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A two-stage approach using Gaussian mixture
models and higher-order statistics for a
classification of normal and pathological voices
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Abstract

A two-stage classifier is used to improve the classification performance between normal and pathological voices. A
primary classification between normal and pathological voices is achieved by the Gaussian mixture model (GMM)
log-likelihood scores. For samples that do not meet the thresholds for normal or disordered voice in the GMM, the
final decision is made by a higher-order statistics (HOS)-based parameter. The normalized skewness and kurtosis,
and means of the normalized skewness and kurtosis were estimated using a sustained vowel /a/ from 53 normal
and 173 pathological voices taken from the Disordered Voice Database. Mel-frequency cepstral coefficients (MFCC)-
based GMM, the HOS methods, and a two-stage classifier based on the GMM-HOS were performed for each voice
signal. A Mann–Whitney rank sum test was used to detect differences in the means of the HOS-based parameters.
A fivefold cross-validation scheme was performed to test the classification method. When 16 Gaussian mixtures
were used, the MFCC-based GMM algorithm is performed with 92.0% accuracy. When means of the normalized
skewness and kurtosis were used, performances of 82.31 and 83.67% were obtained, respectively. The two-stage
classifier with 16 Gaussian mixtures and the mean of the normalized kurtosis classified samples with a 96.96%
accuracy were obtained. The proposed two-stage classifier is more accurate than the MFCC-based GMM and HOS
methods alone and shows potential for the classification of voices in the clinic.
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Introduction
Speech is integral to day-to-day communication. Speech
impediments negatively impact social interactions lead-
ing to interest in early detection and treatment of voice
disorders. Many researchers have worked towards the
goal of automatic and objective classification between
normal and pathological voices using minimally invasive
methods. A large amount of research has focused on the
automatic detection of voice pathologies by means of
acoustic analysis, parametric and non-parametric feature
extraction, pattern recognition algorithms, and statistical
methods [1-15].
Sáenz-Lechón et al. [5] presented an overview of previ-

ous classification schemes applied to the Massachusetts
Eye & Ear Infirmary (MEEI) Voice Disorders Database
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[16]. They described some methodological concerns to
be considered when designing automatic systems for
pathological voice detection. They recommended the use
of a commercially well-known database, a cross-
validation strategy based on several partitions to obtain
averaged classification performances with confidence
intervals, a report of the means of a detection error
trade-off (DET), and an investigation of the area under
receiver operating characteristic (ROC) curves.
The emergence of attractive pattern classification algo-

rithms such as the Gaussian mixture model (GMM),
neural network (NN), and hidden Markov model has
received attention as a potential means to discriminate
between normal and pathological voices [6-13]. The
GMM has especially been reported as a very successful
classification method [10-13]. Characteristic parameters,
such as Mel-frequency cepstral coefficients (MFCC),
have also become more popular for voice pathology de-
tection [6,8,10-12]. Recently, Wang et al. [12] proposed
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a GMM supervector kernel-support vector machine
(GMM-SVM) classifier which was compared with the
GMM classifier as a baseline algorithm. The GMM
supervectors were largely effective parameters for the
discrimination of normal and pathological voices. A clas-
sification accuracy of 96.1% was achieved by SVM classi-
fication of the 16 Gaussian GMM supervectors [12].
As an acoustic analysis method, higher-order statistics

