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These are on-shell-diagrams obtained by gluing trivalent black and white vertices in mo-

mentum twistor space, which, in the reduced diagram case, are known to be related to

diagrams in the original twistor space. The new diagrams are manifestly Yangian in-

variant, and they naturally represent factorization and forward-limit contributions in the

all-loop BCFW recursion relations in momentum twistor space, in a fashion that is com-

pletely different from those in momentum space. We show how to construct and evaluate

momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and

loop-level integrands; in particular the latter involve isolated bubble-structures for loop

variables arising from forward limits, or the entangled removal of particles. From each di-

agram, the generalized “boundary measurement” directly gives the C, D matrices, thus a

cell in the amplituhedron associated with the amplitude, and we expect that our diagram-

matic representations of the amplitude provide triangulations of the amplituhedron. To

demonstrate the computational power of the formalism, we give explicit results for general

two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.
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1 Introduction and motivations

One of the most fundamental objects in quantum field theory is the S-matrix. In the

past decades, unexpected simplicities and rich structures have been discovered for scatter-

ing amplitudes in gauge theories and gravity, especially in planar N = 4 supersymmetric

Yang-Mills theory (SYM). One notable example is the Grassmannian/on-shell-diagram pro-

gram [1, 2], which provides a dual formulation for all-loop scattering amplitudes in planar

N = 4 SYM. The planar integrand consists of diagrams constructed by gluing together

fundamental three-point on-shell amplitudes, and the way these diagrams are assembled

together can be determined by BCFW-like recursion relations to all loop orders [3]. The

on-shell diagrams are extremely interesting both from mathematical and physical points of

view; in particular, through the recursion they combine to exhibit the correct behavior of

the all-loop integrand, including factorizations at physical poles and forward-limit behavior

at the so-called single cuts.
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Another remarkable property of scattering amplitudes in planar N = 4 SYM is that

they are dual to null polygonal Wilson loops in a dual spacetime [4–9, 12]. The duality

was originally discovered for bosonic Wilson loops/MHV amplitudes, and later generalized

to super Wilson loops/super-amplitudes (which contain all helicity-amplitude) [10, 11];

they enjoy a hidden, dual superconformal symmetry [12, 13]. The dual symmetry can be

understood as the symmetry of the dual Wilson loops, which, together with the ordinary

superconformal symmetry, generate an infinite-dimensional Yangian symmetry [14]. An

advantage of the Grassmannian/on-shell diagram formulation is that the original super-

conformal symmetry is made manifest; although the Grassmannian form can be rewritten

in the dual space-time to make dual symmetry manifest [2, 16, 17], an important goal yet

to be fulfilled is to directly understand the dual conformal symmetry in a diagrammatic

formulation in momentum-twistor space, similar to on-shell diagrams in the original space.

The most compact form of amplitudes/Wilson loops are given in momentum twistor

variables, which are twistors of the dual space-time, introduced by Hodges [18]. These vari-

ables manifest the dual symmetry, and trivialize both momentum conservation constraints

and massless on-shell condition. Very recently, a direct dual formulation for all-loop am-

plitudes in momentum-twistor space, the “amplituhedron”, was proposed [19] without ex-

plicitly referring to recursion relations or on-shell diagrams. In the amplituhedron, the

planar integrand at any loop order is reformulated as forms in an auxiliary space. Despite

significant progress, the geometry of the amplituhedron inside this space has not been fully

understood, and there are rich mathematical structures to be further explored. From this

point of view, the BCFW representation using on-shell diagrams in momentum twistor

space provides a particular triangulation (and the only one known for all loops) of the

amplituhedron, thus the systematic study of the diagrams will be of great importance for

understanding the structure of the amplituhedron.

In this paper, we propose a new type of diagrams called “momentum twistor diagrams”,

which as we will argue play a vital role in the study of amplitudes/Wilson loops along

all the aforementioned directions. These diagrams are manifestly Yangian invariant, and

serve as the building blocks for both all-loop recursion relations and the amplituhedron

in momentum twistor space.1 Although the diagrams have formally the same ingredients

as those in the original space, their meanings are completely different, and instead they

exhibit the behavior of amplitudes/Wilson loops at singularities in momentum twistor

space. Already at tree level it is interesting to see how the reduced diagrams combine into

the tree amplitude, according to the factorization term of the recursion. More importantly,

we will generalize the construction to all loops, which requires a systematic way of dealing

with iterated forward limit terms of the recursion, and by doing so we find direct connections

to the amplituhedron geometry. The new diagrams, as dictated by the all-loop recursion,

become not only conceptually interesting as providing triangulations of the amplituhedron,

but also practically powerful for explicit computations of multi-loop integrands.

After a brief review of momentum twistor variables, all-loop recursion relations, and the

amplituhedron, we present the definition of the new on-shell diagrams in momentum-twistor

1In this paper we consider symmetry generators formulated in momentum-twistor space, as discussed

in [15].
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space in section 2. We study the dual Grassmannian formulation of the diagrams, which is

parallel to that of the original on-shell diagrams; in addition, we give several examples, such

as the R-invariant, and operations on the diagrams, including BCFW bridge, fusing, adding

and removing particles. We proceed to representing general factorizations of amplitudes

using momentum-twistor diagrams in section 3, which is given by gluing two sub-amplitudes

by the R-invariant; this completes our diagrammatic representation of all tree amplitudes,

and we write down explicitly NMHV and N2MHV examples. In section 4, we apply the

diagrams to loop level, where one can see the full strength of the formalism. We find that

the pair of particles in the forward limit can be represented by an isolated, bubble-like

structure, and it is much more efficient for producing loop integrands than the original

diagrams. After giving the Kermit representation for all one-loop amplitudes, by iterating

the procedure of taking forward limits, we show how to obtain the diagrams for higher-loop

integrands. To demonstrate this, we present the full two-loop integrand, for MHV and for

general cases. The diagrams makes it possible to systematically determine cells of the

amplituhedron, without actually understanding the intricate geometries, and in particular

we obtain the cells for the amplituhedron of two-loop MHV.

Amplitudes in momentum-twistor space. Let us begin with a brief review of am-

plitudes/Wilson loops in momentum-twistor space. Denote the n-point, NkMHV, L-loop

amplitude as A(L)
n,k , and throughout the paper we will consider the amplitude, A

(L)
n,k , with

MHV tree stripped off,

A(L)
n,k =

δ2×(2|4)
(∑n

i=1 λ
α
i (λ̃α̇i |ηAi )

)
〈12〉 . . . 〈n−1n〉〈n1〉

A
(L)
n,k , (1.1)

where α, α̇ = 1, 2 are SU(2) indices of spinors λi and their conjugates λ̃i encoding the null

momenta of n particles, and A = 1, . . . , 4 is the SU(4) index of Grassmann variables ηi
describing their helicity states. The Wilson loop dual to the n-point amplitude is formulated

along a n-sided null polygon in a chiral superspace with coordinates (x, θ); for i = 1, . . . , n,

we have

xαα̇i − xαα̇i−1 = λαi λ̃
α̇
i , θαAi − θαAi−1 = λαi η

A
i , (1.2)

The (super) momentum twistors are in the fundamental representation of the super-

conformal group of this dual space; explicitly

Zi = (Zai |χAi ) = (λiα, µ
α̇
i |χAi ) ≡ (λiα, x

αα̇
i λiα|θαAi λiα) . (1.3)

The momentum twistors are unconstrained and they determine λ̃, η via,

(λ̃|η)i =
〈i−1 i〉(µ|χ)i+1 + 〈i+1 i−1〉(µ|χ)i + 〈i i+1〉(µ|χ)i−1

〈i−1 i〉〈i i+1〉
. (1.4)

We further define the totally antisymmetric contraction of four bosonic twistors 〈ijkl〉 ≡
εabcdZ

a
i Z

b
jZ

c
kZ

d
l . The factorization poles x2

i,j = 0 , with xi,j ≡ xi − xj , can be written
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in these variables as 〈i−1 i j−1 j〉 = 0. In addition, we have the basic R-invariant of five

super-twistors,

[i, j, k, l,m] ≡ δ0|4(〈〈i j k lm〉〉)
〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

, (1.5)

where the argument of Grassmann delta function is 〈〈i j k lm〉〉A ≡ χAi 〈jklm〉+ cyclic.

The central object we will study in this paper is the integrand of amplitudes/Wilson

loops in momentum twistor space. We will denote the integrand for A
(L)
n,k as Y

(L)
n,k , which is

a form of degree 4L in the L loop variables denoted as `’s. Formally we have

A
(L)
n,k =

∫
reg
Y

(L)
n,k (Z1, . . . ,Zn; {`1, . . . , `L}) =

∫
reg

L∏
m=1

d4`m I
(L)
n,k (Z1, . . . ,Zn; {`1, . . . , `L}) ,

(1.6)

where “reg” means regularizations which are needed for the loop integrals, and by writing

the integral measure explicitly, the remaining part of Y
(L)
n,k , as a rational function, is denoted

as I
(L)
n,k . Note that both Y and I are cyclic in external twistors, Z1, . . . ,Zn, which will be

denoted as 1, . . . , n and completely symmetrized in loop variables, `1, . . . , `L, which will be

suppressed when possible.

The loop variables `’s correspond to points in dual space (for computing Wilson

loops, they are positions of Lagrangian insertions, see [11]). Accordingly, they are lines in

momentum-twistor space, and we will always represent `’s by bi-twistors: `m ≡ (AmBm) ≡
(AB)m, for m = 1, . . . , L. The loop integral measure in momentum-twistor space is de-

fined as

d4` ≡ 〈ABd2A〉〈ABd2B〉 =
d4ZAd

4ZB
vol GL(2)

(1.7)

where the factors of 〈AB〉 always drop out because the integrand is dual conformal invari-

ant, so we have neglected writing them in eq. (1.7); the integral over the line (AB) is given

by that over a pair of points (twistors) ZA and ZB, divided by the GL(2) redundancies

labeling their positions on the line [3]. The integrand has, in addition to factorization

poles, poles from a propagator involving loop variables going on shell, e.g. the so-called

single cut corresponds to poles of the form 〈AmBm i−1 i〉 = 0, for the loop variable `m.

