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Abstract 

Background:  Liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/
MS) is used for comprehensive metabolome and lipidome analyses. Compound identification relies on similarity 
matching of the retention time (RT), precursor m/z, isotopic ratio, and MS/MS spectrum with reference compounds. 
For sphingolipids, however, little information on the RT and MS/MS references is available.

Results:  Negative-ion ESI–MS/MS is a useful method for the structural characterization of sphingolipids. We created 
theoretical MS/MS spectra for 21 sphingolipid classes in human and mouse (109,448 molecules), with substructure-
level annotation of unique fragment ions by MS-FINDER software. The existence of ceramides with β-hydroxy fatty 
acids was confirmed in mouse tissues based on cheminformatic- and quantum chemical evidences. The RT of 
sphingo- and glycerolipid species was also predicted for our LC condition. With this information, MS-DIAL software for 
untargeted metabolome profiling could identify 415 unique structures including 282 glycerolipids and 133 sphin-
golipids from human cells (HEK and HeLa) and mouse tissues (ear and liver).

Conclusions:  MS-DIAL and MS-FINDER software programs can identify 42 lipid classes (21 sphingo- and 21 glyc-
erolipids) with the in silico RT and MS/MS library. The library is freely available as Microsoft Excel files at the software 
section of our RIKEN PRIMe website (http://prime.psc.riken.jp/).
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Background
Liquid chromatography coupled with electrospray ioni-
zation tandem mass spectrometry (LC–ESI–MS/MS) is 
widely used for the comprehensive identification of small 
biomolecules [1]. Compound identification in untargeted 
metabolomics is based on similarity matching of four ele-
ments: the retention time (RT), precursor m/z, isotopic 
ratio, and MS/MS spectrum with reference compounds. 
Our MS-DIAL software integrates all four informa-
tion types; it can process raw MS data of six major ven-
dors (Agilent Technologies, Bruker Daltonics, Sciex, 

Shimadzu, Thermo Fisher Scientific, and Waters) for any 
data acquisition methods such as conventional LC/MS, 
data-dependent MS/MS, and data-independent MS/MS 
acquisitions [2]. It also exploits MS/MS databases such as 
MassBank (26,296 MS/MS spectra covering 3127 authen-
tic compound structures) and NIST14 (234,284 MS/MS 
spectra covering 9344 authentic compound structures) 
for comprehensive metabolome analysis [3]. We can 
also predict the RT by the quantitative structure reten-
tion relationship (QSRR) in combination with multivari-
ate analysis [4, 5], but these reference databases are not 
yet comprehensive: the human metabolome database 
(HMDB) contains 41,993 unique structures in contrast to 
their number in MassBank and NIST14 [6].

The structure elucidation of unknown MS/MS spec-
tra via fragmentation models and rules is one way to 
improve such reference libraries [7–9]. An understanding 
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of the fragmentation scheme in low-energy collision-
induced dissociation (low-energy CID) facilitates the 
theoretic construction of the MS/MS spectra of small 
biomolecules [10]. A successful example is the LipidBlast 
library, a comprehensive construction of in silico MS/MS 
spectra for glycerolipids (and a few sphingolipids) [11]. 
The original LipidBlast library contained in silico MS/
MS spectra for the triple quadrupole mass spectrometer 
(QqQMS) and the Fourier transform mass spectrometer 
(FT-ICR), covering 26 lipid classes with some adduct ion 
varieties. Since then the library has been expanded for 
quadrupole time-of-flight (QTOF) MS with classes such 
as 1,2-diacyl-3-O-α-glucuronosylglycerol (GlcADG) [12], 
fatty acid ester of hydroxyl fatty acids (FAHFA) [13], and 
diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) [2]. 
The combination of LipidBlast and MS-DIAL software 
has identified 1023 glycerolipids in 9 algal species [2].

Here we introduce a theoretical MS/MS library of 21 
sphingolipid classes for negative ionization mode-ESI–
MS/MS [ESI(-)-MS/MS], 8 human ceramide classes [14], 
one murine ceramide class [15], their monoglycosides 
(HexCer), and sphingomyelin. For each class, the sub-
structure of diagnostic fragment ions was identified with 
MS-FINDER software using hydrogen rearrangement 
(HR) rules (Table  1) [9] with detailed manual curation. 
Moreover, their RT was predicted for our LC condi-
tion that can effectively separate multiple lipid classes. 
We also show the comprehensive identification of glyc-
ero- and sphingolipids as the application of MS-DIAL 
software for 4 LC/MS/MS data: human cervical cancer 
(HeLa) cells, human embryonic kidney (HEK) cells, and 
liver- and ear tissues of C57BL/6 mice. Two libraries, 
one for glycerolipids and the other for sphingolipids, are 
stored as LipidBlast templates; they can be downloaded 

at the standalone software section of the RIKEN PRIMe 
website (http://prime.psc.riken.jp/).

The roles of our two programs, MS-DIAL and MS-
FINDER, are as follows. MS-DIAL handles raw MS data 
for the ‘entire metabolome profiling’, and MS-FINDER 
uses MS/MS peaks in ASCII format, i.e. the pairs of 
m/z and intensity, for the structure elucidation from 
unknown spectra and for the substructure annotation of 
fragment ions. The spectral library in this work is used by 
both programs, which in combination allow us to auto-
matically identify lipid molecules from the stage of raw 
MS data and from MS/MS peak lists.