(HOS) have shown promising results in a number of
signal processing applications, and are of particular value
when dealing with a mixture of Gaussian and non-
Gaussian processes and system nonlinearity [14,15,17,18].
The application of HOS to speech processing has primar-
ily been motivated by its inherent Gaussian suppression
and phase preservation properties [17,18]. Researches in
the disordered voice field have been based on the assump-
tion that speech has non-zero HOS that is distinct from
that of Gaussian noise [18,19]. Alonso et al. [19] proposed
seven new HOS-based parameters that were obtained dir-
ectly or indirectly starting from the bispectrum of a voice
frame. A success rate of 98.3% was obtained by using both
the conventional and the HOS-based parameters with an
NN classifier demonstrating the possibility of automatic-
ally discriminating pathological from healthy voices using
HOS parameters [20]. Further study of how well each
HOS parameter can detect pathological voices with the
methodological designs recommended by Sáenz-Lechón
et al. [5] is merited.
In this article, we propose new HOS-based parameters

implemented in the time domain. They are means of the
normalized skewness and kurtosis which are calculated
from each frame and averaged in a sentence. The HOS-
based parameters estimated in the time domain can eas-
ily be applied to a real-time environment in contrast to
the Fourier series representation of the HOS parameters
in frequency domain applied by Alonso et al. [19]. Sec-
ond, we propose a two-stage approach to further im-
prove the accuracy of the classification between normal
and pathological voices. The classification system con-
sists of a MFCC-based GMM algorithm which describes
the primary classification achieved by the GMM log-
likelihood scores, and an HOS-based parameter as a
post-processor.

Material and methods
Material
Vocal signals were collected from the MEEI Voice Dis-
orders Database [16]. Fifty-three normal and one hun-
dred seventy-three pathological speakers with a wide
range of organic, neurological, traumatic, and psycho-
genic voice disorders were selected. The extracted subset
is the same as one described in the study of Wang et al.
[12] to compare the result with this study. Voice samples
were collected in a controlled environment and sampled
with a 50- or 25-kHz sampling rate and 16 bits of reso-
lution. Patients phonated a sustained /a/ (1–3 s). All
voice data were down-sampled to 25 kHz and grouped
into training (70% of the data) and test (30%) sets to
implement all methods. Each set for a fivefold cross-
validation scheme was randomly selected from the
subset [10,12].

Statistical analysis
Statistical analysis was conducted using Sigma Stat 3.0
(Jandel Scientific, SanRafael, CA, USA). The Mann–
Whitney rank sum test was performed to test the differ-
ences between normal and pathological voices for the
normalized skewness, the normalized kurtosis, and
the means of the normalized skewness and kurtosis.
A p-value of 0.05 was used for all measures.

MFCC-based GMM method
The voice samples were analyzed with 40-ms interval
overlapping 20-ms with the previous frame and multi-
plied by a hamming window as performed in previous
studies [12]. MFCC parameters were extracted and fed
into a GMM-based detector enabling a final decision
about the absence or presence of pathology. The number
of the filter banks was 38, and 36-dimensional MFCC
parameters (18 MFCC + 18 Delta-MFCC) with 1 deriva-
tive were calculated every frame of 18 Mel-cepstral coef-
ficients as in Wang et al. [12]. Cepstral mean subtraction
was also used during the extraction to reduce the ceps-
tral bias of the recording channel. The Linde–Buso–
Gray algorithm was used for the GMM initialization and
the GMM having 8, 16, and 32 mixtures were trained
with the expectation-maximization (EM) algorithm to
determine the model parameters such as mean vectors,
covariance matrices, and mixture weights. For an utter-
ance X ¼ x1; x2; . . . :xTf g , where T is the number of
frames, the log-likelihood ratio (LLR) applying Bayes’
rule, disregarding the constant prior probabilities in the
log domain, is presented in Equation (1).

Λ Xð Þ ¼ log p
XN

λC

� �� �
� log p

XP

λC�

� �� �
ð1Þ

where Λ(X) is the LLR, and λC and λ�C are GMM
models for normal and pathological voices, respect-
ively. Also N and P indicate normal and pathological
voices, respectively.
Figure 1 shows the histogram of the LLR estimated

from normal and pathological voices in training proced-
ure. The decision threshold, ΛNP, is then set to adjust
the tradeoff between rejecting pathological voices (false
rejection) and accepting normal voices (false accept-
ance). In test procedure, the LLR, Λ(X), is compared
with a threshold ΛNP(X) and the voice is said to be



Figure 1 LLR histogram estimated from normal and
pathological voices in training procedure. ΛNP(X) indicates the
decision threshold measured from the MFCC-based GMM algorithm.
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pathological if Λ(X) <ΛNP(X) and normal if Λ(X) >ΛNP

(X).