All-loop recursion relations. The integrand Y
(L)
n,k can be determined by BCFW recur-

sion [3]. By applying a shift of the form Ẑn = Zn + wZn−1, we obtain contributions from

three different types of poles in w:

Y
(L)
n,k (1, . . . , n) = B + FAC + FL (1.8)

where for simplicity we have used indices 1, 2, . . . , n to denote super-twistors Z1,Z2, . . . ,Zn.

Here B represents the boundary contribution from w →∞, given by removing Zn.

B = Y
(L)
n−1,k(1, . . . , n− 1) . (1.9)
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Note that although B originates from a different pole than those in FAC below, it can

be regarded as a special factorization term, as is clear from the momentum-space point

of view: it is the factorization into Yn−1,k and the three-point conjugate-MHV amplitude,

A(0)
3,−1, which as it stands does not have a momentum-twistor representation since no MHV

tree can be stripped off from it (it would be something like a Y3,−1 with k-charge −1).

The FAC term represents contributions from factorization poles:

FAC=
1

L!

n−2∑
i=3

∑
k′,L′

∑
σ(`)

[i−1, i, n−1, n, 1]Y
(L′)
i,k′ (1, . . . , i−1, î)Y

(L−L′)
n+2−i,k−1−k′ (̂i, i, . . . , n−1, n̂i) ,

(1.10)

where we sum over all the poles of the form 〈i−1 i n̂ 1〉 = 0, and at each pole the internal

leg and the shifted leg are given by î ≡ (i− 1, i)∩ (1, n− 1, n), n̂i = (n− 1, n)∩ (1, i− 1, i),

with (a, b) ∩ (c, d, e) ≡ Za〈b c d e〉 − Zb〈a c d e〉 defined as the intersection of the line (a, b)

with the plane (c, d, e); in addition, we sum over k′ = 0, . . . , k−1, L′ = 0, . . . , L, and over

distributions of `1, . . . , `L into the two subsets, with L′ and L−L′ variables, which explains

the overall symmetrization factor 1/L!.

The FL term represents the forward-limit contributions which come from single cuts:

FL=
1

L

L∑
m=1

∫
d3|4ZAd3|4ZB

vol GL(2)

∫
GL(2)

[Am, Bm, n−1, n, 1]Y
(L−1)
n+2,k+1(1, . . . , n−1, n̂`m , Am, Bm) ,

(1.11)

where we sum over L loop variables `m = (AB)m (with a symmetrization factor 1/L),

and each term comes from the pole 〈AmBmn̂1〉 = 0, with n̂` = (n − 1, n) ∩ (A,B, 1).

The
∫

GL(2) integral is defined as follows. We first set ZA → ZA + αZB ≡ Z ′A and ZB →
ZB + βZA ≡ Z ′B for parameters α, β, which is equivalent to moving the two points ZA, ZB
without changing the line they span. Then, we take a double residue in α, β such that

〈A′, 1, n−1, n〉 , 〈B′, 1, n−1, n〉 → 0, which is equivalent to taking A′, B′ to lie on the plane

(1, n−1, n). Formally, we have∫
GL(2)

≡
∫
〈A′,1,n−1,n〉→0

dα

∫
〈B′,1,n−1,n〉→0

dβ (1− αβ)2 . (1.12)

This residue is equivalent to setting Z ′A, Z
′
B → (A,B) ∩ (1, n−1, n). The (1 − αβ)2 is a

determinant factor that makes the poles in α, β simple.

The amplituhedron. Here we briefly review the definition of the amplituhedron [19].

At tree level, one can extract the super-amplitude from the “volume”, or the form, of the

tree amplituhedron. The kinematic data is given by zIi = (Zai , φ1,Aχ
A
i , . . . , φk,Aχ

A
i ) for i =

1, . . . , n and I = 1, . . . , k+4, which are bosonic variables associated with super momentum-

twistors, and φ1, . . . , φk are auxiliary Grassmann parameters. The last k components of zIi
are not real numbers but composite Grassmann numbers, which are commuting. The goal

of this construction is to make the amplituhedron a purely bosonic object that nevertheless

contains information about amplitudes with fermionic parts. This is a rather novel way
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of encoding supersymmetry, first introduced in [26]. When defining the amplituhedron,

all the components of zIi are real; once the amplituhedron form is defined, one replaces

the last k components of zIi with the composite Grassmann numbers through analytic

continuation, and extract the superamplitude (with fermonic parts) by integrating out the

auxiliary Grassmann parameters.

We restrict to z ∈ M+(n, k+4), where the space M+(n, k+4) is defined as the set

of n × (k+4) matrices with all maximal ordered minors positive: 〈zi1 . . . zik+4
〉 > 0 for

i1 < · · · < ik+4. The tree amplituhedron, A(n, k, 0), is defined as a subspace of G(k, k+4),

determined by “positive” linear combinations of the positive data,

A(n, k, 0) ≡
{
y ∈ G(k, k+4) : yIα = Cαiz

I
i , C ∈ G+(k, n)

}
, (1.13)

where G+(k, n) is the positive Grassmannian (k-plane in n-dimensional space) with all or-

dered minors 〈i1 . . . ik〉 > 0 for i1 < · · · < ik. One then defines the canonical form Ωn,k(y; z)

of the tree amplituhedron to have logarithmic singularities on all boundaries of A(n, k, 0).

Given a particular top-dimensional cell Γ of the tree amplituhedron parametrized by posi-

tive coordinates (α1, . . . , α4k)
Γ, the form with logarithmic singularities on the boundaries

of the cell is given by

ΩΓ
n,k(y; z) =

dαΓ
1

αΓ
1

. . .
dαΓ

4k

αΓ
4k

. (1.14)

Given a set of cells that triangulate the amplituhedron, the canonical form on the full

amplituhedron is given by the sum of the forms associated with each cell. The logarithmic

singularities that live on the boundary between any two adjacent cells are not true singular-

ities of the canonical form. Instead they cancel in pairs in the sum. In fact, spurious poles

of BCFW terms correspond to these spurious singularities, and the pair-wise cancellation

of spurious poles corresponds to the pair-wise cancellation of spurious boundaries. The

physical poles of the amplitude, of course, correspond to the true boundaries of the am-

plituhedron. The amplituhedron thus provides a unifying picture for why different BCFW

representations for the same amplitude are equivalent.

The super-amplitude Yn,k is extracted from Ωn,k(y; z) by localizing it to a special point

y0 = (04×k|Ik×k) (note the four-dimensional space, complementary to y0, can be thought

of as the bosonic momentum-twistor space):

Yn,k(Z) =

∫
d4φ1 . . . d

4φk

∫
Ωn,k(y; z)δ4k(y; y0)

=
∑

Γ

4k∏
a=1

dαΓ
a

αΓ
a

k∏
α=1

δ4|4

(
n∑
i=1

Cαi ≤ (αΓ)Zi

)
. (1.15)

where Cαi(α
Γ
1 , . . . , α

Γ
4k) are coordinates of a dimension-4k cell in G+(k, n). Note that after

having integrated the form Ωn,k over the delta function, we analytically continue zIi to

account for the composite Grassmann components before integrating over the auxiliary

variables.
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At loop level, in addition to the k × n C-matrix, we have L 2 × n matrices Dm =

(D
(A)
m , D

(B)
m ) with m = 1, . . . L which live in the (n−k) dimensional complement of C. The

amplituhedron A(n, k, L) is the subspace of all y’s and `’s

yIα = Cα,iz
I
i , `Im = (Am, Bm)I = (D(A)

m , D(B)
m )i z

I
i , (1.16)

with C ∈ G+(k, n) and D’s satisfy the positivity condition that all the ordered (k+2l) ×
(k+2l) minors of the (k+2l)×n matrix (Dm1 , . . . , Dml

, C) are positive, for any l = 1, . . . , L

and any {m1, . . . ,ml} ⊂ {1, . . . , n}; the space of (D1, . . . , DL;C) with these conditions

are dubbed as the space G+(k, n;L). Note we have used ` = (A,B) to denote (k+4)-

dimensional vectors and (D(A), D(B)) to denote the two rows of D, for which we mod out

the GL(2) redundancy.

The canonical form, Ωn,k,L(y, `; z), is again defined to have logarithmic singularities

at all boundaries of A(n, k, L). Given positive coordinates (α1, . . . , α4(k+L))
Γ for a cell

Γ, again the form is the product of the d log’s, and one extracts the integrand for super

amplitudes, Y
(L)
n,k (Z, `), exactly the same as in eq. (1.15):

ΩΓ
n,k,L(y, `; z) =

4(k+L)∏
a=1

dαΓ
a

αΓ
a

, Y
(L)
n,k (Z, `) =

∑
Γ

ΩΓ
n,k,L(y, `; z)×

k∏
α=1

δ4|4

(
n∑
i=1

Cαi(α
Γ)Zi

)
.

(1.17)

The systematic study of cell decompositions, and more concretely, finding positive

coordinates such that (D1, . . . , DL;C) ∈ G+(k, n;L), remains an extremely interesting

open question. In the following, by exploiting the on-shell-diagrams in momentum-twistor

space, and the all-loop recursion relations, (1.8), we will provide a prescription for finding

the BCFW cell decomposition and positive coordinates for the amplituhedron.

2 New on-shell diagrams in momentum-twistor space

We start by presenting fundamental ingredients for on-shell diagrams in momentum-twistor

space. A generic on-shell diagram consists of trivalent white and black vertices connected

by external and internal edges, all drawn on a disk. Note that we do not assume that the

diagrams are planar. In fact, as we will discuss later, non-planarity is a surprising feature

that only appears in forward limit terms at loop level, despite the fact that they compute

planar loop amplitudes.

• The external edges (suppose there are n of them) of a diagram are connected to

the boundary of a disk. They represent the n color-ordered external states (here

we always work with the canonical ordering 1, 2, . . . , n), and are associated with

momentum twistors Z1,Z2, . . . ,Zn.

