR 25

GISS_MODEL-E-R 25

GFDL-CM3 24

FIO-ESM 24

CMCC-CM 24

MIROC-ESM 24

MIROC-ESM-CHEM 24

FGOALS-g2 24

CNRM-CM5 24

bcc-csm1-1 23

CSIRO-Mk3.6.0 23

GISS-E2-R 22

GISS-E2-H 22

GFDL-ESM2M 22

MRI-CGCM3 22

CMCC-CMS 21

IPSL-CM5B-LR 20

INM-CM4 20

IPSL-CM5A-LR 19

CanESM2 19
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Typically, the FRC values that we expect to find for a 
regional-optimum sample of 8–10 models is 0.9–0.95 in 
precipitation, dropping to 0.8–0.9 in a pan-regional or 
global-optimal sample (FRC values are consistently a little 
lower than these for Africa). For temperature, the regional, 
pan-regional and global optima are all above or close to 
0.95.

At the other end of the range of sample FRC values, we 
can see that, conversely, if we were to choose our sample 
randomly rather than optimising our selection, the range of 
values we can expect to capture in our random sample var-
ies widely. Particularly at small sample sizes (e.g. 5), we 
have a high probability of capturing a very reduced range 
of outcomes—the median FRC value across all randomly 

Table 6  CMIP5 model 
performance summary South East Asia Europe Africa
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ACCESS1-0 ACCESS1-0
ACCESS1-3 ACCESS1-3

bcc-csm1-1 bcc-csm1-1

bcc-csm1-1-m bcc-csm1-1-
m

BNU-ESM BNU-ESM
CanESM2 CanESM2
CCSM4 CCSM4

CMCC-CM CMCC-CM
CNRM-CM5 CNRM-CM5

CSIRO-Mk3-6-
0

CSIRO-
Mk3-6-0

EC-EARTH EC-EARTH*

FGOALS-g2 FGOALS-g2

GFDL-CM3 GFDL-CM3

GFDL-ESM2G GFDL-
ESM2G

GFDL-ESM2M GFDL-
ESM2M

HadGEM2-CC HadGEM2-
CC

HadGEM2-ES HadGEM2-
ES

inmcm4 inmcm4
IPSL-CM5A-

LR
IPSL-

CM5A-LR
IPSL-CM5A-

MR
IPSL-

CM5A-MR
IPSL-CM5B-

LR
IPSL-CM5B-

LR
MIROC5 MIROC5

MIROC-ESM MIROC-
ESM

MIROC-ESM-
CHEM

MIROC-
ESM-CHEM

MPI-ESM-LR MPI-ESM-
LR

MPI-ESM-MR MPI-ESM-
MR

MRI-CGCM3 MRI-
CGCM3

Nor-ESM1-M Nor-ESM1-
M

an
d 

P

Colours signify aspects of 
performance identified as 
‘Satisfactory’ (green), ‘Biases’ 
(Yellow), ‘Significant Biases’ 
(Orange) and ‘Implausible’ 
(Pink). Grey shading indicates 
that the data were not available 
at the time of analysis
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Fig. 11  Scatter plots indicating regional average change in mean 
temperature and precipitation for all 3 major regions. Models shown 
are those for which monthly temperature and precipitation data were 
available for historical and RCP8.5 simulations up to 2100. Colours 

indicate the overall outcome from model validation, whereby pink 
‘implausible’, orange ‘significant biases’ and yellow ‘biases’. Grey 
models are not LBC-avail, remaining models are shown in black

Table 7  Decision-making matrix for model selection

Rejected models are highlighted in italics

Outlier Other models predict similar outcomes

Model suffers sufficient shortcoming that it significantly reduce  
our confidence in its projections (‘Implausible’)

MIROC-ESM
MIROC ESM-CHEM

IPSL-CM5B-LR

Model suffers significant shortcomings which we cannot clearly  
link to confidence in its projections (‘Biases/Significant Biases’)

inmcm4
BNU-ESM
CSIRO-Mk3-6-0
IPSL-CM5A-MR

ACCESS1-3
bcc-csm1-1
CanESM2
EC-EARTH
FGOALS-g2
IPSL-CM5A-LR
MIROC5
MRI-CGCM3
NorESM1-M

Model performance is satisfactory (‘Satisfactory’) HadGEM2-ES
ACCESS1-0
bcc-csm1-1-m
CMCC-CM
CCSM4
CNRM-CM5

GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
HadGEM2-CC
MPI-ESM-MR
MPI-ESM-LR
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selected samples is around 0.6–0.7 indicating that approxi-
mately 50 % of samples we might choose would yield FRC 
values lower than this.