Results and discussion
Building blocks of sphingolipids and their fragment 
prediction
The sphingolipid structure consists of 3 building blocks: 
fatty acid, the sphingoid base, and the head moiety 
(Fig. 1a). We focus on 4 types of fatty acid (non-hydroxy 
fatty acid [N], α-hydroxy fatty acid [A], β-hydroxy fatty 

Table 1  Summary of hydrogen rearrangement rules [9]

a  M and M′ indicate the neutralized (hydrogen-supplemented) form
b  Rules of P1, P2, N1, N2, and N3 consider the neutralized form as the precursor
c  Rules of P3, P4, N4, and N5 consider the ionized form as the precursor
d  Bold face indicates the most frequent pattern

Rule ID Ion mode Equationa,b,c Cleaved terminal elementd

P1 Positive M → [M′ − H]+ C, P, S

P2 Positive M → [M′ + H]+ N, O, P, S

P3 Positive M+ → M′+ C, N, O, P, S

P4 Positive M+ → [M′ − 2H]+ C, N, O, P, S

N1 Negative M → [M′ − H]− C, N, O, P, S

N2 Negative M → [M′ − 3H]− C, P

N3 Negative M → [M′ − 2H]− S

N4 Negative M− → M′− C, N, O, P, S

N5 Negative M− → [M′ − 2H]− C, N, O, P, S
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Fig. 1  Building blocks of sphingolipid classes and an example of the 
in silico MS/MS spectrum. a The structural descriptions and abbrevia-
tions for fatty acids, sphingoid bases, and lipid classes are shown. The 
symbols m, o, and n describe the number of repeated substructures. 
The capitals L1 and L2 describe the connected modules among 
sphingoid bases (L1 and L2), fatty acid (L1), and head moieties (L2). 
b The upper (blue) and lower (red) panels show the experimental 
MS/MS spectrum and the in silico MS/MS spectrum of HexCer [NS] 
(d18:1/24:0), respectively. The red arrows indicate bond cleavages. 
Associated formulas with rearranged hydrogens are shown for each 
labeled cleavage
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acid [B], and esterified ω-hydroxy fatty acid [EO]), 3 
sphingoid bases (dihydrosphingosine [DS], sphingosine 
[S], and phytosphingosine [P]), and 3 head moieties (hex-
ose [HexCer], hydrogen [Cer], and phosphocholine [SM]) 
(Table 2). The symbols in brackets indicate the notation 
for each block used by Masukawa et al. [14]. We do not 
discuss 6-hydroxy sphingosine and gangliosides because 
their identification remains difficult in our analytic 
framework. The spectral annotations of the negative ion 
mode, ESI(-), in low-energy collision-induced dissocia-
tion (CID) were addressed because the characterization 
of sphingolipid classes is frequently performed by ESI(-) 
in the LC–ESI–MS/MS-based lipidomics approach.

Theoretical fragmentation for each sphingolipid 
class was extrapolated from the pattern of reference 
compounds. Structural analyses to determine the acyl 
chain length, double-bond count, and lipid class can be 
performed by the interpretation of the MS/MS spec-
trum. The mass fragmentation per lipid class is highly 
conserved among their acyl chain varieties. Figure  1b 
shows an example for HexCer [NS] (d18:1/24:0) of the 
acetate adduct. The bond cleavage position and the HR 
in the cleavage were determined with the computa-
tional MS/MS fragmentation program MS-FINDER, 
which implements the HR rules [9]. The results of frag-
ment assignment were manually checked for multiple 
acyl chain varieties in the same sphingolipid class and 

reliably detected fragment ions were registered as diag-
nostic ions. Each fragment ion was annotated as a neu-
tralized (i.e., valence-satisfied) structure plus or minus 
hydrogen(s) and shown as [M  ±  aH]+ or [M  ±  bH]−, 
where M stands for the neutralized structure, and a/b 
for the number of rearranged hydrogens. Ion abun-
dances were determined by the heuristic model [11] from 
experimental data obtained in this study (see “Methods/
experimental”).

Fragmentation of sphingolipids in negative ion mode
Here we introduce the substructure assignments of two 
ceramide species, Ceramide [NS] (d18:1/26:0) and Cera-
mide [AS] (d18:1/16:0). Other species were determined 
similarly; their details are presented in Additional file 1: 
Fig. S1.

Fragment annotation of ceramide [NS], the major cera-
mide class, was performed with the MS-FINDER program 
in combination with substantial manual curation (Fig. 2a). 
The bond cleavage and the counts of hydrogen rearrange-
ment were determined by the HR rules (Table 1). A total 
of 10 diagnostic ions was considered to be reliable frag-
ment ions to define the Ceramide [NS] class: three (b, c, 
and d) and two (e and f) fragment ions in addition to their 
dehydration ions were the specific (unique) ions of fatty 
acid and of the sphingoid base, respectively. The assign-
ments of fragments a, b, d, and f were annotated as a 

Table 2  Summary of sphingolipid classes and MS/MS spectra developed in this study. Abbreviation source: Ref. [14]

Name Abbreviation Structure count Spectra count Adduct type

Sphingomyelin SM 3384 6768 Formate, acetate

Ceramide non-hydroxyfatty acid-sphingosine Cer [NS] 3360 10,080 Proton, formate, acetate

Glucosylceramide non-hydroxyfatty acid-sphingosine HexCer [NS] 3360 10,080 Proton, formate, acetate