• Each internal edge of the diagram is associated with a momentum twistor Z which

is then integrated over with the measure

d3|4Z =
d4|4Z

vol GL(1)
. (2.1)
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• Each white vertex with three (internal or external) twistors Za,Zb,Zc is represented

by an integral over C ∈ G(1, 3) (a 1× 3 matrix with GL(1) redundancies)

W (a, b, c) = =

∫
1

vol GL(1)

d1×3C

(a)(b)(c)
δ4|4(CaZa+CbZb+CcZc) . (2.2)

where (i) = Ci for i = a, b, c. The white vertex thus enforces Za,Zb,Zc to be on the

same projective line.

• Each black vertex with three (internal or external) twistors Za,Zb,Zc is represented

by an integral over C ∈ G(2, 3) (a 2 × 3 matrix up to GL(2) redundancies, with

minors defined as (i j) ≡ C1,iC2,j − C2,iC1,j),

B(a, b, c)= =

∫
1

vol GL(2)

d2×3C

(ab)(bc)(ca)

2∏
α=1

δ4|4(Cα,aZa+Cα,bZb+Cα,cZc) .

The black vertex thus identifies Za,Zb,Zc projectively. There are degenerate cases:

a black vertex with two edges can be deleted from the diagram, with the two edges

identified to be one edge (the two twistors are identified), and a black vertex con-

nected to the boundary by one external edge can also be deleted, making the diagram

independent of the corresponding external twistor.

2.1 The Grassmannian representation of momentum-twistor diagrams

These are all the necessary ingredients for evaluating on-shell diagrams in momentum

twistor space. Formally they are identical to the vertices and edges in the original space,

when written in terms of the original twistor variables. However, as we will see shortly,

using these diagrams, (MHV-tree stripped) amplitudes/Wilson loops are expressed in a

completely different fashion from the way amplitudes are written in terms of the original

diagrams. In this section we focus on reduced diagrams, and present their representation

using Grassmannian G(k, n) in momentum-twistor space. Note that the k-charge here (the

Grassmann degree is defined as 4k) is related to the k-charge in the original space (the

MHV degree of the full amplitude) by khere = koriginal−2.

The k-charge of a diagram is easy to determine: each trivalent white vertex has k = 1

and each trivalent black vertex has k = 2; for each internal edge the k is reduced by one,

thus the total k-charge is

k = nW+2nB−nI , (2.3)

where nW , nB and nI are the number of trivalent white vertices, black vertices and internal

edges. Note that this is the counting after deleting degenerate black vertices. Let us denote

the number of relevant external edges as m (note k + 4 ≤ m ≤ n; each of the remaining
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n−m edges is connected to a monovalent black vertex and thus can be deleted), then

another useful relation is

m = 3(nW + nB)− 2nI . (2.4)

The derivation for the momentum-twistor Grasssmannian representation of our dia-

gram is parallel to that in section 4 of [2], and we will not repeat it. Roughly speaking,

we perform all integrals over internal twistors, and obtain the delta functions given by

amalgamation of those from fundamental vertices, and in the end an on-shell diagram can

be represented by “d log” integrals over edge variables,∫ ∏
v

1

vol GL(1)

∏
e

dαe
αe

k∏
I=1

δ4|4

(
n∑
a=1

CI,a(α)Zi

)
, (2.5)

where v, e runs over all vertices and edges respectively. Here C ∈ G(k, n) is the amalga-

mation of G(1, 3)’s and G(2, 3)’s, and it can be put in a GL(k) gauge-fixed form associated

with a perfect orientation of the diagram: choosing k external edges as incoming sources,

labeled by A (or sometimes B), and the remaining n−k sinks labeled by a, then we can

determine a perfect orientation from left-right-path of the diagram.

The gauge-fixed form of C has an identity-matrix part, CA,B = δAB, and the remaining,

non-trivial part of matrix C is determined by the“boundary measurements”: the weight

for each path Γ from A to a is given by the product of all edge variables on the path, and

we sum over all such paths,

CA,a = −
∑

Γ∈{A→a}

∏
e∈Γ

αe . (2.6)

Equivalently, one can define the boundary measurements in terms of face variables,

CA,a = −
∑

Γ∈{A→a}

∏
f∈Γ̂

(−f) (2.7)

where Γ̂ is the set of faces enclosed by the counterclockwise completion of Γ, and the value

of the graph is given by,∫
1

vol GL(1)

∏
f

df

f

k∏
I=1

δ4|4

(
n∑
a=1

CI,a(f)Zi

)
. (2.8)

We note that there is an overall GL(1) redundancy for the face variables since the product

of all face variables is unity,
∏
i fi = 1, so when evaluating the graph we include all but

one face variable.

In practice, we find it convenient to merge all trivalent black vertices connected to

each other (without passing through white vertices) into a single one. For any region of the

graph with exclusively black vertices, all momentum twistors associated with the edges are

identified, thus effectively we have a unique twistor, Z, for the region. In the end all black
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vertices in the entire region evaluate to unity, and, when no external twistors are involved,

one simply integrates over the internal twistor with
∫
d3|4Z.

To see this, it is enough to look at a single trivalent black vertex, attached by a, b, c,

and we represent the remaining part of the diagram by a projective function f :∫
d3|4Za d3|4Zb d3|4ZcB(a, b, c) f(Za,Zb,Zc) =

∫
d3|4ZI f(Za = ZI ,Zb = ZI ,Zc = ZI) ,∫

d3|4Za d3|4ZbB(a, b, c) f(Za,Zb,Zc) = f(Za = Zc,Zb = Zc,Zc) , (2.9)

where we have included two cases: when a, b, c are all internal edges or when one of them,

say c, is external. Thus in general, as we will see repeatedly in the following, one can

evaluate on-shell diagrams by computing the result from those parts with white vertices

and using black vertices for connecting them and identifying twistors.

As studied in details in [2] any reduced on-shell diagram from can be mapped to a

decorated permutation, σ : i → i ≤ σ(i) < i+n with the k-charge given by koriginal =
1
n

∑n
i=1(σ(i)−i). One can decompose the decorated permutation into a series of adjacent

transpositions, and the diagram is constructed by the composition of BCFW bridges, which

are in one-to-one correspondence to the transpositions.

Given a decorated permutation with σ(i) > i+1, we can define the dual decorated

permutation as σ′ : σ′(i+1) = σ(i)−1. It turns out that, all the reduced diagrams in

momentum-twistor space, are the on-shell-diagram associated with the permutation σ′,

i.e. they are constructed by the composition of BCFW bridges corresponding to adjacent

transpositions of σ′. Although the interpretation of the BCFW bridge is different from

that in the original space, this prescription indeed gives the correct diagrams in momentum

twistor space. In addition, it also explains why our on-shell-diagrams are computing MHV-

tree stripped amplitudes, or equivalently Wilson loops. The reason is that those original

diagrams associated with the MHV tree amplitude are exactly those with σ(i) ≤ i+1. We

will not pursue this connection to the original diagrams any further, but turn to the study

of our on-shell-diagrams independently, as building blocks for tree and loop amplitudes.

2.2 Examples and operations on the diagrams

Given the general prescriptions, we first study a few simple examples, which will be useful

for defining some basic operations acting on the momentum-twistor diagrams.

The so-called “lollipop diagrams” are those with all external edges connected to mono-

valent black vertices. As we have discussed, one can delete such vertices in which case the

diagram becomes the trivial diagram, which is the unique k = 0 reduced diagram. They

give unity, which is the MHV tree-amplitude in momentum-twistor space. Here we draw a

6 point example

.
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The simplest non-trivial diagram is given by two white vertex connected by an external

edge, with n = 4, k = 1∫
d3|4ZIW (a, b, I)W (I, c, d) =

∫
1

vol GL(1)

dα

α

dβ

β

dγ

γ

dδ

δ
δ4|4(αZa+βZb+γZc+δZd)

≡ W (a, b, c, d) =

∫
d3|4ZIW (b, c, I)W (I, d, a) . (2.10)

where on the second line we have seen that the two collinear constraints together enforce

Za,Zb,Zc,Zd to be on a projective plane; this is manifestly cyclic, thus we can merge it as

a single white-vertex with four edges attached to it, which we denote as W (a, b, c, d), and

then reexpand it to the other channel (which imposes the same kinematic constraints), as

shown by the following diagrammatic identity

.

This is nothing but the simplest factorization diagram (i.e. with propagator put on-

shell) one can access in momentum twistor space. Note that the two-particle channels

of the MHV amplitude is invisible since it is stripped off, thus the simplest factorization

would be that of a NMHV (k = 1) amplitude, divided by MHV amplitude. Consider the

factorization pole 〈i−1 i j−1 j〉 = 0, then we can perform the integrals in eq. (2.10) using

a reference twistor Z∗ (the result is independent of ∗):

W (i−1, i, j−1, j) = δ(〈i−1 i j−1 j〉) δ0|4(〈〈∗, i−1, i, j−1, j〉〉)
〈∗ i−1 i j−1〉〈∗ i−1 i j〉〈∗ j−1 j i−1〉〈 ∗ j−1 j i〉

,

(2.11)

which is indeed the residue at the factorization pole 〈i−1 i j−1 j〉 = 0 for any NMHV

R-invariant with this pole, [∗, i−1, i, j−1, j].

Given the factorization diagram that depends on four twistors, we can obtain the full

R-invariant, which depends on five twistors, by adding a BCFW bridge. The operation is

very simple: it attaches a bridge with a black vertex and a white vertex to two adjacent,

external edges, respectively. Denoting the original diagram by Y (1, . . . , n), then adding the

bridge br(n, 1), with white and black vertex attached to n and 1 respectively, amounts to

Y ′(1, . . . , n) = br(n, 1) · Y (1, . . . , n) ≡
∫
dc

c
Y (1, . . . , n̂) (2.12)

where Ẑn = Zn + cZ1 and c is the edge variable associated with the bridge; diagrammati-
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cally

br(n, 1) · Y (1, . . . , n) = .

By adding the BCFW bridge br(d, e) to the diagram from fusing W (a, b, c, d) and a lollipop

diagram with a black vertex attached by e, B(e), we obtain2

br(d, e) · (W (a, b, c, d)⊗B(e)) =

∫
dc

c
W (a, b, c, d̂) = [a, b, c, d, e] (2.13)

which is the on-shell diagram for R-invariant that manifests the factorization channel

W (a, b, c, d). We can merge and re-expand the white vertices and obtain various differ-

ent representations of the same R-invariant:

.