We note that in this stage scores might be weighted 
similarly in order to prioritise other aspects of change—for 
example, to prioritise one season if it is more relevant to 
impacts studies. In this case, however, our remit is broad so 
all seasons are weighted evenly.

For our preferred sample size (n = 8), we show the geo-
graphical coverage of the pan-regional optimal sample in 
Figs. 13 and 14, and a summary of the regional-average 
change in Fig. 15. Figure 13 demonstrates near-complete 
coverage of the range of projections in temperature (>0.9) 
quite consistently throughout the region, exceptions are 
small and scattered, with no large coherent regions of 
poorer coverage. For precipitation (Fig. 14) the gaps in cov-
erage are larger and some are coherent, but this is expected 
due to lower average coverage and higher spatial variability 
of changes in rainfall. A region of lower FRC is evident in 
the south-east corner of the SEA region in SON.

Figure 15 shows the coverage of regional-average 
changes by the pan-regional optimal set of 8 models. We 
can see that although the range of outcomes is almost fully 
covered by the set in most regions and seasons, the selected 
set notably excludes the only available and not excluded 
model (CNRM-CM5) that indicates increases in European 
rainfall in JJA. We might therefore recommend the addition 

of this model in order to capture this range more fully, thus 
recommending the use of a set of 9 models for studies in 
these regions.

7  Discussion and conclusions

We have demonstrated a methodology for selecting a set of 
available GCMs which (a) avoids including models which 
are least realistic and (b) simultaneously captures the maxi-
mum possible range of changes in mean temperature and 
precipitation for three continental-scale regions. Such a 
subset should represent the full range of GCM-simulated 
future climate outcomes sufficiently well to provide a set 
of projections for any of the three regions that, while based 
on a smaller number of models, still provides sufficiently 
representative ranges of future climate outcomes to remain 
policy-relevant.

Using a set of GCMs rather than the full ensemble might 
be considered a compromise required due to resource limi-
tations for downscaling. However, we demonstrate that a 
strategically selected set of models can capture a representa-
tive range of changes in mean temperature and precipitation. 
We also identify models which are less realistic and we can 
avoid including in our subset without affecting the range of 
outcome significantly. In only a few cases do we eliminate 
models which are outliers affecting the range of outcomes.

Fig. 12  Boxplots indicating the fraction of the range of outcomes 
(FRC) by the 2080s under RCP8.5 spanned by 500 samples of n 
models, where n is 3–13 (out of an available 16 models which are 
both LBC-avail and have not been excluded for poor realism). Box-
plots depict the median, and inter-quartile range of the 500 samples, 

with whiskers indicating the full range. Filled circles indicate the 
sample identified as ‘optimal’ across all 3 regions and 4 seasons, 
square optimal sample for each region across all seasons and cross 
indicates the globally optimal sample. Pink temperature, blue precipi-
tation. Examples shown for seasons DJF and JJA
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The criteria we have applied in selection has necessar-
ily included a number of subjective (judgement-based) 
decisions. The use of metrics can provide an objective 

source of assessing models, and help to reduce the volume 
of information that we assess by summarising important 
aspects of model behaviour in one or two indices. However, 

EUROPE DJF , Temp SEA DJF , Temp AFRICA DJF , Temp

EUROPE JJA , Temp SEA JJA , Temp AFRICA JJA , Temp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of range of available ensemble covered

Fig. 13  Fraction of the range of projections in temperature spanned by the selected 8-member subset across each of the 3 regions and seasons 
DJF and JJA

EUROPE DJF , Precip SEA DJF , Precip AFRICA DJF , Precip

EUROPE JJA , Precip SEA JJA , Precip AFRICA JJA , Precip

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of range of available ensemble covered

Fig. 14  Fraction of the range of projections in precipitation spanned by the selected 8-member subset across each of the 3 regions and seasons 
DJF and JJA
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difficulties in identifying meaningful indices mean that 
these metric-based approaches may not provide all of the 
information that might be useful and in data-sparse regions 
may not give a good guide to model performance. Further 
subjectivity is introduced in such approaches by the defi-
nition of thresholds for ‘good/bad’ models, or appropriate 
weighting schemes, as well as the choice of metric used. 
Here a combination of metrics and assessment by visual 
inspection of mapped fields has been used. Assessing by 
visual inspection allows us potentially to identify a wide 
range of characteristics of error, but introduces a high level 
of subjectivity. We manage this subjectivity by clearly jus-
tifying decisions with clear lines of evidence in order to 
make these decisions transparent.

Our assessment has also necessarily been limited to a 
restricted number of criteria as it is not feasible to under-
take full assessments of all CMIP5 models. As an increas-
ing body of literature on both the performance and pro-
jections of CMIP5 models emerges, others will be able to 
draw on a wider range of well documented evidence for 
selection. Efforts to gather and share well-documented 
metrics from CMIP5 models, such as those currently being 
undertaken by the WCRP Climate Model metrics Panel, 
could provide a valuable basis for the informed selections 
which are likely to become an increasingly important stage 
in the development of regional climate change projections.

