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Abstract

Background: Type 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM)
are considered metabolic disturbances. In a previous study evaluating the transcript profiling of peripheral
mononuclear blood cells obtained from T1D, T2D and GDM patients we showed that the gene profile of T1D
patients was closer to GDM than to T2D. To understand the influence of demographical, clinical, laboratory,
pathogenetic and treatment features on the diabetes transcript profiling, we performed an analysis integrating
these features with the gene expression profiles of the annotated genes included in databases containing
information regarding GWAS and immune cell expression signatures.

Methods: Samples from 56 (19 T1D, 20 T2D, and 17 GDM) patients were hybridized to whole genome one-color
Agilent 4x44k microarrays. Non-informative genes were filtered by partitioning, and differentially expressed genes
were obtained by rank product analysis. Functional analyses were carried out using the DAVID database, and
module maps were constructed using the Genomica tool.

Results: The functional analyses were able to discriminate between T1D and GDM patients based on genes
involved in inflammation. Module maps of differentially expressed genes revealed that modulated genes: i)
exhibited transcription profiles typical of macrophage and dendritic cells; ii) had been previously associated with
diabetic complications by association and by meta-analysis studies, and iii) were influenced by disease duration,
obesity, number of gestations, glucose serum levels and the use of medications, such as metformin.

Conclusion: This is the first module map study to show the influence of epidemiological, clinical, laboratory,
immunopathogenic and treatment features on the transcription profiles of T1D, T2D and GDM patients.
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Background
Diabetes mellitus is considered by the World Health
Organization to be a global epidemic. Although the different
types of diabetes have varying incidence rates, it is estimated
that approximately 6.4% of the world adult population have
some type of diabetes [1]. Diabetes is characterized as hyper-
glycemia resulting from a relative or absolute impairment of
insulin secretion as well as peripheral resistance to insulin
[2]. Based on etiology, diabetes mellitus has been classified
into type 1 diabetes (T1D), type 2 diabetes (T2D), gesta-
tional diabetes mellitus (GDM), as well as other types of
diabetes, including genetic defects in β-cell function, gen-
etic defects in insulin action, diseases of the exocrine pan-
creas, endocrinopathies, drug- or chemical-induced forms,
infection-induced diabetes, uncommon forms of immune-
mediated diabetes, and other genetic syndromes associ-
ated with diabetes [2]. The pathogenic mechanisms of
each diabetes type are still unclear, especially in the case
of T2D and GDM. Pregnant women with gestational dia-
betes also have an increased risk of developing T2D, sug-
gesting a close relationship between these types [3,4].
T1D is the most studied type of diabetes, has several

susceptibility loci identified in mice (Idd1-Idd26) and is
characterized by the autoimmune destruction of pancre-
atic beta cells leading to insulin deficiency [5]. Macro-
phages, dendritic cells and lymphocytes are involved in
this pathogenic process through a complex interplay of
mechanisms implicated in the loss of immune tolerance
to autoantigens, including i) the hypoexpression of insu-
lin in the thymus during promiscuous antigen expres-
sion [5,6]; ii) autoantigen presentation mediated by
molecules coded by the HLA-DRB1*04–DQB1:03:02 and
HLA-DR31*03–DQB1*02:01 haplotypes resulting in the
development of insulin autoantibodies (IAA) and auto-
antibodies against the 65 kDa isoform of glutamic acid
decarboxylase (GADA), respectively [7]; iii) a deregulation
of the immune response mediated by either an impaired
expression of surface regulatory molecules (IL2RA, IL2RB,
and CTLA-4) or a deregulation of intracellular signals
(PTPN2 and PTPN22) [8]; iv) a decreased number of sup-
pressive or T regulatory cells [9]; v) a decreased number of
iNKT cells [10]; and vi) a loss of function of molecules in-
volved in the innate immune response [11,12]. In addition,
several other genes have been implicated in the develop-
ment of T1D by human genome wide association studies
(GWAS) [13-15], including genes identified by transcrip-
tome analyses in human or animal models [16,17] that eval-
uated peripheral blood mononuclear cells [18,19],
pancreatic beta cells [20] and whole blood cells [21].
In recent years, genetic mechanisms have also been

shown to affect the development of T2D [22]. Several
studies have associated polymorphisms in the PPARG
and KCNJ11 genes with T2D susceptibility [23]. Other
studies have identified a strong effect of TCF7L2 gene
variants on T2D risk, possibly affecting proglucagon ex-
pression with consequent reduced insulin secretion [23,24].
Indeed, both GWAS and international collaborative efforts
to analyze GWAS data from multiple groups, such as the
Meta-Analysis of Glucose and Insulin-related traits Consor-
tium (MAGIC), have identified other genetic variants asso-
ciated with T2D gene susceptibility [25,26], several of which
were associated with glycemic traits. Many of these groups
of genes were related to abnormal insulin processing
(MADD), higher proinsulin and lower insulin secretion
(TCF7L2, SLC30A8, GIPR, and C2CD4B), and abnor-
malities in early insulin secretion (MTNR1B, FADS1,
DGKB, and GCK) [22]. Although GWAS have identified
susceptibility regions across the genome and transcriptome
studies have indicated several modulated genes in beta cells
and the usefulness of blood RNA profiles [27,28], functional
studies are still needed to understand the role of several
genes obtained from association studies.
The pathogenesis of T1D has been considered to be