In addition to BCFW bridges, we can have operations that add or remove particles for

on-shell diagrams. For a generic diagram with external particles 1, . . . , n−1, one can add

an additional particle, n, which produces a diagram with n external particles. This corre-

sponds to the “inverse soft limit”, which has two cases, the k-preserving and k-increasing

operations.

2Fusing two diagrams, denoted by Y1 ⊗ Y2, trivially gives the product of the two diagrams, Y ′ = Y1Y2.

This special case, where Y2 is a lollipop diagram with a single external leg, corresponds to adding a particle,

as we will see below.
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The k-preserving operation simply adds a lollipop; the external edge n is attached to

a monovalent black vertex, and the before and after diagrams evaluate to identical results,

Y ′(1, . . . , n) = = Y (1, . . . , n−1)⊗B(n) = Y (1, . . . , n−1) . (2.14)

The k-increasing operation is more interesting. It “adds” an R-invariant (thus increase

its k-charge by 1) which involves the additional leg, say n and four neighboring legs,

n−2, n−1, 1, 2 to the original diagram, and it also involves shifting the two legs n−1, 1

Y ′(1, . . . , n) = [n−2, n−1, n, 1, 2]Y (1̂, . . . , n̂−1) (2.15)

= , (2.16)

where the shifted variables are n̂−1 = (n−2, n−1)∩ (n, 1, 2) and 1̂ = (1, 2)∩ (n−2, n−1, n).

The construction of this diagram may seem mysterious at first, but it is easy to justify

it. First of all, the lower-part of the diagram provides necessary shifts for the twistors Ẑ1

and Ẑn that appear in Y . Let us check this for Ẑ1 and leave the other to the reader. Recall

that each internal or external line represents a twistor: twistors connected to a common

black vertex are projectively identical, and twistors connected to a common white vertex

are linearly dependent. Let us study the two edges connected to a common black vertex

with 1̂, and all three twistors must be projectively identifies. From the white vertex with

Z1,Z2, the twistor must be on the line (1, 2); from other two white vertices, it must be

on the plane (n−2, n−1, n). Up to overall scaling, the twistor satisfying both conditions is

1̂ = (1, 2) ∩ (n−2, n−1, n), which is correct [3].

In addition, the appearance of the R-invariant in the k-increasing operation can be

derived by direct computation of the diagram, see (2.13). We first observe that, compared

to Y , the k-charge of the diagram is indeed increased by 1. It introduces 3 new white

vertices, 2 new black vertices, and 6 new internal lines, so that ∆k = ∆nW + 2∆nB −
∆nI = 3 + 2 × 2 − 6 = 1. In fact, the only possible R-invariant that could appear is

[n−2, n−1, n, 1, 2]. If we look at the shifted variable 1̂ = (1, 2)∩(n−2, n−1, n) that appears

in Y , we notice that there are two ways of expanding the shift. Namely,

Ẑ1 = Z1 〈2, n−2, n−1, n〉 − Z2 〈1, n−2, n−1, n〉 (2.17)

Ẑ1 = Zn−2 〈2, 1, n−1, n〉+ Zn−1 〈2, n−2, 1, n〉+ Zn 〈2, n−2, n−1, 1〉 . (2.18)
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These two expansions must be equivalent. For the bosonic components this is true by the

Schouten identity. However, for the fermionic components there is no such identity. The

only way for the two expansions to agree is if they are both evaluated on the support of

the fermionic delta function

δ0|4(η1 〈2, n−2, n−1, n〉+ cyclic) . (2.19)

This is precisely the delta function provided by the R-invariant that appears in the k-

increasing operation, thus justifying our claim. Note that the R-invariant required by the

other shift n̂−1 is identical, so only one R-invariant is needed.

The opposite operations are those that remove a particle from the diagrams of the

form above. Correspondingly they are k-preserving and k-decreasing soft limits:

Y ′(1, . . . , n−1) = Y (1, . . . ,Zn → Zn−1) ,

Y ′(1, . . . , n−1) =

∫
d3|4ZnY (1, . . . , n) . (2.20)

3 The amplituhedron from momentum-twistor diagrams: tree level

In this section we study how to represent factorizations of amplitudes by our diagrams

directly in momentum-twistor space. The result will suffice to yield all tree-level ampli-

tudes/Wilson loops, and it generalizes to the factorization terms of all-loop integrand.

3.1 Momentum-twistor diagrams for factorizations

Here we re-derive all factorization contributions for amplitudes in terms of momentum

twistor diagrams, including the aforementioned B and FAC terms. The B term is the

residue at w → ∞, or Zn → Zn−1 projectively. This is nothing but the k-preserving soft

limit, eq. (2.14), given by a lower point diagram with a lollipop on particle n,

B = . (3.1)

Now we move to the contributions from poles of the form 〈j−1 j n̂ 1〉 = 0. Recall that

we have worked out the simplest cases with k = 1 in eq. (2.11), where both left and right

part are unity MHV amplitudes. In general, by connecting the left and right amplitudes

with W (j−1, j, n, 1) we obtain the factorization limit:

YL(ĵ, j, . . . , n)W [j−1, j, n, 1]YR(1, . . . , j−1, ĵ)

=
δ(〈j−1 j n 1〉) δ0|4(〈〈∗, i−1, i, j−1, j〉〉)

〈∗ i−1 i j−1〉〈∗ i−1 i j〉〈∗ j−1 j i−1〉〈 ∗ j−1 j i〉
YL(ĵ, j, . . . , n)YR(1, . . . , j−1, ĵ)
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where ĵ = (j−1j) ∩ (∗n1) = (n1) ∩ (∗j−1j) is exactly the twistor corresponding to the

intersection of the lines (j−1j) and (n1), as shown in the diagram of (3.3). The diagram

is clearly independent of the reference ∗, and note that at this stage it is symmetric under

the exchange of left and right amplitude (including (j−1, j)↔ (n, 1)).

As explained in eq. (2.13), each contribution in the FAC term can be obtained by

attaching the BCFW bridge, br(n, n−1), to the factorization limit,

br(n, n−1) · (YL(ĵ, j, . . . , n)W [j−1, j, n, 1]YR(1, . . . , j−1, ĵ))

= [j−1, j, n−1, n, 1]YL(ĵ, j, . . . , n̂j)YR(1, . . . , j−1, ĵ) (3.2)

where we have ĵ = (j−1, j)∩ (n−1, n, 1) and n̂j = (n−1, n)∩ (1, j−1, j), which are the two

intersection points in the diagram. By summing over these, we have the FAC term:

FAC =

n−2∑
j=3

. (3.3)

Given that this is our first full-fledged example, we explain it carefully here. Rather

than directly computing the diagram, it is more insightful to see why the result is correct,

as we did for the k-increasing operation. For instance, we can check that the line n̂j and

the two lines ĵ have the correct shifts. Using the rules from before, we find that n̂j lies on

the line (n−1, n) and the plane (1, j−1, j), which implies that n̂j = (j−1, j) ∩ (1, n−1, n).

Similarly for ĵ on (j−1, j) and (n, n−1, 1), thus ĵ = (j−1, j) ∩ (n−1, n, 1).

It is easy to see that the k-charge of the full diagram is given by k = kL + kR + 1

as required by the FAC term. We denote the sub-diagram with vertices or edges in the

diagram not already present in YL or YR as ∆, then its k-charge is ∆k = k − kL − kR =

∆nW + 2∆nB −∆nI = 3 + 2 × 7 − 16 = 1. Here recall that the counting only applies to

trivalent graphs. Since there is a quartic vertex at the center of the diagram, we should

split that vertex into two cubic vertices, which introduce one new black vertex and one

new internal line as shown below.

, (3.4)

which is why we obtain ∆nB = 7 and ∆nI = 16.
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The fact that ∆k = 1 implies that the diagram evaluates to YL times YR with an extra

R-invariant. As before, we claim that the R-invariant that appears in FAC is the only one

it could be, because the fermionic components of n̂j and ĵ only make sense on the support

of its delta function. This concludes our justification of the FAC diagram.

3.2 Examples

Thus all tree amplitudes can be determined by solving the recursion with only the fac-

torization term. Here we present two examples, NMHV and N2MHV, which is enough to

illustrate the result. On the other hand, we know a prior what the resulting diagrams are:

they are given by the on-shell diagrams with permutations σ′ satisfying σ′(i+1) = σ(i)−1,

for those σ’s associated with diagrams in the original space. It is straightforward to check

the following result from this perspective.

3.2.1 NMHV trees

We now apply our diagrams to obtain the Yangian invariant Yn,k=1(Z1, . . . ,Zn) for NMHV

trees, where we have suppressed writing the L = 0 superscript. Recall that NMHV trees

factorize as the product of two MHV trees. By representing MHV amplitudes as a series

of lollipops, the factorization term becomes

FAC =

n−2∑
j=3

=
n−2∑
j=3

. (3.5)

In going from the first diagram to the second, we deleted any lollipops attached to

internal lines, and any vertex attached to only two lines.

Recall from our earlier discussion that this diagram is just the R-invariant [1, j−1, j,

n−1, n]. The BCFW recursion is therefore

Yn,k=1(1, . . . , n) = Yn−1,k=1(1, . . . , n− 1) +
n−2∑
j=3

[1, j−1, j, n−1, n] . (3.6)

As is well known, the following closed form expression for Yn,k=1 satisfies the recursion

relation, for which we have a diagrammatic representation now,

Yn,k=1(1, . . . , n) =
∑
i<j

[1, i−1, i, j−1, j] . (3.7)

3.2.2 N2MHV trees

We can also apply our diagrams to N2MHV trees, which factorize as the product of MHV

and NMHV. Consider for example the 6 point case where the B term vanishes. A moment’s

– 16 –



J
H
E
P
0
2
(
2
0
1
5
)
0
6
5

thought reveals that there is only one FAC diagram that contributes, which contains 5 point

NMHV tree on the left and 3-point MHV tree on the right.