HOS method
A speech signal, x(n), which may be normal or patho-
logical, can be expressed as given in Equation (2)
[17].

x nð Þ ¼ s nð Þ þ w nð Þ ð2Þ

where s(n) is a non-Gaussian signal generated by the
oscillation of the vocal folds and w(n) is Gaussian
noise which can be assumed to be zero in normal
voices and not to be zero in pathological voices.
Pathological voices are corrupted by noise, w(n), which

is directly related to the perceived roughness of the voice
[1-3,20]. If s(n) and w(n) are statistically independent,
then the energy of x(n) is the sum of speech and noise
energies: Ex = Es + Ew. Second-order statistics are thus
directly affected in an additive way by the presence of
noise [17,19]. However, when HOS analysis is applied to
pathological voices, unstable and discontinuous statistics
of x(n) may be estimated because HOS analysis is blind
to Gaussian processes. On the other hand, in a normal
voice, the HOS of only non-Gaussian measurements
may be extracted because a Gaussian noise can be
assumed to be zero. The variation of a non-Gaussian sig-
nal which is produced by vibration of the vocal folds can
be an important clue for the classification of pathological
and normal voices.
If x(n), where n = 0, ±1, ± 2, . . . , is a real stationary

discrete-time signal and its moments up to order p
exist, then its pth-order moment function is given by
Equation (3).

mp τ1; τ1;⋯; τp�1
� �

≡E x nð Þx nþ τ1ð Þ⋯x nþ τp�1
� �� 	

ð3Þ
And it depends only on the time differences τ1, τ2, . . .,

τp−1, τi = 0, ± 1, ± 2, . . . for all i. Here, E{•} denotes statis-
tical expectation and for a deterministic signal, it is
replaced by a time summation over all time samples or
time averaging. In addition, if the signal has zero mean,
then its cumulant functions (up to order four) are given
by Equation (4) [17].

second� order cumulant : C2 τ1ð Þ ¼ m2 τ1ð Þ ð4Þ
third� order cumulant : C3 τ1; τ2ð Þ ¼ m3 τ1; τ2ð Þ;
fourth� order cumulant : C4 τ1; τ2; τ3ð Þ ¼ m4 τ1; τ2; τ3ð Þ

�m2 τ1ð Þ ·m2 τ3 � τ2ð Þ �m2 τ2ð Þ ·m2 τ3 � τ1ð Þ
�m2 τ3ð Þ ·m2 τ2 � τ1ð Þ

By setting all the lags to zero in the above cumulant
expressions, we can obtain the variance, skewness, and
kurtosis.

Variance : γ2≡C2 0ð Þ ¼ E x2 nð Þ� 	
; ð5Þ

Skewness : C3 0; 0ð Þ ¼ E x3 nð Þ� 	
;

Kurtosis : C4 0; 0; 0ð Þ ¼ E x4 nð Þ� 	� 3 E x2 nð Þ� 	
 �2
When estimating HOS from finite data records, the

variance of the estimators is reduced by normalizing the
input data to have a unity variance, prior to computing
the estimators. Equivalently, the third- and fourth-order
statistics are normalized by the appropriate powers of
the data variance, thus we define the normalized skew-
ness and kurtosis as shown in Equations (6) and (7) [17].

Normalized skewness :

γ3≡
C3 0; 0ð Þ
C2 0ð Þ½ �1:5 ¼

E x3 nð Þf g
E x2 nð Þf g½ �1:5

ð6Þ

Normalized kurtosis :

γ4≡
c4 0; 0; 0;ð Þ
c2 0ð Þ½ �2 ¼ E x4 nð Þf g

E x2 nð Þf g½ �2 � 3:0 ð7Þ

In this article, the normalized skewness and kurtosis
are extracted in frame as shown in Equation (8).