different from that of T2D, and information obtained by
GWAS has indicated that most T1D and T2D genetic
loci seem to not overlap. However, there is evidence that
inflammatory processes involving interleukin-1 may play
a role in islet beta cell loss in both types of diabetes [29].
Peripheral blood mononuclear cell (PBMC) energy
metabolism has been found to play a major role in the
pathogenesis of insulin resistance [30]. In addition,
there is increasing evidence that metabolic regulation in
these cells could influence the number of PBMCs, prolif-
eration pathways, molecular basal synthesis and leukocyte
function [31]. In accordance with these findings, transcrip-
tome studies comparing T1D with T2D [32] and T1D with
a control group [18] have revealed changes in the expres-
sion of several genes related to inflammatory response,
fatty acid biosynthesis, hydrolase activity, detoxification of
aldehydes generated by alcohol metabolism and lipid per-
oxidation, all of which could affect the metabolism of
PBMCs in diabetic patients.
Compared with T1D and T2D, GDM has been subject

to fewer linkage studies and transcriptome analyses
[33]. Many genes, however, are known to be associated
with both GDM and T2D, especially those related to
obesity and oxidative stress [34,35]. The mechanisms
linking excess adiposity to an elevated risk of GDM are
not completely understood, but recent evidence points
to the role of specific hormones and cytokines known as
adipokines, which are secreted by the adipose tissue
[36,37]. In addition, transcriptome signatures obtained
from placenta [38] and whole blood cells [39] have iden-
tified genes involved with lipid metabolism that are dif-
ferentially expressed between T1D and GDM. Recently,
in a meta-analysis of the transcription profiles of T1D, T2D
and GDM patients, our group reported that gene expres-
sion signatures of GDM patients were closer to those of



Figure 2 Principal component analysis (PCA) of the major types
of diabetic patients, using the 8,469 informative genes obtained
by the DBF-MCL algorithm. The separation of samples of each type
of diabetes after filtering non-informative genes showed similarities
among them, indicating that sample transcription profiles were not
influenced by the batch effect.
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T1D patients than to T2D [40]. The analyses of gene ex-
pression signatures, however, were impaired by the presence
of multiple variables associated with each type of diabetes.
To circumvent these problems, here we used several bio-
informatics tools to analyze demographical, clinical, labora-
tory, pathogenetic and treatment data against modulated
genes that have been annotated by databases containing in-
formation regarding both GWAS and gene expression sig-
natures displayed by immune cells. This type of comparison
has yielded multiple informative modules that have been
used to perform comprehensive maps in cancer [41], and
here we apply these tools to diabetes.

Results
Overall, a schematic heatmap with all demographic, clinical
and laboratory patient features is shown in Figure 1. The
global partitioning analysis of the three types of diabetes
disclosed 8,469 transcripts considered as informative, which
are available at www.rge.fmrp.usp.br/passos/DBF-MCL, the
principal component analysis (PCA) of these genes are
shown in Figure 2 and the summarized DAVID functional
categories (Kegg pathways) of the main clusters are shown
in Figure 3.
The Venn diagrams yielded shared and specific genes

after statistical analysis by rank products (T1D versus
T2D, T2D versus GDM and T1D versus GDM) (Figure 4)
as well as multiple significant summarized DAVID func-
tional categories (Kegg pathways) (Figure 5). The mod-
ule maps encompassing all analyses, i.e., genes obtained
from both partitioning and rank products, were created
with the set of genes obtained in each of the approaches
described above (Figure 6). Finally, the confirmation by
PCR analysis of important genes involved in diabetes is
shown in Figure 7.

Global analysis of the data set with density-based filter
and Markov clustering (DBF-MCL) and principal component
analysis (PCA)
A list of 8,469 genes obtained from global partitioning
analysis (DBF-MCL method applying a non-informative
filter) yielded informative non-supervised clusters of
Figure 1 Heatmap representative of type of diabetes, demographic, c
Qualitative variables were assigned by the absence or presence of the char
above the mean values. This information was used as array (experimental)
co-regulated genes. Figures showing all non-supervised
clusters and the respective gene list are available at
www.rge.fmrp.usp.br/passos/DBF-MCL. A PCA plot of
filtered genes is shown (Figure 2). Despite we have more
similarity between T1D and GDM, some patients (with
the lowest levels of glycemic levels) were closer to the
other types. Overall, many gene expression profiles are
shared between T1D and GDM. A typical example of this
analysis can be observed in cluster #1 (3,089 probes), in
which all T2D patients shared a group of induced genes
encoding zinc finger proteins, while these same genes
were found repressed in T1D and GDM patients. Simi-
larly, in cluster #12 (216 probes), all T2D patients shared a
group of repressed genes associated with cytokine and
chemokine activity, NOD-like and Toll-like receptor sig-
naling pathways and MAPK signaling pathway (Figure 3).