Ceramide non-hydroxyfatty acid-dihydrosphingosine Cer [NDS] 1120 3360 Proton, formate, acetate

Glucosylceramide non-hydroxyfatty acid-dihydrosphingosine HexCer [NDS] 1120 3360 Proton, formate, acetate

Ceramide α-hydroxy fatty acid-sphingosine Cer [AS] 3360 10,080 Proton, formate, acetate

Glucosylceramide α-hydroxy fatty acid-sphingosine HexCer [AS] 3360 10,080 Proton, formate, acetate

Ceramide α-hydroxy fatty acid-dihydrosphingosine Cer [ADS] 1120 3360 Proton, formate, acetate

Glucosylceramide α-hydroxy fatty acid-dihydrosphingosine HexCer [ADS] 1120 3360 Proton, formate, acetate

Ceramide β-hydroxy fatty acid-Sphingosine Cer [BS] 3360 10,080 Proton, formate, acetate

Glucosylceramide β-hydroxy fatty acid-sphingosine HexCer [BS] 3360 10,080 Proton, formate, acetate

Ceramide β-hydroxy fatty acid-dihydrosphingosine Cer [BDS] 1120 3360 Proton, formate, acetate

Glucosylceramide β-hydroxy fatty acid-dihydrosphingosine HexCer [BDS] 1120 3360 Proton, formate, acetate

Ceramide esterified ω-hydroxy fatty acid-sphingosine Cer [EOS] 25,536 76,608 Proton, formate, acetate

Glucosylceramide esterified ω-hydroxy fatty acid-sphingosine HexCer [EOS] 25,536 76,608 Proton, formate, acetate

Ceramide esterified ω-hydroxy fatty acid-dihydrosphingosine Cer [EODS] 8512 25,536 Proton, formate, acetate

Glucosylceramide esterified ω-hydroxy fatty acid-dihydrosphingosine HexCer [EODS] 8512 25,536 Proton, formate, acetate

Ceramide a-hydroxy fatty acid-phytospingosine Cer [AP] 2772 8316 Proton, formate, acetate

Glucosylceramide a-hydroxy fatty acid-phytospingosine HexCer [AP] 2772 8316 Proton, formate, acetate

Ceramide non-hydroxyfatty acid-phytospingosine Cer [NP] 2772 8316 Proton, formate, acetate

Glucosylceramide non-hydroxyfatty acid-phytospingosine HexCer [NP] 2772 8316 Proton, formate, acetate
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Fig. 2  MS/MS annotations of two ceramides in negative ion mode of low energy CID: a ceramide [NS] (d18:1/26:0) and b ceramide [AS] (d18:1/16:0) 
as acetate adduct forms. The substructure ions were combinatorially assigned with hydrogen rearrangement (HR) rules (Table 1). Structures were 
depicted as the neutralized form, and the total count of rearranged hydrogens was assigned. The fragment ion arising from the internal rearrange-
ment, which cannot yet be assigned by HR rules, is depicted in red
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bond cleavage and the formation of a new double bond 
(one proton loss plus two hydrogen losses), formulated 
as HR rules N2. Fragments a and c were explained as the 
result of one proton loss (HR rule N1), and fragment e 
was assigned as the result of two bond cleavages and the 
formation of two new double bonds (or rings), formulated 
as the combination of HR rule N2 and N5 (one proton 
loss plus four hydrogen losses).

We also demonstrate the fragmentation of Ceramide 
with α-hydroxy fatty acid, Ceramide [AS] (d18:1/16:0), to 
describe the specificity of mass fragmentation compared 
to the Ceramide [NS] MS/MS spectra. We assigned a 
total of 14 diagnostic ions as the reliable and common 
ions of Ceramide [AS]. Most fragment ions (a, b, c, e, f, 
g) were generated by a bond cleavage and the formation 
of a new double bond (one proton loss plus two hydro-
gen losses), formulated as HR rule N2. Fragments d and 
f were explained as the result of one proton loss (HR rule 
N1), and fragment h was assigned as the result of two 
bond cleavages of one proton loss (the combination of 
HR rules N1 and N3). A unique fragment, m/z 271.227, 
was frequently monitored in the fragmentation of cera-
mides in ESI(-)-MS/MS [16] and considered to be the 
result of a nucleophilic substitution reaction: a nucleo-
philic hydroxyl anion of sphingoid moiety reacts with the 
ketone carbon of the fatty acid moiety. This fragment ion 
can also be monitored in Ceramide [NS] although the ion 
abundance is too low to be detected.

RT prediction for the highly ‘step‑formed’ chromatographic 
condition
The RT is essential for filtering out false-positive metabo-
lites and for distinguishing the isomers of target mol-
ecules. The quantitative structure retention-relationship 
(QSRR) approach is one of the ‘golden’ techniques for 
predicting the RT of small biomolecules.

The lipid metabolites of murine ear tissue were 
extracted and analyzed with our LC/MS/MS technique 
in both positive- and negative ion mode (see “Methods/
experimental”). Identification was performed with MS-
DIAL version 2.24. A total of 284 identified lipids, includ-
ing 12 sphingolipid- and 13 glycerolipid classes, was used 
as the training set (Additional file 2: Table S1).