FAC = = . (3.8)

We can then compute this diagram by performing boundary measurements. Since the

diagram contains nF = 9 faces, the number of integration variables must be nF− 1 = 8, so

we can gauge fix some of the bridge variables until only 8 are left. The diagram above shows

one particular choice of leftover bridge variables. The explicit formula for this diagram is

thus given by

FAC =

∫
dc1 . . . dc8

c1 . . . c8
δ4|4(Z1 − c5Z5 − c6Z6 − c7Z2 − c8Z3)

×δ4|4(Z4 − c1c8Z3 − c2(c7Z2 + c8Z3)− c3(c5Z5 + c6Z6)− c4c5Z5) .

(3.9)

On the support of the first delta function, it is easy to see that

c5Z5 + c6Z6 ∼ (56) ∩ (123) ≡ Z ′5
c7Z2 + c8Z3 ∼ (23) ∩ (156) ≡ Z ′2 . (3.10)

Substituting these into the second delta function and rescaling the integration variables

appropriately gives

FAC =

∫
dc1 . . . dc8

c1 . . . c8
δ4|4(Z1 − c5Z5 − c6Z6 − c7Z2 − c8Z3)

×δ4|4(Z4 − c1Z3 − c2Z ′2 − c3Z ′5 − c4Z5) . (3.11)

The integral is now trivial to perform. It just gives us two R-invariants:

Y6,k=2(Z1, . . . ,Z6) = [3, 4, 5, 2′, 5′][1, 2, 3, 5, 6]

= [3, 4, 5, (23) ∩ (156), (56) ∩ (123)][1, 2, 3, 5, 6] . (3.12)

As mentioned above, in practice it is usually not productive to work out all the bound-

ary measurements step by step and identify all proper shifts like Z ′2 and Z ′5 on the support

of the delta functions; the shifts can be identified more quickly by looking at the diagram

and remembering the role of the black and white vertices. From our general rules and

examples, it is straightforward to work out (reduced) momentum-twistor diagrams for all

tree-level amplitudes/Wilson loops.
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4 The amplituhedron from momentum-twistor diagrams: loop level

In this section we turn to loop level. Since B and FAC of any loop integrand are identical to

those at tree level, we focus on the final contribution to its BCFW expansion, the forward

limit term FL. It comes from a loop propagator going on shell. In other words, given the

BCFW deformation Ẑn = Zn + wZn−1, we expect to find poles when 〈AB1n̂〉 → 0. Each

of these poles contributes to the FL term.

4.1 Momentum-twistor diagrams for forward-limit contributions

The FL term from Y
(L−1)
n+2,k+1(1, . . . , n̂, A,B; {`}/(AB)), which contributes to Y (L)

n,k (1, . . . , n; {`}),
is given by the following diagram

FL =

∫
GL(2)

. (4.1)

The GL(2) integral sign is just there to remind us that there is a GL(2) residue we must

take, which we will discuss in a moment. From the diagram it is clear that n̂ lies on both

(n−1, n) and n̂ ∼ (1, A,B). It follows that n̂ = (n−1, n) ∩ (1, A,B), which is the correct

shift. Furthermore, the k of the diagram minus that of the sub-diagram Y is given by

∆k = k − kY = ∆nW + 2∆B − ∆nI = 3 + 2 × 3 − 10 = −1. The minus sign in the

degree means that prior to integrating out the fermionic parts of A,B via d4ηAd
4ηB which

has degree −2, we should find one R-invariant multiplied by Y . This R-invariant must be

[A,B, 1, n−1, n] so that the fermionic parts of the shift n̂ are well-defined.

In order to do the GL(2) residue diagrammatically, we first do a new BCFW shift

ZB → ZB + wZ1 on the sub-diagram Y L−1
n+2,k+1. As usual, this contains a boundary (i.e.

w →∞) term, a factorization channel FL-FAC (i.e. forward limit of factorization channel),

and a forward limit FL-FL (i.e. forward limit of forward limit). The boundary term in

general does not contribute. Let us first look at the FL-FAC term, which is everything for

the FL of one-loop amplitudes, since FL-FL terms do not contribute. We have

FL-FAC =

n−1∑
j=3

∫
GL(2)

(4.2)
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where we sum over all left and right sub-diagrams for which LL+LR = L−1, kL+kR = k,

and nL+nR = n+4. The boundary case Zj = Ẑn is zero after doing the fermionic integrals

for ZA,ZB, and so is not included in the summation.

Now recall that the GL(2) residue takes ZA,ZB → (A,B) ∩ (1, n − 1, n). The point

(A,B)∩ (1, n− 1, n) can be found on the diagram, and is labeled by a cross. When taking

the residue, the line A coming out of the left sub-diagram must be cut and reconnected to

the crossed line.

But what about the line B̂ coming out of the right sub-diagram? Surely that must be

reconnected as well. A quick look at the diagram shows that ẐB = (1, B) ∩ (j − 1, j, A).

When taking the residue, this becomes ẐB → (A,B) ∩ (1, n − 1, n), which again is the

crossed line. So the B̂ line must also be reconnected to the cross. This completes the

GL(2) residue. The advantage of using diagrams is that we did not have to do this residue

analytically. The final form of the FL-FAC term is thus given by the following

FL-FAC =
n−1∑
j=3

=
n−1∑
j=3

(4.3)

where the second diagram is obtained from the first by some merge and expansion of white

vertices.

It is important to note that the diagram degenerates for the boundary case with

j = n−1. In our diagram above, it appears as if the point j appears twice since n−1

is identical to j, but this is obviously not the right interpretation. Indeed, we should

modify the diagram slightly to account for this case by identifying the external points j

and n−1. In other words, the line that connects YL to the external edge n−1 should be

merged with the line that connects YL to j. We also merge the corresponding two black

vertices, and the result is

. (4.4)

We notice that the process of doing the GL(2) integral introduces one degree of non-

planarity in the diagram. In other words, two of the bridges appearing in the diagram
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intersect. Although this may seem peculiar, we can still do boundary measurements in the

usual way. Furthermore, we see that the loop variables ZA,ZB have been isolated in a

bubble-like structure. This will be very convenient for writing down the loop integrand, as

we will show in a moment.

4.2 One-loop amplitudes

Our diagrams at loop level are not only conceptually interesting, but they also serve as

a powerful tool for computing loop integrands. It is obvious that the calculation in mo-

mentum twistor space is more efficient than in the original space. Besides, an important

advantage of our diagrams is that, it bypasses the technical difficulties of performing GL(2)

integrals in the forward limit, and one can directly read off the result algebraically from

the diagrams. We will first derive general one-loop integrands, which yields the Kermit

representation [21], and then move to give results for the two-loop case.

4.2.1 One-loop MHV amplitudes

We now derive the BCFW representation of the one-loop n-point MHV integrand. In this

case, only the B and FL-FAC terms contribute, where the FL-FAC involves a factorization

into two MHV trees. It follows that

FL-FAC =

n−1∑
j=3

=

n−1∑
j=3

. (4.5)

In the boundary case where j = n−1, we identify the external lines j and n−1 as

follows.

A B . (4.6)

Any one of these diagrams contains nF = 7 faces, and so must involve nF − 1 = 6

integration variables. As a general rule, we will always attach two extra GL(1) gauges for

every forward limit we take, so this reduces the diagram to a 4-form. But let us keep all 6
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variables for now. There are no delta functions since the k-charge of this diagram is 0 (i.e.

there are no arrows going into the diagram). So this diagram is literally given by

ds

d

dt

t

dcj−1

cj−1

dcj
cj

dcn−1

cn−1

dcn
cn

. (4.7)

By following the arrows in the diagram and doing the usual boundary measurements, we

can rewrite c1, . . . , c4 in terms of ZA,ZB.

ZA + tZB = Z1 + cj−1Zj−1 + cjZj
ZB + sZA = Z1 + cn−1Zn−1 + cnZn . (4.8)

It follows that

FL-FAC =
1

Vol[GL(1)]2
ds

s

dt

t
d4`AB

n−1∑
j=3

KAB(1, n−1, n; 1, j−1, j) (4.9)

where we have abbreviated d4`AB =
〈
ABd2A

〉 〈
ABd2B

〉
, and we define the Kermit

KAB(1, n−1, n; 1, j−1, j) ≡
〈AB(1, n−1, n) ∩ (1, j−1, j)〉2

〈AB1 n−1〉 〈AB1 n〉 〈AB n−1 n〉 〈AB1 j−1〉 〈AB1 j〉 〈AB j−1 n〉
. (4.10)

We can now gauge fix s, t→ 1 to obtain

FL-FAC = d4`AB

n−1∑
j=3

KAB(1, n−1, n; 1, j−1, j) . (4.11)

This last step is universal, so we will often omit writing the d log s and d log t factors. Thus

the full BCFW recursion for one-loop MHV gives

Y L=1
n,k=0(Z1, . . . ,Zn) = B + FL-FAC

= Y L=1
n−1,k=0(1, . . . , n−1) + d4`AB

n−1∑
j=3

KAB(1, n− 1, n; 1, j − 1, j) .

(4.12)

Solving this relation in closed form gives the well-known Kermit form of one-loop MHV,

Y L=1
n,k=0(Z1, . . . ,Zn) = d4`AB

∑
i<j

KAB(1, i−1, i; 1, j−1, j) . (4.13)

It is well known that each Kermit diagram gives d log ci−1 d log ci d log cj−1 d log cj ,

which corresponds to a cell of the one-loop MHV amplituhedron. The Kermit form nicely

provides a triangulation of the amplituhedron.
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4.2.2 General one-loop amplitudes

In general, to all loop orders the FL-FAC term is given by Kermit terms multiplied by left

and right sub-amplitudes. We can see this diagrammatically by doing boundary measure-

ments on the middle portion of the FL-FAC diagram. The steps here are very similar to

what we did for the FAC term.