Supervised analysis of T1D, T2D and GDM patients
To understand the influence of demographic, clinical,
pathogenetic and laboratory features on the differential
linical, laboratory and treatment features of the patients.
acteristic, and quantitative variables were assigned by values below or
set for the module map construction.

http://www.rge.fmrp.usp.br/passos/DBF-MCL
http://www.rge.fmrp.usp.br/passos/DBF-MCL


Figure 3 Heatmap of the significant functional categories of the genes of the clusters obtained by non-informative filters, in the basis
of a FDR≤ 0.1. The Kegg categories were obtained from DAVID knowledge base with an enrichment P value ≤ 0.05 after Benjamini correction.
The grey scale represents the logarithm of the enriched P value.
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gene expression profiles among diabetes patients, a sec-
ond strategy was used. Module maps were created by
comparing the three groups at the same time (from the
partitioning analysis) as well as by the individual two by
two group comparisons. These paired analysis module
maps were constructed based on the results obtained
from statistical analyses of rank products and are repre-
sented in Venn diagrams (Figure 4), disclosing up and
down-regulated genes shared by the same type of dia-
betes in different analysis. The functional categories of
these genes are shown in Figure 5.
T1D patients presented several genes that were induced

when compared to GDM patients, including genes in the
MHC region (HLA-DQA1 and HLA-DQA2), TNF receptors
(TNFRSF17,TNFAIP6), cytokines (IL1A, IL-1B, IL1F10, IL4,
IL6, IL8, IL23A, IL27) and cytokine receptors (IL1R2,
IL1R1N, IL18R1), chemokines (CXCL1, CXCL2, CCL20,
CCL23, CCL3L3, CCL4) and chemokine receptors (CCR3,
CRL2), lymphocyte receptors (KIR3DL2, KIR2DS4), and
transcription factors (GLIS2, SOX8, GATA2, RUNX1,
SOD2, FOXC1, FOXC2, FOXE1). Additionally, T1D pa-
tients presented several genes that were differentially
expressed compared to T2D patients, including immune
Figure 4 Venn diagrams show the differentially expressed genes afte
identified by Rank Product analysis with P value ≤ 0.001 and a percentage
genes is shown in panel A and that of downregulated genes in panel B.
response genes, as MHC region genes (HLA-DQA1 and
DQA2), clusters of differentiation genes (CD8B, CD55,
CD83), cytokines (IL1A, IL1B,IL6, IL8, IL23A), chemokines
(CXCL1, CCL3L3, CXCL2, CXCL3, CCL20, CCL23, CCL24,
CCL3, CCL4), NOD-like receptor signaling pathway
(CXCL1, IL6, CARD9, TNF, IL8, CXCL2, CASP8, NFKBIA,
IL1B, MAPK8, TNFAIP3, NLRP3) and transcription fac-
tors (GLIS2, SOX8, FOXC2, FOXC1, FOXE1, FOXK1).
GDM patients presented several genes that were induced

compared to T1D patients, including toll-like receptors
(TLR6, TLR7), carbohydrate binding genes (LGALS3,
LGALS12, CLEC7A, CLEC1B), plasma membrane recep-
tors (IL5RA, CCR1), MHC genes (HLA-DRB3), solute car-
rier family genes (SLC6A10P, SLC6A4, SLC1A5, SLC4A1,
SLC8A1, SLC6A17, SLC16A3, SLC6A8, SLC14A1), cluster
of differentiation genes (CD9, CD33, CD36), and chemo-
kines (CXCL5, CCL15, CXCL12, CXCL10). In contrast,
GDM patients presented several genes that were induced
compared to T2D, including immune response genes
(CXCL10, CXCR4, CD46, CCL3L3, IL1B, IL1A, NFKBIZ,
IL27, C1QA, CD83, C1QB, HIF1A, DEFA4, DEFA3,
KIR2DL4, CXCL1, CCL3, TNF, CCR1, CXCL3, CXCL2,
CCL4, CCL23, CCL20, IL6, CR2, IL8, IL1RN STAT3,
r paired analysis of the three types of DM. The genes were
of false prediction (pfp)≤ 0.05. The analysis referring to upregulated



Figure 5 Heatmap of the significative functional categories of the differentially expressed genes obtained by paired Rank Products
analysis with P value≤ 0.001 and percentage of false prediction (pfp) ≤ 0.05 (T1D vs. GDM; T2D vs. GDM and T1D vs. T2D). The Kegg
categories were obtained from DAVID knowledge base with an enrichment pvalue≤ 0.05 after Benjamini correction. The grey scale represents
the logarithm of the enriched P value.

Figure 6 Heatmaps of the modules identified by Genomica tool, which compares gene lists of immune cells and diabetic association
genes with demographic, clinical, laboratory and treatment features of patients (P value≤ 0.05, corrected by the false discovery
rate - FDR≤ 0.05. The four module maps presented list of genes (induced or repressed), identified by: A) Non-informative filters (DBF-MCL
algorithm) in the basis of FDR≤ 10%; B) Rank products analysis of T1D vs. GDM; C) Rank products analysis of T2D vs. GDM; D) Rank Products analysis
of T1D vs. T2D. Abbreviations: MF - macrophages ; B1a and B1b - subsets of B lymphocytes; BFo - follicular B lymphocytes; BMz - marginal zone B
lymphocytes; Treg - regulatory T lymphocytes; DC - dendritic cells ; CD4 and CD8 - subsets of T lymphocytes.
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Figure 7 Confirmation of microarray findings by qRT-PCR of (A) IL1B, (B) RGS1, (C) EGR2, (D) FOXO3A, (E) SOD2 and (F) HIF1A genes.
Expression levels were normalized to HPRT1. The differences were evaluated by Mann–Whitney U test. * p < 0.05; ** p < 0.01 and *** p < 0.001
were considered significant.
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CD55) and genes involved in the response to hormone
stimulus (PTGS2, LDLR, PGF, PDGFA, PTGS1, NOS3,
ADAM9, EGR2, SOCS2, SOCS3, RXRA, ADIPOR1, GAL,
JUNB, C1QB, RETN, ADM, SORT1, CAV2, CAV1, TNF,
GRB2, ERBB3, GNG11, BCL2L1, PIK3R1, IL6, IL1RN,
STAT1, STAT3, CDKN1A, BMP7, IGFBP2).
T2D patients presented several genes that were differen-