Using the PaDEL program [17], 2325 chemical descrip-
tors were calculated on the basis of two dimensional 
structural information. We first examined the relation-
ship between the calculated Log P (octanol–water par-
titioning coefficient) and the RT of identified lipids 
because the Log P value is known to correlate with RT 
in reverse-phase LC [18] (Fig.  3a). We used XLogP as 
its estimation [19]. Our findings suggested that 1) XlogP 
alone is not enough for the RT prediction, and 2) the elu-
tion profiles are substantially different between the LC 
gradients, stage B (isocratic condition) and stage C (gen-
tle gradient condition) (see Fig. 3a, right panel).

To construct regression models separately for our step-
forming chromatographic condition, we separated the 
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Fig. 3  Retention time prediction of lipids in reverse-phase liquid chromatography. a The x- and y-axes show the calculated LogP (XLogP) and the 
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are depicted as blue, red, and black circles, respectively. b The x- and y-axes show the experimental- and predicted retention times, respectively. The 
colors indicate the gradient stage. Two equations for retention time predictions of stage A + B and stage C are shown. SD is the standard deviation 
of the prediction errors
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284 lipids into 168 and 116 lipid sets for range A +  B 
(XLogP: 5.0–16.6) and range C (XLogP: 15.9–32.1), 
respectively. We first selected 47 descriptors on the 
basis of the correlation coefficient between the RT and 
each descriptor (threshold ≥  0.85), and applied a mul-
tiple regression model with the ‘forward-step’ function 
for each set (see “Methods/experimental”). Six and four 
descriptors were selected for the ranges A +  B and C, 
respectively (Fig. 3b). In the prediction model of the range 
A +  B, an electrotopological state index (SssCH2) [20], 
a carbon type descriptor (C2SP3) [17], an information 
content descriptor (BIC0) [21], and two autocorrelation 
descriptors (ATSC2  m and ATSC2v) [21] were utilized 
in addition to a hydrophobicity value XLogP. The first 
three descriptors SssCH2, C2SP3, and BIC0 can be inter-
preted as the effects of carbon connectivity, considering 
the electronic state in the -CH2- moiety, the sp3 hybrid 
orbital, and the complexity of bond graphs, respectively. 
Two autocorrelation descriptors, ATSC2 m and ATSC2v, 
describe the repeated substructure in a molecule, pro-
viding information on the acyl chain properties. On the 
other hand, a different descriptor for hydrophobicity was 
used to model range C (Lipoaffinity index) [22]. A Barysz 
distance matrix-based descriptor (SpMAD_Dzi) describ-
ing the ionization potential of heteroatoms was also used 
[21]. Consequently, the integration of hydrophobicity 

(XLogP and LipoaffinityIndex), the environment of the 
carbon atom (C2SP3, SssCH2, BIC0), and the electronic 
state of the heteroatom (SpMAD_Dzi) was important 
for the RT prediction of lipids in our reverse phase LC. 
The predicted RT exhibited a standard deviation (SD) 
of 0.14 min, an acceptable error for the filtering of com-
pound identifications.

Annotation of β‑hydroxy ceramide, ceramide [BS], 
with chemoinformatic and quantum chemical evidence
In Fig. 4, we emphasize the utility of the in silico RT and 
the MS/MS approach for Ceramide [BS] (d18:1/26:0). 
While there is no authentic standard for some lipid 
classes including a ceramide with β-hydroxy fatty acid, 
we concluded the existence of Ceramide [BS] species in 
murine ear tissue for the following reasons [15]. First, the 
RT of ceramide [BS] is earlier in reverse-phase LC than 
that of ceramide [AS] of the same precursor mass. The 
Log P value is known to correlate with RT in reverse phase 
LC [18], and the calculated Log P value (XLogP [19]) was 
smaller for β-hydroxy fatty acid (10.216 at Ceramide [BS] 
(d16:1/14:0)) than for α-hydroxy fatty acid {10.693 at Cer-
amide [AS] (d16:1/14:0)}. Second, in the ESI(+)-MS/MS 
spectrum, we detected up to two dehydrations (–2H2O) 
from the same ceramide whose spectrum is clearly dif-
ferent from that of phytosphingosine (Additional file  1: 
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Fig. S1). In other words, the unique sphingosine fragmen-
tat ions were monitored in ESI-(+)-MS/MS (Additional 
file 3: Fig. S2). For validation, we examined the fragmen-
tation scheme to generate the base peak ion m/z 340.2797 
in Fig. 4a using a quantum chemistry approach. Since we 
could not find any unique fragment in the MS/MS spec-
trum to define the hydroxylated position, we posited the 
possibility of two structures, β- or γ-hydroxy fatty acid 
ceramides, as two candidates. In fact, m/z 340.2797 can 
be explained as the result of a simple α-elimination pro-
cess where the reaction is known in negative ion mode 
of low-energy CID. The α-elimination process to gener-
ate the base peak ion of β-hydroxy ceramide (Scheme A 
in Fig. 4b) was compared with a fragmentation process of 
γ-hydroxy ceramide to generate the same ion (Scheme B 
in Fig. 4c). An α-elimination process in γ-hydroxy cera-
mide (Scheme C in Fig. 4c) that results in a fragment dif-
ferent from m/z 340.2797 was also considered. Changes 
in the heat of formation along with the fragmentation 
processes were calculated and energetic barriers were 
evaluated using the semi-empirical PM7 method imple-
mented in MOPAC2016 [23]. Scheme B required higher 
energy than scheme A (37.14 vs 17.23  kcal  mol−1). In 
contrast, scheme C required almost the same amount of 
energy (15.90 kcal mol−1) as scheme A. Since γ-hydroxy 
ceramide prefers scheme C (α-elimination), the fragment 
ion of m/z 340.2797 cannot be produced from γ-hydroxy 
ceramide through scheme B. In addition, as β- and 
γ-hydroxy ceramide preferred the α-elimination process, 
it is likely that ceramide hydroxylated on other positions 
on its fatty acid moiety also prefers that process. Thus, 
the base peak ion can be regarded as an ion specific for 
β-hydroxy ceramide.