For one-loop amplitudes, in addition to B and FAC terms, only the FL-FAC term

contributes, and both sub-amplitudes are tree amplitudes, which then gives the Kermit

representation for one-loop integrand:

FL-FAC =

=

n−1∑
j=3

dcj−1dcjdcn−1dcn
cj−1cjcn−1cn

Y LL
nL,kL

(Ẑj ,Zj , . . . ,Zn−1, Ẑn, ẐnAB)Y LR
nR,kR

·(Z1, . . . ,Zj−1, Ẑj , ẐnAB) (4.14)

where the loop variables are given by

ZA + tZB = Z1 + cj−1Zj−1 + cjZj
ZB + sZA = Z1 + cn−1Zn−1 + cnZn (4.15)

and Ẑj = (j−1, j)∩ (1, A,B), ẐnAB = (A,B)∩ (1, n−1, n) and Ẑn = (n−1, n)∩ (1, A,B).

It is now clear that the d log c form just becomes a Kermit, so we get

FL-FAC = d4`AB

n−1∑
j=3

KAB(1, j − 1, j; 1, n− 1, n)

× Y LL
nL,kL

(Ẑj ,Zj , . . . ,Zn−1, Ẑn, ẐnAB)Y LR
nR,kR

(Z1, . . . ,Zj−1, Ẑj , ẐnAB) . (4.16)

Before turning to higher loops, here we present an example, the one-loop five-point

NMHV integrand, Y L=1
5,k=1, in full details. The only contributions in this case are FAC and

FL-FAC. The FAC term involves only one diagram and is given by the factorization with
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4-point 1-loop MHV on the left and 3-point MHV tree on the right.

FAC = = . (4.17)

This graph has nF = 11 faces, so it should have nF − 1 = 10 integration variables.

But remember that we mod out the s, t using two GL(1) gauges so we really only have

8 integrations. There is only one arrow going into the diagram, which means that the

diagram is NMHV, so there should be one delta function δ4|4(. . .). Indeed, the diagram is

given by

FAC =

∫
dc1 . . . dc8

c1 . . . c8
δ4|4(Z1 − c1Z2 − c2Z3 − c3Z4 − c4Z5) . (4.18)

Doing the boundary measurements for the loop variables gives

ZA + tZB = Z3 + c5Z4 + c6(c1Z2 + c2Z3)

ZB + sZA = (c3Z4 + c4Z5) + c7(c1Z2 + c2Z3) + c8Z4 . (4.19)

On the support of the delta function, we see that

c1Z2 + c2Z3 ∼ (23) ∩ (145) ≡ Z ′2
c3Z4 + c4Z5 ∼ (45) ∩ (123) ≡ Z ′4 . (4.20)

After rescaling some of the integration variables we get

ZA + tZB = Z3 + c5Z4 + c6Z ′2
ZB + sZA = Z ′4 + c7Z ′2 + c8Z4 . (4.21)

This looks just like the Kermit, so the c5, . . . , c8 part of the form would just give

a Kermit. The remaining variables c1, . . . , c4 can be integrated trivially over the delta

function to yield the R-invariant [1, 2, 3, 4, 5]. The result is

FAC = d4`ABKAB(432′; 44′2′)[1, 2, 3, 4, 5] (4.22)

which simplifies to

FAC = d4`AB
δ0|4(η1 〈2345〉+ η2 〈3451〉+ η3 〈4512〉+ η4 〈5123〉+ η5 〈1234〉)
〈1245〉 〈1235〉 〈AB23〉 〈AB34〉 〈AB45〉 〈AB1(45) ∩ (123)〉

. (4.23)
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Now let us work on the FL-FAC term. There are two diagrams FL-FAC = FL-FAC-1

+ FL-FAC-2. The first diagram FL-FAC-1 is the forward limit of a factorization channel

with 5-point NMHV tree on the left and 4-point MHV tree on the right.

FL-FAC-1 = = .

(4.24)

Again, this diagram has nF = 11 faces, so we should find 8 integration variables and

one delta function δ4|4(. . .). We find

FL-FAC-1 =

∫
dc1 . . . dc8

c1 . . . c8
δ4|4((Z1 − c7Z5 − c8Z4)− ξ) . (4.25)

The loop variables are given by

ZA + sZB = c5Z2 + c6Z3 + (c7Z5 + c8Z4 + ξ)

ZB + tZA = ξ (4.26)

where

ξ = c1Z3 + c2(c5Z2 + c6Z3) + c3c8Z4 + c4(c7Z5 + c8Z4) . (4.27)

On the support of the delta function, we can rewrite the loop variables as

ZA + sZB = Z1 + c5Z2 + c6Z3

ZB + tZA = Z1 − c7Z5 − c8Z4 . (4.28)

Using these new loop variable expressions, we find the following shifts

Z1 − c7Z5 − c8Z4 ∼ (AB) ∩ (145) ≡ Z ′′A
c7Z5 + c8Z4 ∼ (45) ∩ (1AB) ≡ Z ′′4
c5Z2 + c6Z3 ∼ (23) ∩ (1AB) ≡ Z ′′2 . (4.29)

Substituting these into the delta function and rescaling the integration variables appropri-

ately gives us

FL-FAC-1 =

∫
dc1 . . . dc8

c1 . . . c8
δ4|4(Z ′′A + c1Z3 + c2Z ′′2 + c3Z4 + c4Z ′′4 ) . (4.30)
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Like before, the loop variables take on the Kermit form, so the c5, . . . , c8 part of the

form just gives us a Kermit, and the remaining integrals can be integrated over the delta

function to give an R-invariant. The result is

FL-FAC-1 = d4`ABKAB(123; 145)[3, 4, A′′, 4′′, 2′′]

= d4`AB
δ0|4(η1 〈2345〉+ η2 〈3451〉+ η3 〈4512〉+ η4 〈5123〉+ η5 〈1234〉)
〈2345〉 〈AB12〉 〈AB23〉 〈1345〉 〈AB15〉 〈AB4(15) ∩ (234)〉

. (4.31)

Finally, the last term FL-FAC-2 is given as the forward limit of the factorization with

4-point MHV tree on the left and 5-point NMHV tree on the right. We just give the

result here

FL-FAC-2 = = .

(4.32)

which is equal to

FL-FAC-2 = d4`ABKAB(134; 145)[1, 2, 3, (34) ∩ (1AB), (AB) ∩ (145)]

= d4`AB
δ0|4(η1 〈2345〉+η2 〈3451〉+η3 〈4512〉+η4 〈5123〉+η5 〈1234〉) 〈AB14〉2

〈1234〉〈AB12〉〈AB34〉〈AB45〉〈AB15〉〈AB1(45)∩(123)〉〈AB4(51)∩(234)〉
.

(4.33)

The final result for the 5-point 1-loop NMHV integrand is the sum of all the contribu-

tions

Y L=1
5,k=1(Z1, . . . ,Z5) = FAC + FL-FAC-1 + FL-FAC-2 . (4.34)

These diagrams also give the three C,D-matrices for three cells of the amplituhedron. It

is already non-trivial to see how the three cells provide a triangulation of this one-loop

five-point NMHV case.

4.3 Two-loop amplitudes

At higher loops, the only new feature one would encounter is the iteration of taking forward

limits, and the general structure is very clear: there are L bubbles at L loops, and the

contributions can be classified as those with L bubbles connected by factorization “bridges”,

those with a FL-FL part, i.e. two connected bubbles, and the rest, etc. Basically it requires

some bookkeepings to work out all diagrams for a given multi-loop amplitudes.
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Here we restrict ourselves to two-loop amplitudes. In addition to B and FAC, which

are of the same form as before, the FL-FAC term is also of the same form as the one-loop

case. The new, non-trivial contribution is the FL-FL term, which involves yet another

GL(2) residue. Let us call the second loop variable CD. We begin by drawing the diagram

corresponding to the two forward limits:

FL-FL =

∫ AB,CD

GL(2)
=

∫ CD

GL(2)

(4.35)

where the second diagram is obtained by doing the GL(2) integral for AB. The procedure

here is the same as before. Just reattach the two lines A and B̂ coming out of the sub-

diagram to the crossed line.

Going one step further, we perform yet another BCFW shift on the sub-diagram, and

we can concentrate on the FL-FL-FAC term, which is the only new contribution for two-

loop amplitudes, and the form again generalizes to FL-FL-FAC term at all loops. We will

use the shift ZC → ZC + wZA, in which case the w → ∞ term vanishes in the forward

limit of CD,

FL-FL-FAC=

n∑
j=2

∫ CD

GL(2)
=

n∑
j=2

.

(4.36)

In the second diagram we have done the GL(2) integral for CD by reattaching the

two lines Ĉ and D coming out of the two sub-diagrams to the crossed line. Recalling that

the forward limit takes C,D → (C,D) ∩ (1, A,B), we see that the crossed line precisely

represents this limit. We note that kL+kR = k+1 and LL+LR = L−2.

4.3.1 Example: two-loop four-point MHV

Before turning to general two-loop amplitudes, here we give the simplest example: the

four-point integrand. The computation is already quite non-trivial and interesting, which

shows all the essential features of our diagrammatic formulation of multi-loop integrands.
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The two-loop four-point integrand is given by the forward limit of one-loop six-point

NMHV result, which can be worked out similar to the one-loop five-point case above, and

includes 16 terms. When applying the forward limit to it using (4.36), we find only 8

terms are non-vanishing. There are 2 terms coming from FL-FAC and 6 terms coming

from FL-FL. For each diagram we include also the momentum twistor expression (without

the d4`AB d
4`CD factor), and the corresponding DAB, DCD matrices in the amplituhedron

which we display in the form

D(2) ≡

(
DAB

DCD

)
. (4.37)

To write the expressions in a more compact form, we need the following shifted twistors,

from either FAC and FL, or two FL’s:

Â = (A,B) ∩ (1, 3, 4), Ĉ ′ = (C,D) ∩ (1, A,B),

3̂′ = (2, 3) ∩ (1, A,B), 4̂′ = (3, 4) ∩ (1, A,B),

2̂ = (1, 2) ∩ (Â, C,D), 3̂ = (2, 3) ∩ (Â, C,D), 4̂ = (3, 4) ∩ (Â, C,D), (4.38)

So far we have not tried to make the cells positive. In general, boundary measurements

do not guarantee positivity. In what follows, however, we have adjusted the signs of some

of the bridge variables so as to make the cells positive. We put all the 8 variables on the

edges of each diagram, and the matrix can be read off from the boundary measurement

from A,B,C,D to external legs. In addition, each expression, multiplied by d4`AB d
4`CD,

is given by the d log’s of the 8 variables.