tially expressed compared to T1D patients, including genes
of numerous zinc finger proteins and genes regulating
transcription (ZNF184, ZNF576, ZNF449, ZNF594, ZNF641,
ZNF100, ZNF644, ZNF189, ZNF785, ZNF436, ZNF613,
among others). Finally, the comparison between T2D and
GDM showed multiple genes induced in T2D patients,
including genes involved in DNA-binding, as zinc finger
(ZNF582, ZNF250, ZNF184, ZNF181, ZNF775, ZNF773,
ZNF248, ZNF397, ZNF578, ZNF442, ZNF443, among
others).

Comprehensive functional analysis using a module
map approach
To identify the influence of patient features (array or ex-
perimental sets) on gene information (gene sets), we
constructed several module maps, stratifying patients
according to demographic, clinical, laboratory and
therapeutic characteristics. We used specialized databases
associated with diabetes complications [42], gene clusters
associated with diabetes obtained from association studies
(GWAS) [43], and isolated immune cell types associated
with the pathogenesis of diabetes [44]. The most relevant
modules are shown in Figure 6.
GDM patients exhibited up-regulated genes observed

in diabetes complications (including angiopathy) and in
macrophages. GDM, number of gestations per patient and
gestation time were associated with the induction of dia-
betic complications genes. Interestingly, a history of 2 or
more gestations was positively associated with the modu-
lation of T2D genes, while in T1D patients the number of
gestations did no influence the transcription profile of fe-
male patients (Phenopedia). T1D patients exhibited in-
duced genes typical of those displayed by dendritic cells
and repressed genes typical of those presented by B-
lymphocytes. In addition, T1D patients exhibited induc-
tion of genes related to diabetes nephropathy. The use of
insulin did not influence gene expression patterns; how-
ever, increased serum glucose level was associated with
the induction of genes related to diabetic retinopathy. In
patients with T2D, the disease itself as well as the use of
metformin was associated with the repression of genes im-
plicated in obesity and diabetic complications. In contrast,
genes found by T2D GWAS were associated with genes
induced in T2D patients and the use of metformin. Male
patients who had T2D for 11 or more years were at
increased risk of neuropathy. The heatmap shown in
Figure 6A illustrates these results.
In the paired analysis of T1D and GDM patients, both

obesity and a history of two or more gestations were
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positively associated with T2D development. Conversely,
in T1D patients, these variables were negatively associ-
ated. Additionally, in T1D patients, the use of insulin re-
pressed genes of angiopathy and retinopathy, and
macrophage gene expression was associated with GDM
(Figure 6B). In the paired analysis of T2D and GDM,
the number of gestations was positively associated with
genes related to diabetic complications. The use of
metformin was negatively associated with complica-
tions, and these same genes were repressed in T2D
(Figure 6C). The paired analysis of T1D and T2D pa-
tients showed repression of dendritic cell genes associ-
ated with T2D and the induction of dendritic cell
genes associated with time of disease. Obesity genes
were also induced in T1D patients (Figure 6D).

Confirmation by real-time PCR
We performed the confirmation of EGR2, RGS1, FOXO3A,
HIF1A, IL1B and SOD2 genes (Figure 7), which were
chosen because some of these genes have been previously
described as specific for GDM compared with T2D
(SOD2, FOXO3A, HIF1A). Compared to GDM, these
genes were downregulated in T2D as evaluated by micro-
arrays and qRT-PCR, presenting fold changes of 4.34, 1.75
and 1.72, respectively (microarrays), and 1.51, 2.66 and
2.31, respectively (qRT-PCR). In addition, compared to
T2D, the EGR2, IL1B and RGS1 genes were downregu-
lated when compared to T1D (fold changes of 1.82, 13.96
and 3.08, respectively, for microarrays and 2.59, 47.83, and
9.95, respectively, for qRT-PCR), and downregulated when
compared to GDM (fold changes of 2.22, 11.11 and 4.34,
respectively, for microarrays, and 2.82, 14.50, and 18.36,
respectively, for qRT-PCR).