Application of the in silico RT and MS/MS library 
to biological samples
The in silico RT and MS/MS spectra developed in this 
study were used in both MS-DIAL and MS-FINDER 
to compute spectral similarity as the dot product. The 
library currently contains the unique lipid structures 
of 42 lipid classes (21 glycerolipids and 21 sphingolip-
ids) that can deal with both positive and negative ion 
modes, and several adduct types such as proton (H+/−), 
ammonium (NH4

+), sodium (Na+), formate (HCOO−), 
and acetate (CH3COO−) adducts. The peak intensity of 
diagnostic ions (normalized to 0–999) was empirically 
determined by checking representative MS/MS spectra 
in each lipid class, and the intensity was shared among all 
lipids in the same class. The library can be downloaded as 
LipidBlast templates at the standalone software section 
of the RIKEN PRIMe website (http://prime.psc.riken.jp/).

To avoid overfitting to particular analytical batches, 
biological tissues, or column lot differences, four 

additional LC-ESI(-)-MS/MS data sets were evaluated: 
murine ear tissue (two replicates, one of which was used 
as the training set for RT prediction; analyzed on Febru-
ary 6, 2015), murine liver tissue (six replicates analyzed 
on June 15, 2016), HEK cells (three replicates analyzed on 
December 9, 2015), and HeLa cells (three replicates ana-
lyzed on December 9, 2015). All results were manually 
checked and total 415 unique lipid structures were con-
firmed (Table 3; Additional file 2: Tables S2, S3, S4, and 
S5). For these 415 structures, the average rate of false dis-
covery (FP/(TP + FP)) and true positive (TP/(TP + FN)) 
was 5.6 and 99.1%, respectively. The standard deviation 
of predicted RT errors was 0.31 min although the LC col-
umns of different lot numbers were used for the analyses 
of (1) ear tissue, (2) HEK and HeLa cells, and (3) liver tis-
sue (Fig. 5a). The accuracy of RT predictions was not high 
enough to distinguish the structural isomers such as cis/
trans and acyl chain positions because the RT differences 
of their isomers are practically less than 10  s. However, 
these errors are attributable to the irreproducibility of 
LC column lots because we encountered large differences 
in the experimental RT of several lipid molecules among 
our analyses (maximal 1.1 min RT difference, Additional 
file 2: Tables S2, S3, S4, S5).

Table 3  Summary of  identified lipids in  four biological 
samples

Class HEK HeLa Mouse liver Mouse ear

Cer [ADS] 0 0 0 6

Cer [AS] 0 0 0 7

Cer [BDS] 0 0 0 4

Cer [BS] 0 0 0 6

Cer [EOS] 0 0 0 12

Cer [NDS] 0 2 1 11

Cer [NS] 17 27 14 19

Cer [NP] 1 2 1 3

Cer [AP] 0 0 1 11

HexCer [NDS] 0 0 0 4

HexCer [NS] 7 6 5 12

SM 6 10 6 3

LysoPC 5 10 6 7

LysoPE 3 4 5 3

PC 38 29 35 32

PE 30 29 31 23

PG 12 14 10 7

PI 29 32 18 16

PS 8 17 1 10

Plasmenyl-PC 6 5 0 3

Plasmenyl-PE 19 20 6 12

FA 17 24 12 14

Total 198 231 152 225

http://prime.psc.riken.jp/
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In fact, the predicted RTs were powerful for filtering 
out many false-positives, and the combination of the in 
silico RT and MS/MS spectrum facilitated the determi-
nation of the lipid class, acyl chain lengths, and double-
bond counts. In the lipidome data of murine ear tissue 
analyzed by LC-ESI(-)-MS/MS, 21 lipid classes, including 
10 glycerolipid- and 11 sphingolipids, were simultane-
ously identified in a single run (Fig. 5b; Additional file 4: 
Fig. S3). Although there was a drastic change in the RT 
behavior of ceramide species at around 12  min on the 
chromatogram, MS-DIAL could correctly assign these 

lipids based on predicted RT information and theoretical 
MS/MS spectra.

Lastly, we discuss the lipid distribution in four biologi-
cal samples (Fig. 5c; Additional file 5: Fig. S4). Note that 
there are false-negatives due to 1) MS sensitivities and 2) 
incompleteness of MS/MS spectra in the data-dependent 
acquisition mode: the only lipids we could identify by the 
checking the RT and MS/MS spectrum are shown. For 
example, determination of acyl moieties in the sphingo-
myelin (SM) class is difficult because the ion abundance 
of sphingoid base fragment ions is rarely monitored in 
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our MS/MS setting although we can identify the lipid 
class as SM by the class specific diagnostic ions. Never-
theless, hierarchical clustering analysis (HCA) on the 
basis of a binary vector matrix of lipids (lipid descriptors) 
[2] reflected differences in their biological background 
(Fig.  5c). The glycerolipids containing even-length fatty 
acid chains from 16 to 24 and sphingolipids containing 
sphingosine d18:1 were the common chains among the 
four biological samples. Sphingadienine (d18:2) contain-
ing Ceramide [NS] was frequently monitored in HEK- 
and HeLa cells. The diversity of acyl chains, especially in 
phosphatidylinositol (PI), phosphatidylserine (PS), and 
Ceramide [NS] was larger in HeLa cells than the other 
samples. This can be interpreted as the overexpression 
of gene functions in cancer cells. On the other hand, 
many odd-length lipid chains (mostly 17:0 and 17:1) 
were identified in murine liver and ear tissues; they can 
be catalyzed from the diet and synthesized by microbi-
ota. Likewise, the variety of ceramide classes was larger 
in murine ear tissues than in the other samples: sphin-
golipids including Cer [AS], Cer [ADS], Cer [BS], Cer 
[BDS], Cer [EOS], and HexCer [NDS] were identified in 
murine ear tissue. This observation suggests that the bar-
rier functions in skin are regulated by a combination of 
ceramide classes and their acyl chain moieties.