Linking the baseline behaviour of a model to the cred-
ibility of its projections remains a key difficulty in consid-
ering elimination or downweighting of ensemble members. 
It is notable that those models which have a tendency to 
show less realistic behaviour are often those for which 
projections lie on the margins of, or outside the, range of 
the majority of the ensemble (for example, MIROC-ESM, 
MIROC-ESM-CHEM, inmcm4, IPSL-CM5A-LR and BNU-
ESM are all models which were flagged with ‘implausible’ 
or ‘significant biases’ ratings). This methodology provides 
a useful mechanism for flagging these cases for further 
investigation, but there is clearly potential for deeper scien-
tific investigation into the plausibility of these projections.

The process of systematically assessing models’ base-
line behaviour before downscaling has the further benefit of 
providing very useful contextual information for interpre-
tation and appropriate application of the projected changes 
for the region(s) of interest. We know that some aspects of 
climate are poorly represented in all models due to com-
mon errors—for example, Hung et al. (2013), find spatial 
characteristics of the Madden Julian Oscillation are poorly 
represented in all but one CMIP5 model, which mean that 
we can have only limited confidence in their representation 
of intra-seasonal variability for tropical regions affected by 
this feature. While common deficiencies such as this may 
not provide information that is useful for differentiating 
between models for selection, their identification as a part 

of the selection process may lead to improved understand-
ing of the limitations of all of the available climate projec-
tions in realistically representing changes in some of the 
more complex aspects of a region’s climate.

We have demonstrated how a selection approach might 
be applied to the identification of a set of GCMs which is 
suitable for use across multiple regions. We have shown 
that the identifying an ‘optimal’ subset to span changes 
in mean temperature and precipitation across three large 
continental-scale regions does not reduce substantially the 
proportion of the full range that we would hope to capture 
compared with selecting ‘optimal’ subsets for each region. 
However, the potential exclusion of some models based 
on very poor performance presents a more difficult prob-
lem for multi-region selection. The models MIROC-ESM-
CHEM and MIROC-ESM were found to perform poorly 
enough in Europe and southeast Asia that we considered 
their projections for those regions as ‘implausible’. How-
ever, no such performance issues were found in Africa, 
and the exclusion of those models based on performance 
in other regions leads us exclude the projections with larg-
est JJA rainfall increases in Africa from the subset. While 
there are clearly differences in the relative skill of models 
from one region to another, there are direct and indirect 
dependencies between phenomena from one region to the 
next which could justify a multi-region approach. A sin-
gle region approach might overlook remote processes with 
indirect relevance. At the other end of the spatial scale 
spectrum, there may users of climate information who 
are interested in climate data at the single-grid-cell level. 
FRC is calculated and shown at the grid-box level in order 
to show the geographical variations within sub-regions. 
However, grid-scale information from either the GCM or 
downscaled GCM is of very limited value in isolation due 
to known errors in climate models in resolving processes 
at the model’s highest spatial resolutions (e.g. Masson and 
Knutti 2011).

The method described in this paper uses selection to 
address the problem of capturing GCM uncertainty which 
is known to be large, and in the case of precipitation, some-
times contradictory between models for some regions 
(Knutti and Sedlacek 2012), while downscaling with only a 
single RCM. Our approach does not account for all sources 
of uncertainty involved in projecting future climate. The 
choice of RCM of course represents a further important con-
tribution to the range of climate outcomes in a region—for 

Fig. 15  The range of regionally-averaged projections in precipita-
tion and temperature spanned by the selected 8-member subset across 
each of the 3 regions and all seasons. Blue selected models, Black 
available models not selected, Grey models which were not consid-
ered for inclusion because they were either eliminated on grounds of 
performance or were not LBC-avail

▸
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example, for Africa the contribution of uncertainty by using 
multiple RCMs has been shown in some studies to be larger 
than that of multiple GCMs (Patricola and Cook 2010; Paeth 
et al. 2011). The development of approaches to the strategic 
selection of RCMs, the design of GCM-RCM combination 
matrices and the interpretation of projections generated via 
‘ad-hoc’ combinations of different GCM-RCM pairs and 
statistical downscaling models are all issues in the design 
and interpretation of modelling experiments designed to 
generate regional climate information that require further 
development. Further exploration of these issues will be of 
great interest to those involved in generating regional cli-
mate projections for impacts and vulnerability applications, 
particularly those involved in the CORDEX (Giorgi et al. 
2009) and ISIMIP (Warszawski et al. 2013) experiments.
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