−1 −c1 −c2 0

1 0 −c3 −c4

c8 −c1 − c5 −c2 − c3c8 −c4c8

1 + c7 c6 −c3c7 −c4c7

 (4.39)

FL-FAC-1 =
〈1234〉4〈AB13〉2

〈AB23〉〈AB34〉〈AB14〉〈CD12〉〈CD23〉〈CD3̂′Â〉〈CD1Â〉
(4.40)


1 c2 c4 0

−1 0 c3 c1

0 c2c6 c4 + c3c5 + c4c6 c1c5

−1 −c2c7 c3 − c4c7 + c3c8 c1 + c1c8

 (4.41)
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FL-FAC-2 =
〈1234〉4〈AB13〉2

〈AB12〉〈AB23〉〈AB14〉〈CD23〉〈CD34〉〈CD4̂′1〉〈CD3̂′Â〉
(4.42)


−c2+c3−c4 −c4c8 −c1−c7−c3c7 −c6−c3c6

1 0 −c7 −c6

c3−c4 −c4c8 −c1−c7−c3c7 −c6−c3c6

1+c5 c8 −c5c7 −c5c6

 (4.43)

FL-FL-1 =
〈AB(134) ∩ (1CD)〉2〈ÂĈ ′12〉2〈1234〉3〈AB34〉〈CDÂ1〉2

〈AB14〉〈ABCD〉〈CD12〉〈CDÂ2〉〈Ĉ ′134〉〈2̂4̂′Ĉ ′Â〉〈2̂3ÂĈ ′〉〈Ĉ ′2̂34〉
(4.44)


1 0 −c7 −c6

1 + c2 − c3 c8 + c4c8 c1 + c3c7 c3c6

1 + c5 c8 −c5c7 −c5c6

1− c3 c8 + c4c8 c1 + c3c7 c3c6

 (4.45)

FL-FL-2 =
〈AB(134) ∩ (1CD)〉2〈ÂĈ ′12〉〈1234〉3〈AB13〉2

〈AB14〉〈AB34〉〈ABCD〉〈CDÂ1〉〈CD12〉〈ÂĈ ′23〉〈ÂĈ ′32̂〉〈Ĉ ′123〉
(4.46)


1 0 −c7 −c6

c1+c5 c8 1+c3c4+c3c7−c5c7 c3c6−c5c6

c2 0 −c4−c7−c2c7 −c6−c2c6

c5 c8 1+c3c4+c3c7−c5c7 c3c6−c5c6

 (4.47)

FL-FL-3 =
〈AB(134) ∩ (1CD)〉2〈AB34〉3〈Ĉ ′134〉〈1234〉3

〈AB14〉〈ABCD〉〈CD34〉〈CD4̂′Â〉〈Ĉ ′234〉〈4̂Ĉ ′Â2〉〈Ĉ ′Â23〉
(4.48)
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1 0 −c7 −c6

1 + c1 + c5 c8 c3c4 + c3c7 − c5c7 c3c6 − c5c6

c2 0 −c4 − c7 − c2c7 −c6 − c2c6

1 + c5 c8 c3c4 + c3c7 + c5c7 c3c6 − c5c6

 (4.49)

FL-FL-4 =
〈AB(134) ∩ (1CD)〉2〈Ĉ ′134〉2〈Â4̂12〉3

〈AB14〉〈ABCD〉〈CDÂ3〉〈CD34〉〈Ĉ ′4̂12〉〈Ĉ ′4̂Â1〉〈Ĉ ′4̂Â2〉〈Ĉ ′Â12〉〈CD4̂′1〉
(4.50)


−c1+c2 −c5c8 −c3c4−c4c5−c7−c2c7 −c6−c2c6

1 0 −c7 −c6

c2 −c5c8 −c3c4−c4c5−c7−c2c7 −c6−c2c6

1 c8 c4−c7 −c6



(4.51)

FL-FL-5 =
〈AB(134) ∩ (1CD)〉2〈AB34〉〈Ĉ ′Â23〉〈1234〉3

〈AB14〉〈ABCD〉〈CDÂ2〉〈CD23〉〈Ĉ ′134〉〈Â3̂Ĉ ′4̂′〉〈Ĉ ′234〉
(4.52)


1 0 −c7 −c6

c1 + c2 + c4 c8 + c3c8 c3 − c2c7 −c2c6

c2 + c4 c8 + c3c8 c3 − c2c7 −c2c6

−c5 c8 1 + c5c7 c5c6

 (4.53)

FL-FL-6 =
〈AB(134) ∩ (1CD)〉2〈Ĉ ′Â23〉〈Â123〉3

〈AB13〉〈AB14〉〈AB34〉〈ABCD〉〈CD23〉〈CD3Â〉〈Ĉ ′123〉〈3̂Ĉ ′Â1〉〈Ĉ ′Â12〉
.

(4.54)

The two-loop four-point integrand is the sum of the 8 terms, plus the other 8 terms

obtained by (AB ↔ CD). As one can check numerically, given a set of positive data
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and a random point inside the amplituhedron, it lies in one and only one of the 8 cells

with the above D matrices, except for points on the boundary of cells. The fact that the

cells triangulate the amplituhedron is a highly non-trivial statement about geometry, and

is in fact very difficult to prove. Nonetheless, BCFW terms appear to provide cells that

triangulate the amplituhedron when summed.

It is very non-trivial to see that the eight terms add up to the correct two-loop four-

point integrand. What we have checked is on large number of kinematic points given by

interger-valued momentum twistors, our result precisely agree with the known result [20],

which we write down here for convenience.

Y
(2)

4,0 =
1

2

[
〈1234〉3

〈AB12〉 〈AB23〉 〈AB34〉 〈ABCD〉 〈CD34〉 〈CD14〉 〈CD12〉

+
〈1234〉3

〈AB23〉 〈AB34〉 〈AB14〉 〈ABCD〉 〈CD14〉 〈CD12〉 〈CD23〉

]
+(AB ↔ CD) . (4.55)

It appears that this expression, although equivalent to ours, is much simpler. This

is expected because each diagram/BCFW term produced from the recursions, usually has

spurious poles, which of course cancel each other in the final answer. BCFW representations

are special because each BCFW term is Yangian invariant and they give cellulations of the

amplituhedron. Our diagrammatic approach makes it much more efficient to compute all

such BCFW terms, and especially read off the cellulation.

4.3.2 Two-loop MHV and the cells

Having studied the four-point case, now we present the complete result for any two-loop

MHV amplitudes. As discussed above, we have to include FL-FAC and FL-FL-FAC terms,

and by solving the recursion with B term, the two type of terms correspond to two types

of “Kermits”:

Y
(2)
n,0 =

1

2

∑
i,j,k,l

(K
(2),a
i,j;k,l +K

(2),a
i,l;j,k) +

∑
i,j,k

(K
(2),b
i,j;k +K

(2),b
j,i;k ) + (AB ↔ CD)

 , (4.56)

where the ranges of summation are generically 2 ≤ i ≤ j ≤ k ≤ l ≤ n and 2 ≤ i < j ≤ k ≤ n
respectively. We suppressed the momentum-twistor diagrams for these Kermits, since they

are of the same form as those for four points. We will concentrate on giving the explicit

momentum-twistor expressions and the positive D matrices for the cells corresponding to

these Kermit terms.

It is straightforward to count the number of terms (prior to symmetrization) for type-a

and type-b Kermits, in terms of binomial numbers: N
(a)
n =2×Cn,4 =n(n−1)(n−2)(n−3)/12,

and N
(b)
n = 2 × (Cn,3−1) = n(n−1)(n−2)/3 − 2. For example, for n = 4, what we had

above correspond to K
(2),a
2,3;3,4, K

(2),a
3,4;3,4, and K

(2),b
2,3;4, K

(2),b
2,4;4, K

(2),b
3,4;4, K

(2),b
3,2;4, K

(2),b
4,2;4, K

(2),b
4,3;4. It

can be easily checked that the general expressions and D matrices reduce to the four-point

results above.
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The first type of Kermit comes from the forward-limit of factorization terms at one

loop, thus is given by the product of two one-loop Kermit, which takes the form in eq. (4.10).

For the Kermit with loop variable CD, its “reference twistor” Z is defined as Âl ≡ (AB)∩
(1, l−1, l), and the generic form for K

(2),a
i,j;k,l and K

(2),a
i,l;j,k are:

K
(2),a
i,j;k,l = d4`AB d

4`CDKAB(1, k−1, k; 1, l−1, l)KCD(Âl, i−1, i; Âl, j−1, j) ,

K
(2),a
i,l;j,k = d4`AB d

4`CDKAB(1, i−1, i; 1, l−1, l)KCD(Âl, j−1, j; Âl, k−1, k) , (4.57)

There are boundary terms when j = k for Ki,j;k,l, as well as when i = j and/or k = l

for Ki,l;j,k, which are given by the following replacement:

j = k : j → ĵ′ ≡ (j−1 j) ∩ (1, A,B) ; i = j : j−1→ ĵ′, k = l : k → k̂′ . (4.58)

By choosing positive coordinates in the diagrams, one can make the associated D
matrices positive. Here we list explicitly, for type-a Kermits, these D matrices which

represent the cells of the amplituhedron In the summation, there are two sets of type-a

Kermit terms. Let us look at the first sets, where we need to consider generic case, as well

as “boundary” cases. Note that we only display non-zero columns in the matrices below.

For 1 < i− 1 < i < j − 1 < j < k − 1 < k < l − 1 < l:

D(2),a
i,j;k,l =


1 i− 1 i j − 1 j k − 1 k l − 1 l

1 0 0 0 0 0 0 −cl−1 −cl
1 0 0 0 0 ck−1 ck 0 0

1 ci−1 ci 0 0 0 0 −cl−1 −cl
−1 0 0 cj−1 cj 0 0 cl−1 cl

 . (4.59)

For 1 < i− 1 < i < j − 1 < j = k < l − 1 < l:

D(2),a
i,j;k,l =


1 i− 1 i k − 1 k l − 1 l

1 0 0 0 0 −cl−1 −cl
1 0 0 ck−1 ck 0 0

1 ci−1 ci 0 0 −cl−1 −cl
−1 0 0 cj−1ck−1 + cjck−1 cjck cl−1 cl

 . (4.60)

All other boundary cases can be obtained from one of the matrices above by “merging”.