Conclusions
The use of the enriched in silico RT and MS/MS data-
base was demonstrated as the application of MS-DIAL 
software. Currently, 42 lipid classes, including 21 glyc-
erolipids and 21 sphingolipids, can be identified in MS-
DIAL. Their diagnostic ions were theoretically assigned 
by hydrogen rearrangement rules (implemented in MS-
FINDER) in combination with manual curation (Addi-
tional file 1: Fig. S1, Additional file 3: Fig. S2, Additional 
file  4: Fig.  S3). Although their ion abundances were 
empirically optimized in the Sciex QTOFMS instrument 
at the collision energy of 40 with a 15 spread, the MS/MS 
library has been successfully utilized on other machines 
such as Waters-, Brucker-, and Agilent QTOF-MS, and 
on Thermo Q-Exactive with the optimization of their MS 
conditions (data not shown).

Some issues need improvement for the MS/MS-ori-
ented identification of lipid species. To deal with all lipid 
diversities, we do not require all structures in the MS/
MS database, i.e. all combinations of fatty acids, sphin-
goid bases, and lipid classes. Instead, the dictionary of 
fatty acid- and sphingoid chains and lipid classes may 
be sufficient for the generation and consideration of all 
lipid molecules. This would substantially reduce the data-
base size, thereby reducing the random access memory 
(RAM) space. Furthermore, rule-based identification can 
be implemented to determine the identification level of 

the target lipid molecules like 1) PC (16:0/18:1(9Z)), if the 
MS/MS spectrum and retention time are confirmed by 
an authentic standard, 2) PC (16:0/18:1), if all diagnostic 
fragments for a lipid class and acyl chain are monitored, 
and 3) PC 34:1, if only diagnostic fragments to deter-
mine the lipid class are monitored. These computational 
improvements in MS-DIAL will be addressed elsewhere. 
Finally, we highly recommend sharing the in silico MS/MS 
of novel lipid classes by the metabolomics community for 
the comprehensive identification of small biomolecules.

Methods/experimental
Structure generation for sphingolipid molecules
All ceramide structures were generated by the SMILES 
codes for fatty acid, sphingoid, and head moieties. The 
acyl chain lengths of fatty acid and sphingoid moieties 
ranged 12–36 and 14–30, respectively. The double-bond 
counts of fatty acid and sphingoid moieties ranged 0–3 
and 0–7, respectively. Among structural isomers, one 
SMILES code was chosen as the ‘representative’ structure. 
The double bond of fatty acid was regarded as cis confor-
mation while the double bond of sphingoid was regarded 
as trans. The bond positions were determined by the 
information from literature and LipidMaps (http://www.
lipidmaps.org). The SMILES codes were used to calculate 
their retention times. Integration was performed with a 
Microsoft Excel macro. The SMILES file was converted to 
an SDF file, and the SDF file to a SMILES file for format-
ting as daylight SMILES by means of ChemAxon Molcon-
vert. The structures of sphingomyelin were downloaded 
from the LipidMaps website (http://www.lipidmaps.org/). 
The exact mass, formula, and InChIKey were generated 
by the ChemAxon Calculator. The precursor m/z of each 
lipid molecule was calculated as the proton adduct/loss, 
formate adduct, and acetate adduct by Microsoft Excel.

MS/MS databases and fragment annotations
Over 1000 experimental measurements including refer-
ence compounds were performed by our LC/MS/MS 
condition. MS-FINDER version 1.76 was used to assign 
the substructure ions to the experimental fragment ions. 
Mass tolerance was set to 10 mDa, and the tree depth 
was set to two for in silico fragmentations. To reduce 
false-positive annotations, several lipid molecules con-
taining different numbers of carbon atoms and double 
bonds were manually checked for each lipid class and 
the common features were extracted. The m/z values of 
the substructure ions were calculated in Microsoft Excel; 
they were managed as modified LipidBlast templates. The 
ion abundances were heuristically optimized by our LC/
MS/MS condition as described elsewhere [11]: the col-
lision energy and collision energy spread were set to 40 
and 15 in the Sciex TripleTOF 5600 system, respectively.