γ3t ¼

XN
n¼1

x3t nð Þ

XN
n¼1

x2t nð Þ
" #1:5 ; γ4t ¼

XN
n¼1

x4t nð Þ

XN
n¼1

x2t nð Þ
" #2 ð8Þ

where xt is the speech sample value of tth frame and N
is the number of samples.
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The proposed HOS-based parameters are means of
the normalized skewness and kurtosis: �γ3 and �γ4 . They
are estimated in a sentence and have their roots in γ3
and γ4 as described in Equation (9). As in the MFCC
procedures, voice samples were cut into 40-ms overlap-
ping frames which were shifted by 20 ms and multiplied
by a hamming window to extract the HOS-based para-
meters.

�γ3 ¼
1
T

XT
t¼1

γ3t ; �γ4 ¼
1
T

XT
t¼1

γ4t ð9Þ

where γ3t and γ4t are γ3 and γ4 extracted in the t th
frame, respectively, and T is the number of the frames.

Two-stage classifier based on GMM-HOS
The block diagram of the proposed algorithm is shown
in Figure 2. In the training phase, the MFCCs from the
Figure 2 Overall procedure of the two-stage classifier. �ΛN and �ΛP are t
pathological voices in training procedure. �γ3 and �γ4 are means of the norm
thresholds optimized from �γ3 and �γ4 in training procedure. �Λ is the LLR est
voice samples are extracted for each analysis frame. �ΛN

and �ΛP indicate the thresholds of the LLR estimated by
each GMM for normal and pathological voices. An ex-
ample is shown in Figure 3 with false acceptance and
false rejection plots versus LLR thresholds. Both lines
cross over the equal error rate (EER). �ΛN and �ΛP are the
LLR values determined when the EER is 25.0%. The
thresholds, �γ3 thre and �γ4 thre , are determined in advance
according to the values to produce the best results when
�γ3 or �γ4 are used alone for the pathological voice detec-
tion. That is, they are computed for the training data
set. In the test phase, the LLR, �Λ , is estimated with the
feature vector and the pre-trained GMMs. The primary
decision is executed by the MFCC-based GMM algo-
rithm. If �ΛP≤�Λ≤�ΛN , the voice samples are processed
using the HOS operator. The final decision is realized
after calculating �γ3 and �γ4 . The values of �γ3 and �γ4 are
he thresholds of LLR estimated by each GMM for normal and
alized skewness and kurtosis, respectively. �γ3 thre and �γ4 thre are the
imated from the pre-trained GMM in test procedure.



Figure 3 Cumulative false acceptance (right) and false rejection
(left). �ΛN and �ΛP indicate the thresholds of LLR estimated by each
GMM for normal and pathological voices in the training procedure.
Both lines cross over the EER.
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independently used to classify normal and pathological
voice. When �γ3 is used, the voice is said to be patho-
logical if �γ3 < �γ3 thre and normal if �γ3≥ �γ3 thre. When �γ4 is
used, the voice is said to be normal if �γ4 < �γ4 thre and
pathological if �γ4≥ �γ4 thre.
Results
MFCC-based GMM method
The performance was assessed by averaging the results
obtained from fivefold cross-validation scheme [10,12].
Table 1 shows the confusion matrix, accuracy (%) in-
cluding 95% confidence intervals (CIs), specificity (%),
sensitivity (%), and areas under the curve (AUC) accord-
ing to the number of the Gaussian mixtures. Specificity
and sensitivity means the test’s ability to identify nega-
tive and positive results, respectively. The accuracy is
the proportion of true results (both true positives and
true negatives) in the population. The GMM models
were trained using 8, 16, and 32 mixtures. The average
performance was 92.00% when the number of Gaussian
Table 1 Performance of the MFCC-based GMM method