Discussion
Diabetes mellitus is one of the most studied diseases, and
a large amount of information is available in the public da-
tabases regarding genetic association, meta-analysis and
associated complications. Few studies, however, have
systematically compared the major types of diabetes in
terms of gene expression profiles at the genomic level.
In this study, we performed an integrative analysis of
the transcriptome profiles of the major types of diabetes
using several bioinformatics tools. The major innovation
of this study was the construction of informative mod-
ule maps integrating epidemiologic, clinical, laboratory,
pathogenetic, genetic, and molecular factors implicated
in diabetes to identify individual and shared features in
T1D, T2D and GDM.
The major finding of our global partitioning analysis

that examined the differences in transcription among each
diabetes patient was the cluster of genes associated with
inflammation. The high expression levels of these genes in
some T1D and GDM patients seem to influence the global
gene expression pattern of diabetic patients. Indeed,
several important molecular mechanisms identified by
clustering account for an intricate array of inflammation
pathways. One important finding was the up-regulation
of many mediators of the NOD-like receptor signaling
pathway. It has recently been suggested that NOD-like
receptors can be induced by hyperglycemia and oxidative
stress products, which could link metabolism and inflam-
mation, particularly through the participation of IL1B
[45]. In this study, many genes involved in these pathways
were induced in T1D and GDM patients, including
NLRP3 (an important receptor of the NOD-like pathway),
IL1B, CXCL1, CXCL2, IL6, IL8, TNF, RIPK2, TNFAIP3 and
NFKB1A. TNF and IL1B are strongly involved in the
regulation of nitric oxide biosynthetic processes [46]
and are regulated by SOD2 [47]. In addition, other up-
regulated genes including chemokines (CCL3, CCL4),
cytokines (IL6, IL8, TNF) and transcription factors
(NFKBIA, MAPK8) are involved with other inflammatory
processes, such as toll-like receptors signaling pathway,
and the expression of IL1B and SOD2 genes was con-
firmed by real-time PCR. Curiously, genes associated with
these processes were downregulated in T2D compared
with the other types of diabetes. To understand this result,
we took advantage of the rank product analysis (paired
analyses), which showed particular features of the involve-
ment of these inflammatory pathways in each type of dia-
betes. The comparisons between T2D and GDM as well
as between T1D and T2D revealed several interesting re-
sults. At the same time that NOD-like receptors were in-
duced in T1D and GDM, hundreds of zinc finger protein
genes were induced in T2D. Additionally, drug treatment
with metformin in T2D patients seems to influence the
gene expression patterns, whereas insulin treatment did
not. As literature findings have indicated that the expres-
sion of transcription factors associated with T2D can be
induced by hypoglycemiants, it is possible to hypothesize
that these drugs may induce alterations in the normal
T2D expression profile. Finally, the comparisons between
T2D and T1D reveal the repression of important genes as-
sociated with T2D diabetes, particularly transcription fac-
tors involved in glucose homeostasis (TCF7L2) [24,48],
NAD + (FOXO3) [49] and regulation of cellular and sys-
temic response to hypoxia (HIF1A) [50], and the differen-
tial expression of HIF1A and FOXO3A in our series was
also confirmed by real-time PCR.
To further understand the close similarity between the

transcription profiles in T1D and GDM, we examined
the paired comparisons between these types. T1D pa-
tients exhibited modulation of genes in the MHC region,
including the induction of HLA-DQA1 and HLA-DQA2.
The DQA gene encodes the alpha chain of the HLA-DQ
heterodimeric molecule. HLA-DQ is non-covalently as-
sociated with DQβ, which has been associated with T1D
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susceptibility in multiple populations [51-54]. In con-
trast, few studies have associated any HLA class II genes,
including HLA-DRB3 genes, induced in GDM [53]. Al-
though a role of HLA class II genes in T1D pathogenesis
has not yet been established, decreased surface expres-
sion of HLA-DQ molecules on CD4 and CD8 peripheral
cells has been reported in recently diagnosed T1D pa-
tients exhibiting DQB1 susceptibility alleles. This finding
was attributed to the instability of these molecules on
the cell surface [54]. As none of our patients were re-
cently diagnosed, it is interesting to observe that the ex-
pression of DQA MHC molecules is still modulated
even after the disease has been present for long periods
of time. On the contrary, there is also evidence that
humoral responses to autoantigens may be driven by
the HLA-DQA1 genes even in recently diagnosed patients
[55]. MHC susceptibility alleles associated with T1D
(DQA1*05:01, DQB1*02:01/DQB1*03:02) are different
from those associated with GDM [56]. In addition to
MHC genes, T1D patients also showed different levels
of the killer immunoglobulin-like receptor (KIR3DL2
and KIR2DS4) family genes compared with GDM patients
(KIR2DL4). There are no gene expression studies implicat-
ing KIRs in diabetes. These findings suggest that the close
similarity of the T1D and GDM transcription profiles may
be due to the overall inflammatory gene patterns ob-
served in both conditions, including the modulation of
several genes primarily involved with the innate im-
mune response.
Previously, the construction of module maps for can-