http://www.lipidmaps.org
http://www.lipidmaps.org
http://www.lipidmaps.org/
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RT prediction for lipids
Two modified LipidBlast templates, one for glycerolip-
ids and the other for sphingolipids, are managed in our 
lipidomics project (http://prime.psc.riken.jp). All of the 
SMILES code included in the templates was converted to 
SDF files. The PaDEL descriptor software was utilized to 
calculate one- and two-dimensional molecular descriptors 
and PubChem fingerprints from the SDF files [17]. Redun-
dant and uniform variables were excluded, and the corre-
lation coefficients between the RT and descriptors were 
calculated. Finally, 47 descriptors whose correlation coef-
ficient exceeded 0.85 were used as predictor variables in 
regression analysis. The RT information of 284 lipids was 
used for model development. These lipid sets were sepa-
rated based on the LC gradient stage (right panel in Fig. 3a) 
into 168- and 116 lipid sets for the range A + B (XLogP: 
5.0–16.6) and C (XLogP: 15.9–32.1), respectively. A mul-
tiple regression model was used for RT predictions. The 
‘forward-step’ function which applies the Akaike Informa-
tion Criterion (AIC) for model selection was used to deter-
mine important variables. Six (XLogP, SssCH2, C2SP3, 
BIC0, ATSC2  m, ATSC2v) and four (XLogP, Lipoaf-
finityIndex, SpMAD_Dzi, C2SP3) descriptors were used 
for range A +  B and range C, respectively (Fig.  3b). The 
coefficients of XLogP, SssCH2, C2SP3, BIC0, ATSC2  m, 
ATSC2v, and the intercept in stage A + B were 0.55, 0.17, 
0.048, 71, −0.0022, 0.00081, −14, respectively. The coeffi-
cients of XLogP, LipoaffinityIndex, SpMAD_Dzi, C2SP3, 
and the intercept in stage C were 0.16, 0.076, −0.14, 0.085, 
and 9.5, respectively. The RT calculation of lipid mol-
ecules included in the modified LipidBlast templates was 
based on the XLogP value: the equation of range A +  B 
was applied at XLogP  <=  15.9, the equation of range C 
at XLogP > = 16.6, and the average of two equations was 
applied at 15.9  <  XLogP  <  16.6. RT information of 1946 
newly identified lipids from four biological samples was 
used for validating that accurate precursor ion masses and 
MS/MS spectra were confirmed by RT matching.

MS‑DIAL software and data processing parameters
The program of MS-DIAL version 2.24 was used in this 
study. The in silico RT and MS/MS spectra of 42 lipid 
classes (21 glycerolipids and 21 sphingolipids from Lipid-
Blast templates) were implemented in MS-DIAL and 
MS-FINDER. The chain length for fatty acid and sphin-
goid was restricted to10–26 and 16–22, respectively, to 
be used for mammalian cells. The raw MS files (WIFF 
format file) were converted to ABF (analysis base file 
format) using the freely available Reifycs file converter 
(http://www.reifycs.com/AbfConverter/). The ABF files 
were imported into MS-DIAL, and the parameters were 
set as follows: (data collection) RT begin, 0  min; reten-
tion time end, 17  min; mass range begin, 0  Da; mass 

range end, 1500 Da; MS1 tolerance, 0.01 Da; MS2 toler-
ance, 0.05 Da; (peak detection) smoothing method, linear 
weighted moving average; smoothing level, 2 scan; mini-
mum peak width, 5 scan; minimum peak height, 1000 
amplitude; mass slice width, 0.1 Da; exclusion mass list, 
none; (identification) retention time tolerance, 2  min; 
MS1 accurate mass tolerance, 0.01  Da; MS2 accurate 
mass tolerance, 0.05 Da; identification score cut off, 80%.

Compound identification
All diagnostic ions that determine the lipid class, acyl 
chain length, and double-bond count were manually 
checked in combination with the predicted RT infor-
mation; 432, 560, 535, and 419 lipids were annotated 
in HEK cells (three replicates), HeLa cells (three repli-
cates), murine liver tissues (six replicates), and murine 
ear tissues (two replicates), respectively (Additional file 2: 
Tables S2, S3, S4, and S5). The false discovery rate (FDR) 
and true positive rate (TPR) of the automated MS-DIAL 
output were calculated for 415 reliably identified lipid 
molecules. The total 1946 lipids were integrated by dis-
regarding the acyl chain positions (sn1, sn2, sn3), double 
bond positions, and stereoisomers (E, Z) as described 
elsewhere [2]. For the remaining 415 lipids, the presence 
or absence in each of four biological samples was repre-
sented as a 415 × 4 binary data matrix (Additional file 2: 
Table S6). Hierarchical clustering analysis was performed 
using R statistical language (http://www.R-project.org) 
and the package ‘amap’ (http://CRAN.R-project.org/
package=amap). The distance was calculated by ‘binary’ 
in the package and linkage was performed by ‘single’.

Reagent and sample preparation
The preparation and extraction procedures of the bio-
logical samples were as described by Yokomizo et  al. 
[24]. Methanol (MeOH), isopropanol (IPA), and ace-
tonitrile (Ace) of LC–MS grade were purchased from 
FLUKA, and ammonium acetate and EDTA from Wako 
and Dojindo, respectively. Milli-Q water was purchased 
from Millipore. The bead pulverizing machine and 2-mL 
glass tubes were purchased from Bertin Technologies and 
FCR&Bio, respectively. Authentic standard compounds, 
Ceramide [NS] (d18:1/25:0), [AS] (d18:1/24:1), [AP] 
(t18:0/24:0), and [NP] (d18:1/24:0), glucosyl Ceramide 
[NS] (d18:1/24:1), and SM (d18:1/12:0) were purchased 
from Avanti Polar Lipids Inc. HEK293- and HeLa cell 
lines were cultured in D-MEM (high-glucose) with l-glu-
tamine (Wako) containing 10% fetal bovine serum (FBS) 
and Pen Strep glutamine (PSG), and incubated in 5% CO2 
at 37  °C in six-well cell culture multiwell plates (Greiner 
bio-one). After 1 h-cultivation, the medium was aspirated, 
cells were washed on the plates with 10  mM Tris–HCl 
(pH 8.0) buffered saline. The solution was transferred to a 