Method Confusion
matrix

Accuracy
(%)

Specify
(%)

Sensitivity
(%)

AUC
(%)

GMM 8
mixtures

89.58 10.42 89.35 ± 3.00 89.67 89.53 95.95

10.88 89.12

GMM 16
mixtures

89.58 8.33 92.00 ± 4.79 92.27 91.72 98.59

7.68 92.32

GMM 32
mixtures

89.58 10.42 90.31 ± 4.09 90.90 89.73 96.02

8.96 91.04

The best performance is highlighted in bold.
mixtures was 16. The result using 32 Gaussian mixtures
was also better than one obtained with 8 Gaussian mix-
tures. Figure 4 shows the area under the ROC curve
when MFCC-based GMM method shows the best accur-
acy. The EER of the MFCC-based GMM method is
shown in Figure 5.
HOS method
Figure 6 presents the distributions of �γ3 and �γ4 of nor-
mal and pathological voices. The distributions of �γ3 and
�γ4 for pathological voices tended to be skewed to the left
Figure 5 DET curves estimated in mean of the normalized
kurtosis, MFCC-based GMM algorithm (16 Gaussian mixtures),
and two-stage classifier.
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and have a leptokurtic distribution (�γ4 > 3). For normal
voices, these distributions tended to be skewed to the
right and have a platykurtic distribution (�γ4 < 3), overall.
The distributions of pathological voices had a tendency
to show larger variation than those of normal voices. A
Mann–Whitney rank sum tests showed a statistically
significant difference between normal and disordered
voices for �γ3 and �γ4 (p < 0.001).
The fivefold cross-validation was used to estimate the

performances for each parameter. When �γ3 and �γ4 were
used to classify normal and pathological voices, the aver-
age performances of 82.31 and 83.67% were obtained, re-
spectively. Table 2 shows the confusion matrix, accuracy
(%) including 95% CIs, specificity (%), sensitivity (%), and
AUC when means of the normalized skewness and kur-
tosis are used to classify normal and pathological voices.
The accuracy of the mean of the normalized kurtosis was
higher than that of the mean of the normalized skewness.
The ROC curve of the mean of the normalized kurtosis is
shown in Figure 4. In Figure 5, the DET curves show the
EERs for the mean of the normalized kurtosis. The
MFCC-based GMM method outperformed HOS method.
Two-stage classifier based on GMM-HOS
Table 3 shows the confusion matrix, accuracy (%) in-
cluding 95% CIs, specificity (%), sensitivity (%), and AUC
Table 2 Performance of the means of the normalized skewne

Method Confusion matrix Ac

Mean of the normalized skewness 81.25 18.75 82

16.64 83.36

Mean of the normalized kurtosis 83.33 16.67 83

16.00 84.00

The best performance is highlighted in bold.
when the two-stage classifier is used. The results were
measured in the fivefold cross-validation similar to the
MFCC-based GMM and HOS methods. The best per-
formance, 96.96%, was obtained when 16 Gaussian mix-
tures and the normalized kurtosis were utilized as the
classifier. In general, when mean of the normalized kur-
tosis was used as second classifier, the performance was
higher than that of mean of the normalized skewness.
The ROC and DET curves of a two-stage classifier

using 16 Gaussian mixtures and mean of the normalized
kurtosis are shown in Figures 4 and 5. The AUC of the
method was larger than that those of 16 Gaussian mix-
tures and mean of the normalized kurtosis independ-
ently. EER of the two-stage classifier was 3.04% in
Figure 5.