cer patients has revealed important modules that
characterize different cancer lineages [41], allowing the
identification of cancer biomarkers. Major findings re-
garding each group of diabetes patients are discussed
below, including epidemiological, clinical, laboratory,
genetic and pathogenetic features. In all module maps in
which the gene profile of GDM was compared with
other types of diabetes, we observed an up-regulation of
genes typically expressed by macrophages. Overall, the
comparison with genesets with arraysets yielded positive
associations, except for T1D, which may be attributed to
differences in patient age and the autoimmune nature of
T1D. These macrophage genes were co-regulated with
those appearing in diabetic complications such as angio-
pathy and retinopathy, including the IL1B and RGS1
genes, as seen in Figure 6A, B and C. As we also observed
that increased glucose levels were associated with the de-
velopment of retinopathy, it is possible that the effect of
high glucose levels on macrophages might be involved in
the creation of GDM complications. Moreover, GDM
patients exhibited gene profiles similar to those reported
for obesity (data available in the Phenopedia public data
banks), and the majority of patients in our study were
overweight. It is also interesting to observe that obesity,
two or more gestations per patient, and gestations
lasting over 30 weeks exhibited the same modules
of induced genes in GDM patients, as observed in
Figure 6A. Additionally, in GDM patients, having two
or more gestations was positively associated with the
development of T2D. Indeed, it is important to note
that obese GDM patients have an increased risk of deve-
loping T2D [57]. This information is important for future
studies of GDM.
In T1D patients, we observed a positive association with

the profile reported for dendritic cells (ImmGen)
(Figure 6A), particularly in patients exhibiting long-term
disease (Figure 6D). As dendritic cells play an important
role in antigen presentation via MHC class II molecules
and as MHC class II genes are also induced in long-term
T1D patients, it is possible to hypothesize that abnormal
antigen presentation (foreign or self ) is a chronic
phenomenon in T1D. In contrast, T1D patients also ex-
hibited a repression of genes associated with B1a and B1b
lymphocytes (naïve B cells), in which the B1a lymphocyte
subtype (CD5+) has been associated with the production of
natural and autoantibodies [58]. Unfortunately, until the
moment, there is no public data regarding the gene pattern
of activated B cells. Another important finding is the simi-
larity of T1D gene expression profiles with that observed
for diabetes nephropathy (Phenopedia). As no patients in
our analysis exhibited clinical nephropathy, it may be valu-
able to further study the particular patients exhibiting ne-
phropathy related gene patterns.
Finally, T2D patients exhibited gene expression pro-

files that were in disagreement with those reported in
the public databases (Phenopedia) for diabetic complica-
tions (Figure 6C). Considering that half of our T2D patients
exhibited higher median glucose levels than our T1D
and GDM patients, one could expect to find the induc-
tion of genes associated with diabetic complications. As
the T2D patients were treated with many types of medi-
cations besides hypoglycemiants, it is possible that this
intriguing and unforeseen finding may be a consequence
of these treatments. Another possible explanation may
be related to inflammation genes, which were down-
regulated in T2D compared to T1D and GDM patients.
The coupling of inflammation and drugs used to treat T2D
might be responsible based on these findings. Indeed, the
use of metformin and other medications (aspirin, captopril,
atorvastatin, and hydrochlorothiazide) seems to modulate
the expression of a large number of genes (Figure 6C
and D), possibly affecting the inflammation status of T2D
patients. Some of the down-regulated genes observed in
T2D patients being treated with several drugs included
IL1B, IL4, IL8, CCL2 and TNF. All of these genes are in-
volved in inflammation and are also modulated in macro-
phages (data not shown). However, we cannot disregard
the participation of the inflammatory pathway in T2D, as
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genes that participate in the NOD-like receptors signaling
pathway probably also play a role in T2D [45]. Recent
findings have shown that the down-regulation of FOXO1
expression in macrophages blocks lipid accumulation in
these cells, affecting many processes [59]. In our analysis,
FOXO3A was also down-regulated in T2D patients com-
pared to GDM. Both FOXO1A and FOXO3A genes are
mediators of the same signaling pathway, AMPK, which
can be activated as a consequence of long-term metformin
use [49], and the expression of FOXO3A was confirmed
by real-time PCR.
In conclusion, our analysis revealed that T1D and

GDM exhibited a similar up-regulation of inflamma-
tory genes.

Methods
Study population
We studied 56 adult diabetic patients, 19 presenting T1D
(7 women/12 men) with ages of 18–36 years, 20 presenting
T2D (13 women/7 men) with ages of 41–72 years and 17
presenting gestational diabetes with ages of 23 to 40 years.
For our analysis, we used the mean age of the three groups
(37 years with SD ± 14). The mean length of disease was
11 ± 5.3 years, while the mean values of glucose and
Hb1Ac levels were 130.7 mg/dL with SD ± 75.4 and 8.9
with SD ± 1.8, respectively. For gestational diabetes pa-
tients, the mean period of gestation was 30.5 with SD ±
5.7 weeks, and the mean number of pregnancies was 2 ± 1
per patient. Twelve GDM women had more than two ges-
tations, while 9 T2D and none T1D women presented this
characteristic. T1D and GDM patients were treated only
with insulin, while T2D patients were treated with insulin
in combination with metformin, captopril, aspirin, atorva-
statin and hydrochlorothiazide. All patients underwent
follow–up examinations at the Outpatient Clinics of the
Division of Endocrinology, Faculty of Medicine of Ribeirão
Preto, University of Sao Paulo, Brazil. The exclusion
criteria were based on recent episodes of ketoacidosis,
active nephropathy, proliferative retinopathy, diabetic
foot syndrome, high LDL levels and diagnosed cardio-
vascular diseases. Figure 1 shows a schematic heatmap
with all demographic, clinical and laboratory patient
features. The study protocol was approved by the local
Ethics Committee (Comitê de Ética em Pesquisa do Hos-
pital das Clínicas e da Faculdade de Medicina de Ribeirão
Preto da Universidade de São Paulo, under the permit
# 9153/2008), and informed consent was obtained from
all participants.