http://prime.psc.riken.jp
http://www.reifycs.com/AbfConverter/
http://www.R-project.org
http://CRAN.R-project.org/package%3damap
http://CRAN.R-project.org/package%3damap
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new glass tube, and then dried with a vacuum dryer. Liver 
and ear tissues of C57BL/6  J mice (CLEA Japan, Tokyo, 
Japan) were harvested according to the ethical protocol 
approved by the RIKEN Center for Integrative Medical 
Sciences. Tissues were frozen immediately after dissection 
and stored at −80 °C until lipid extraction.

For lipid extraction of HEK- and HeLa cells, chloro-
form (100 μL) was added to dried cells in a tube, followed 
by 30-s sonication. After 60-min incubation at room tem-
perature, 200 μL of MeOH were added and vortexed for 
10 s. After 120-min incubation we added 20 μL of Milli-
Q water, vortexed again, and left the tube to stand for 
10  min. The cells were then centrifuged at 2000×g for 
10 min at 20 °C. Supernatant was transferred to LC/MS 
vials to determine the phosphorous contents of the lipid 
fraction. The phosphorus content of the extracted lipids 
was quantified by the method of Bartlett [25], and then 
the extracted lipids from HEK and HeLa cells were gen-
tly dried with N2 and reconstituted to 800 μM and 1 mM 
phosphorus with chloroform (methanol  =  1:2), and 
stored at −80 °C until use. For lipid extraction of liver tis-
sue, 144.8 mg in methanol (50 mg tissue/mL) were pul-
verized and homogenized in a bead pulverizing machine 
(6000 rpm for 15 s, ×2). Then 1200 μL of homogenized 
solvent were transferred to a 2-ml glass tube, 600 μL of 
chloroform were added and the tubes were vortexed 
for 10  s. After 60-min incubation at room temperature, 
120 μL of Milli-Q water were added, and the tubes were 
again vortexed for 10  s, incubated for 15  min at room 
temperature, and centrifuged at 2000g for 10  min at 
20  °C. The supernatant was transferred to LC/MS vials. 
For lipid extraction of ear tissue, 29.8  mg in methanol 
(29.8  mg tissue/mL) were pulverized and homogenized 
in a bead pulverizing machine (6500  rpm for 15  s, ×2), 
200  μL of homogenized solvent were transferred to a 
2-ml glass tube, 100  μL of chloroform were added, and 
the tubes were vortexed for 10 s. After 60-min incubation 
at room temperature, 20 μL of Milli-Q water were added, 
the tubes were vortexed for 10 s, incubated for 15 min at 
room temperature, and centrifuged at 2000g for 10 min at 
20 °C. The supernatant was transferred to LC/MS vials.

Analytical conditions
The liquid chromatography system consisted of a Waters 
Acquity UPLC system (Waters Inc.). Mobile phase A 
was 1:1:3 acetonitrile:methanol:water (v/v/v) with 5 mM 
ammonium acetate and 10  nM EDTA. Mobile phase B 
was 100% isopropanol with 5  mM ammonium acetate 
and 10 nM EDTA. The LC column was an Acquity UPLC 
Peptide BEH C18 column (50 × 2.1 mm; 1.7 μm; 130 Å). 
The gradient was 0 min, 0% B; 1 min, 0% B; 5 min, 40% 
B; 7.5  min, 64% B; 12.0  min, 64% B; 12.5  min, 82.5% B, 
19 min, 85% B; 20 min, 95% B; 20.1 min, 0% B; 25 min, 0% 

B. The column flow rate was 0.3  mL/min, the autosam-
pler temperature was 5 °C, the injection volume was 1 uL 
for mouse liver tissue and 2 μL for the other samples. The 
column temperature was 45 °C.

MS was performed on an AB Sciex TripleTOF 5600+ 
system (Q-TOF) equipped with a DuoSpray ion source. 
All analyses were performed in the high sensitivity mode 
for both TOF–MS and product ion scanning. Mass cali-
bration was automatically performed every five injections 
using an APCI positive/negative calibration solution 
and a calibration delivery system (CDS). Data-depend-
ent MS/MS acquisition (DDA) was used. The common 
parameters in both positive and negative ion mode were 
collision energy, 45 V; collision energy spread, 15 V; mass 
range, m/z 70–1250; curtain gas, 30; ion source gas 1, 
50; ion source gas 2, 50; temperature, 500  °C for mouse 
ear tissue and 300  °C for the other samples; decluster-
ing potential, 80  V; RF transmission, default. The ion 
spray voltage floating in positive/negative ion mode was 
+5.5/–4.5 kV, respectively. The DDA parameters in both 
positive and negative ion mode were MS1 accumulation 
time, 250  ms; MS2 accumulation time, 100  ms; cycle 
time, 1300 ms; dependent product ion scan number, 10; 
intensity threshold, 100; exclusion time of precursor ion, 
5 s; mass tolerance, 20 mDa; ignore peaks, within 6 Da; 
dynamic background subtraction, TRUE.
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