Conclusion and discussion
In this article, we define a two-stage technique to dis-
criminate pathological from normal voices. The newly
proposed model is comprised of two parts, an MFCC-
based GMM algorithm which describes the primary de-
cision achieved by the LLR scores of the GMM, and
post-processing using an HOS analysis block incorporat-
ing means of the normalized skewness and kurtosis. The
characteristics of the MFCC between normal and patho-
logical voices are presented in the study of Godino-
Llorente et al. [10]. A strong correlation between the
ss and kurtosis

curacy (%) Specificity (%) Sensitivity (%) AUC (%)

.31 ± 5.67 83.00 81.64 89.36

.67 ± 6.89 83.89 83.49 92.38



Table 3 Performance of the proposed two-stage classifiers

Method Confusion matrix Accuracy (%) Specificity (%) Sensitivity (%) AUC (%)

GMM 8 mixtures Mean of the normalized skewness (�γ3) 93.75 6.25 94.00 ± 1.67 94.21 93.78 99.69

5.76 94.24

Mean of the normalized kurtosis (�γ4) 93.75 6.25 94.00 ± 1.67 94.21 93.78 99.69

5.76 94.24

GMM 16 mixtures Mean of the normalized skewness(�γ3) 95.83 4.17 96.64 ± 4.09 97.43 95.90 99.69

2.56 97.44

Mean of the normalize kurtosis (�γ4) 95.83 4.17 96.96 ± 4.79 98.04 95.92 99.95

1.92 98.08

GMM 32 mixtures Mean of the normalized skewness (�γ3) 93.75 6.25 94.64 ± 1.92 95.44 93.86 99.69

4.48 95.52

Mean of the normalized kurtosis (�γ4) 95.83 4.17 96.00 ± 3.13 96.15 95.84 99.87

3.84 96.16

The best performance is highlighted in bold.
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HOS coefficients (the normalized skewness and kurtosis)
and voice classification is demonstrated (p < 0.001). By
introducing these parameters in cases where the
MFCC-based GMM algorithm returns uncertain values,
the classification can be improved. According to
Sáenz-Lechón et al.’s recommendations [5], we utilized
a commercially well-known database. Classification per-
formance along with CI was obtained by a cross-
validation strategy based on several partitions. Results
are also described by DET and AUC.
The two-stage classifier outperformed the individual

classification schemes. The best performance, 96.96%, is
achieved by combining an MFCC-based GMM algo-
rithm with 16 Gaussian mixtures and the mean of the
normalized kurtosis. The MFCC-based GMM algorithm
with 16 Gaussian mixtures performed at 92.0% while the
means of the normalized skewness and kurtosis classi-
fied correctly 82.31 and 83.67%, respectively. A false de-
cision is occasionally caused by the erroneous EM-based
GMM estimation in the intersection regions where they
have somewhat low likelihoods. Therefore, it is believed
that the performance improvement is mainly due to the
fact that our two-stage classifier successfully solves the
false decision problem caused by low log-likelihood
values.
Many studies have presented a variety of approaches

[1-3,6-13,19]. Although different datasets and evaluation
procedures make it difficult to compare the results of
previous studies [5], Godino-Llorente and Gómez-Vilda
[8] presented the experimental result using the learning
vector quantization methodology, yielding 96% frame ac-
curacy. Afterwards, Godino-Llorente et al. [10] pub-
lished the article showing an accuracy of 94.07% with 24
MFCC parameters and a GMM of 6 mixtures. A classifi-
cation performance of 98.3% was obtained by using both
the perturbation and seven HOS-based parameters with
an NN classifier implemented by Alonso et al. [19].
Recently, Wang et al. [12] proposed a GMM-SVM classi-
fier with a classification performance of 96.1%. Finally,
in this article, we combined the MFCC-based GMM
method utilized by Godino-Llorente et al. [8,10,11] and
Wang et al. [12] with HOS parameters to obtain a per-
formance of 96.96%.
The automatic classification between normal and

pathological voices remains an open problem that calls
for reliable algorithms to aid the clinicians. When the in-
formation gathered from simple physically informed
GMMs is combined with HOS-based parameters, a valu-
able classifier can be obtained. This two-stage method
can be used for the analysis and assessment of voice
quality.
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