Blood collection, peripheral mononuclear cell isolation
and RNA extraction
A total of 20 mL of peripheral blood was collected and
used for the isolation of PBMCs by discontinuous gradi-
ent density centrifugation on a Ficoll-Hypaque cushion
(Sigma, St. Louis, MO). Total RNA was extracted using
the Trizol reagent (Invitrogen, Carlsbad, CA) according
to the manufacturer’s instructions. RNA concentrations
and ratios were checked using a NanoDrop ND-1000
spectrophotometer (NanoDrop Products, Wilmington,
DE), and the RNA integrity was assessed by microfluidic
electrophoresis using a 2100 Bioanalyzer and RNA 6000
nanochips (Agilent Technologies, Santa Clara, CA). We
used only samples that exhibited median RNA integrity
number (RIN) ≥ 9.0.
Oligo microarrays
Hybridizations onto whole human genome 4x44K oligo
microarrays (G4112F, Agilent) were performed using the
one color (Cy3) Quick Amp labeling kit (Agilent). Briefly,
500 ng of total PBMC RNA plus spike-in controls were re-
verse transcribed into double stranded cDNA. The
primers used for this reaction contained many consecutive
thymine bases attached to a T7 promoter that paired at
the 5’ end of the first strand of cDNAs. Next, the T7 poly-
merase was added along with nucleotides labeled with
fluorescent cyanine-3 (Cy3) dye, which amplified the
anti-sense complementary RNAs (cRNA). The cRNAs
were purified and then hybridized to the microarray for
17 hours at 65°C. After washing, the slides were scanned
using a DNA Microarray Scanner with Surescan High-
Resolution Technology (Agilent). A complete file pro-
viding microarray data from all samples used in this
study, as well as the numerical quantitative data and
experimental conditions, is available on line at the
ArrayExpress public database [60] through the follo-
wing accession numbers: T1D (E-MEXP-3348), T2D
(E-MEXP-3287) and GDM (E-MEXP-3349). These data
correspond to a part of our laboratory databank, which
were made publicly available and can be used for fur-
ther studies and/or reanalysis.
Data quantification and normalization
Data quantification and quality control were analyzed using
the Feature Extraction (FE) software version 10.7 (Agi-
lent Technologies). Expression data were loaded into
an R-environment [61] using the AgiND package [62],
a tool developed by the Technologies Avancées pour le
Genome et la Clinique (INSERM U1090, Marseille,
France). The AgiND tool is available by request [63].
The background adjustment was performed by sub-
tracting median background values from the median
expression values obtained by FE and then converting
the results to log-scale. For each sample, any negative
values observed were replaced by randomly selected
small positive values. After log-transformation, quan-
tile normalization using the normalizeQuantile func-
tion was performed.
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Density based filtering and Markov clustering (DBF-MCL)
and principal component analysis (PCA)
The Density Based Filtering and Markov Clustering (DBF-
MCL) algorithm implemented in the Rtools4TB bio-
conductor package [64,65] was used to extract sets of
co-regulated genes from our microarray dataset. DBF-
MCL is a tree-step adaptive algorithm that finds gen-
omic elements and genes located in dense areas, uses
selected items to construct a graph and finally creates
a partitioning graph using the Markov Clustering Al-
gorithm (MCL). A 10% false discovery rate (FDR) was
used. The principal component analysis (PCA) was
performed from the informative genes identified by
DBF-MCL. In this analysis, the R function prcomp [66]
was used to evaluate PCA and the rgl package [67] to
construct 3D graphics.

Statistical analysis
Differentially expressed genes were identified using the R
package RankProd [68,69]. Although the non-parametric
rank product method does not make any assumptions
about the data distribution, it can provide frequency rank-
ing scores at each data point and is thus a robust tool for
creating ranking lists. Genes were considered significantly
expressed when they presented p-values and percentage of
false positive predictions (PFP) smaller than 0.001 and 0.05,
respectively. This test was used to perform paired analysis
between T1D versus GDM, T2D versus GDM and T1D
versus T2D. Venn diagrams illustrating up and down-
regulated genes in each analysis are shown in Figure 4.

Module-map construction
Significant and differentially expressed genes obtained
by the use of DBF-MCL and Rank Products were ini-
tially clustered using the Cluster 3.0 and TreeView soft-
wares [70,71]. Then, module maps were constructed
using an ensemble of tools provided by the Genomica
software [41], which searches for higher-order modules
of gene sets and samples. Initially, this algorithm uses
gene sets to annotate genes that were up-regulated (or
down-regulated) by at least 1.5-fold. The algorithm com-
pares the modulated genes with array sets, including
groups of compartmentalized genes, and organizes them
into modules (module maps) discriminating variable-
specific gene patterns according to patient features. It
was used P value ≤ 0.05 with false discovery ration
(FDR) ≤ 0.05.

Module map array set variables
The variables used to create the experimental sets in-
cluded demographic parameters (age and gender), clin-
ical variables (disease duration, obesity, duration and
number of gestations), laboratory data (serum glucose
and glycated hemoglobin levels), and treatment features
(use of hypoglycemiants such as insulin, metformin or
other drugs). All input variables were transformed into
binary data (0 or 1), according to the nature of the vari-
able, i.e., qualitative variables were assigned by the ab-
sence or presence of the characteristic, and quantitative
variables were assigned by values below or above the
mean values. The variables used included age, time of
disease, gender, serum glucose and glycated hemoglobin
values (Hb1Ac), use of insulin, use of metformin, use of
any other type of medication, obesity, gestation time (for
GDM patients) and number of gestations (for GDM pa-
tients) (Figure 1).

Module map gene set variables
Immune cell specific gene sets were obtained by re-
analyzing raw data from the ImmGen project [44,72]
(the detailed procedure is provided as Additional file 1).
Disease-related gene sets were obtained from GWAS in-
tegrator [43] and Phenopedia [42]. GWAS integrator is a
compilation of genes offered by GWAS catalogs and da-
tabases such as HapMap, SNAP and HugeNavigator
[73]. All of the information about genes related to T1D
and T2D were considered for use in this study. Pheno-
pedia is an available database about genetic association
studies and meta-analysis summarized in the Human
Genome Epidemiology (HuGE) encyclopedia [74]. Lists
of genes can be obtained about specific diseases or re-
lated complications [75]. The available lists of genes
related to diabetes mellitus include those associated
with pre-diabetic status, diabetes, type 1 diabetes, type
2 diabetes, gestational diabetes, diabetic complications,
obesity, angiopathy, ketoacidosis, nephropathy, neur-
opathy and retinopathy.

Functional analysis
All clusters of co-regulated genes were analyzed by func-
tional analysis using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) version
6.7 [76]. This approach was used to identify significant
biological processes and pathways represented by the
differentially expressed genes [77]. A biological process
or pathway was considered to be significant if it con-
tained a minimum of three genes per category featuring
score values less than 0.05 including the Benjamini-
Hochberg correction. Moreover, we selected Kyoto
Encyclopedia of Genes and Genomes (KEGG) provided
by DAVID analysis [76] to explore biological pathways.

Confirmation by real-time PCR
Relevant and differentially expressed genes obtained
using the microarray data were confirmed using qRT-
PCR (Table 1). The sequences of selected genes were re-
trieved from the NCBI GenBank database [78]. All major
alternative transcripts were considered to design the



Table 1 Primers used for confirmation by qRT-PCR of the IL1B, RGS1, EGR2, FOXO3A, SOD2 and HIF1A genes

Gene Accesion numbers Primer forward Primer reverse Size (bp)

IL1B NM_000576.2 5′-CCACAGACCTTCCAGGAGAA-3′ 5′-GTGATCGTACAGGTGCATCG-3′ 121

RGS1 NM_002922.3 5′-TGGCTGGCTTGTGAAGACTA-3′ 5′-GATTCTCGAGTGCGGAAGTC-3′ 131

EGR2 NM_000399.3 5′-GGTGACCATCTTTCCCAATG-3′ 5′-TATGGGAGATCCAACGACCT-3′ 120

FOXO3A NM_001455.3 5′-GTGCTAAGCAGGCCTCATCT-3′ 5′-TTGGCAAAGGGTTTTCTCTG-3′ 119

SOD2 NM_001024465.1 5′-GACAAACCTCAGCCCTAACG-3′ 5′-TTGGACACCAACAGATGCAG-3′ 124

HIF1A NM_181054.2 5′-TCAGCTATTTGCGTGTGAGG-3′ 5′-AAAACCATCCAAGGCTTTCA-3′ 107

GAPDH NM_002046.3 5′-CTCTGCTCCTCCTGTTCGAC-3′ 5′-ACGACCAAATCCGTTGACTC-3′ 112

HPRT1 NM_000194.2 5′-GACCAGTCAACAGGGGACAT-3′ 5′-CTGCATTGTTTTGCCAGTGT-3′ 111

GAPDH and HPRT1 were selected as endogens.
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primers, and the Primer3 web tool [79] was used to se-
lect pairs of oligonucleotide primers spanning at the
exon/exon junction. An optimal melting temperature of
60°C was standardized for all genes. Transcriptional ex-
pression levels were determined using SYBR Green (Life
Technologies), in a StepOne Real Time PCR System
(Applied Biosystems). The experiments were done in du-
plicates. The GAPDH and HPRT1 genes were used as
constitutive genes and the selection of the best genes for
qRT analysis was done using the Housekeeper software
[80]. The standard curve for each primer was deter-
mined and only primers with efficiency upper than 90%
were used. It was applied the ΔΔCT method as de-
scribed by [81], and the minimum expression value was
used as calibrator. The graphics were constructed in
GraphPad Prism version 6.0 and statistical analysis in
the R statistical environment version 3.0.1. Non-
parametric Mann–Whitney U test was used, considering
P value ≤ 0.05 to be significant.

Conclusion
The present study revealed that epidemiological, clinical,
laboratory, immunological, genetic and treatment fea-
tures influenced the transcriptome profiles in the major
types of diabetes. In addition, inflammation associated
with macrophage and dendritic cell function may be
responsible for clustering GDM and T1D patients to-
gether, while inflammation in T2D may be influenced by
drug treatment.

Additional file

Additional file 1: ImmGen supplementary data.
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