For example, suppose we look at the second matrix where j = k, and suppose in addition

that we want i = k − 1. To get this, we merge columns i and k − 1 into one column by

adding them component-wise. The resulting matrix will still be positive.

Similarly we give the matrices for the second sets, together with boundary cases. For

1 < i− 1 < i < j − 1 < j < k − 1 < k < l − 1 < l:

D(2),a
i,l;j,k =


1 i− 1 i j − 1 j k − 1 k l − 1 l

1 0 0 0 0 0 0 −cl−1 −cl
1 ci−1 ci 0 0 0 0 0 0

1 0 0 cj−1 cj 0 0 −cl−1 −cl
−1 0 0 0 0 ck−1 ck cl−1 cl

 . (4.61)
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For 1 < i− 1 < i < j − 1 < j < k − 1 < k = l:

D(2),a
i,l;j,k =


1 i− 1 i j − 1 j k − 1 k

1 0 0 0 0 −cl−1 −cl
1 ci−1 ci 0 0 0 0

1 0 0 cj−1 cj −cl−1 −cl
−1 0 0 0 0 cl−1ck−1 + cl−1ck + cl−1 clck + cl

 . (4.62)

For 1 < i− 1 < i = j < k − 1 < k < l − 1 < l:

D(2),a
i,l;j,k =


1 i− 1 i k − 1 k l − 1 l

1 0 0 0 0 −cl−1 −cl
1 ci−1 ci 0 0 0 0

1 cj−1ci−1 cjci + cj−1ci 0 0 −cl−1 −cl
−1 0 0 ck−1 ck cl−1 cl

 . (4.63)

For 1 < i− 1 < i = j < k − 1 < k = l:

D(2),a
i,l;j,k =


1 i− 1 i l − 1 l

1 0 0 −cl−1 −cl
1 ci−1 ci 0 0

1 cj−1ci−1 cjci + cj−1ci −cl−1 −cl
−1 0 0 cl−1ck−1 + cl−1ck + cl−1 clck + cl

 . (4.64)

Again all other boundary cases can be obtained from one of the matrices above by

“merging”.

The second type of Kermit comes from the forward-limit of forward-limit terms at

one-loop, and has the generic form:

K
(2),b
i,j;k =

〈CDd2C〉〈CDd2D〉〈ÂkĈ ′ i−1 i〉2〈Âk îk j−1 j〉3

〈CDÂk i−1〉〈CDÂk i〉〈CD i−1 i〉〈ÂkĈ ′ îk j−1〉〈ÂkĈ ′ îk j〉〈ÂkĈ ′ j−1 j〉〈Ĉ ′ îk j−1 j〉

×〈ABd
2A〉〈ABd2B〉〈AB(1, k−1, k) ∩ (1, C,D)〉2

〈ABCD〉〈AB 1 k−1〉〈AB 1 k〉〈AB k−1 k〉
, (4.65)

where we have defined îk ≡ (i−1 i) ∩ (Âk, C,D), Âk ≡ (AB) ∩ (1, k−1, k) and also Ĉ ′ =

(CD) ∩ (1, A,B). Note that in the four-point case above, we have omitted the subscript

of k = 4 of Âk. The only boundary case is when j = k, and we replace j → ĵ′ ≡
(j−1j) ∩ (1AB). There is a similar formula for K

(2),b
j,i,k with i↔ j.

Now we turn to the corresponding cells, and list the positive D matrices. For the first

set of the type-b Kermits, we consider generic and boundary cases. For 1 < i − 1 < i <

j − 1 < j < k − 1 < k:

D(2),b
i,j;k =


1 i− 1 i j − 1 j k − 1 k

1 0 0 0 0 −ck−1 −ck
−a+ c1 ci−1 ci cj−1 cj ack−1 ack

1 ci−1 ci 0 0 −ck−1 −ck
−a ci−1 ci cj−1 cj ack−1 ack

 . (4.66)
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For 1 < i− 1 < i < j − 1 < j = k:

D(2),b
i,j;k =


1 i− 1 i k − 1 k

1 0 0 −ck−1 −ck
−a+ c1 ci−1 ci cj−1 + ack−1 + cjck−1 ack + cjck

1 ci−1 ci −ck−1 −ck
−a ci−1 ci cj−1 + ack−1 + cjck−1 ack + cjck

 . (4.67)

For the second set, there are also generic and boundary cases. For 1 < i − 1 < i <

j − 1 < j < k − 1 < k:

D(2),b
j,i;k =


1 i− 1 i j − 1 j k − 1 k

−a− c1 −ci−1 −ci −cj−1 −cj ack−1 ack
1 0 0 0 0 −ck−1 −ck
−a −ci−1 −ci −cj−1 −cj ack−1 ack
1 0 0 −cj−1 −cj −ck−1 −ck

 . (4.68)

For 1 < i− 1 < i < j − 1 < j = k:

D(2),b
j,i;k =


1 i− 1 i k − 1 k

−a− c1 −ci−1 −ci ack−1 − cjck−1 − cj−1ck−1 ack − cjck
1 0 0 −ck−1 −ck
−a −ci−1 −ci ack−1 − cjck−1 − cj−1ck−1 ack − cjck
1 0 0 −ck−1 − cjck−1 − cj−1ck−1 −ck − cjck

 . (4.69)

It is not obvious but one can check that both Ka and Kb are given by the 8 d log’s of

the variables in the corresponding D matrix.

4.3.3 General two-loop amplitudes

The last result from our diagrams we will present is the BCFW representation of all two-

loop amplitudes, which as we discussed, includes B and FAC terms in the same form as

the tree-level case, and FL-FAC and FL-FL-FAC terms which we write down now.

The FL-FAC term is again identical to the one-loop case. We sum over left L and right

R sub-amplitudes for which kL + kR = k (prior to symmetrization).

n−1∑
i=3

K
(1),AB
1;i,n YL(̂i′, i, i+1, . . . , n−1, n̂′, Ân)YR(̂i′, Ân, 1, 2, . . . , i−1) . (4.70)

For the FL-FL-FAC term, we sum over all left L and right R sub-amplitudes for which

kL+kR = k+1, and to be as explicit as possible we discuss three cases.

In the special case where kL = 0, we factorize the right sub-amplitude R into RL and

RR (by doing the BCFW shift D to (B1)∩ (ACD) on R) and sum over all RL and RR for

which kRL+kRR = kR−1 = k. This gives us the term∑
2≤j<i≤n̂′

K
(2),b
i,j;n YRL(ĵn, j, j+1, . . . , i−1, în)YRR(ĵn, Ĉ

′′, Ân, 1, . . . , j−1) (4.71)

where ĵn = (j−1, j) ∩ (ÂnCD), în = (i−1, i) ∩ (ÂnCD), Ĉ ′′ = (Ĉ ′Ân) ∩ (̂in, j−1, j).
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In another case where kR = 0, we factorize L into LL and LR (by shifting (AC) ∩
(D, i−1, i) on L) and sum over contributions for which kLL+kLR = kL−1 = k. This gives

us the term∑
2≤i<j≤n̂′

K
(2),b
i,j;nYLL(ĵn, j, j+1, . . . , n−1, n̂′, Ân, Ĉ

′′)YLR(̂in, i, i+1, . . . , j−1, ĵn) (4.72)

where n̂′ = (n−1, n) ∩ (1AB).

In the final case where kR, kL > 0, we factorize both L and R using the same shifts as

above and sum over all LL LR RL RR for which kLL+kLR = kL−1 and kRL+kRR = kR−1.

Formally, we have L = L-B + L-FAC and R = R-B + R-FAC so that L × R = L-FAC ×
R + L-B × R-FAC + L-B × R-B, which is equivalent to∑

2≤i<j≤n̂′

K
(2),b
i,j;nYLL(ĵn, j, j+1, . . . , n−1, n̂′, Ân, Ĉ

′′)YLR(̂in, i, i+1, . . . , j−1, ĵn)

· YR(̂in, Ĉ
′, Ân, 1, . . . , i−1) +

∑
2≤j<i≤n̂′

K
(2),b
i,j;n YL(̂in, i, i+1, . . . , n−1, n̂′, Ân)

· YRL(ĵn, j, j+1, . . . , i−1, în)YRR(ĵn, Ĉ
′′, Ân, 1, . . . , j−1) . (4.73)

The first term is the L-FAC × R. The second term is the L-B × R-FAC. In principle we

should also include L-B × R-B, but this does not contribute since there are not enough C

and D fermionic delta functions in the forward limit.

The three cases can be combined into a single formula, which gives the FL-FL-FAC

term for any two-loop NkMHV integrand prior to symmetrization

FL-FL-FAC =
∑

2≤i<j≤n̂′

k1+k2+k3=k

K
(2),b
i,j;nY1(ĵn, j, j+1, . . . , n−1, n̂′, Ân, Ĉ

′′)Y2(̂in, i, i+1, . . . , j−1, ĵn)

· Y3(̂in, Ĉ
′, Ân, 1, . . . , i−1) +

∑
2≤j<i≤n̂′

k1+k2+k3=k

K
(2),b
i,j;n Y1(̂in, i, i+1, . . . , n−1, n̂′, Ân)

· Y2(ĵn, j, j+1, . . . , i−1, în)Y3(ĵn, Ĉ
′′, Ân, 1, . . . , j−1) (4.74)

where in each of the two terms we sum over all sub-amplitudes Y1,2,3 for which k1+k2+k3 =

k. We have thus derived an algebraic recursion relation for all two-loop amplitudes. Note

that at higher loops, FL-FL-FAC term is not enough, since we need additional contributions

coming from forward limit terms of L and R which we did not include.

To complete this section, we note that there is a small subtlety regarding the fermionic

components of Ĉ ′ = (C,D) ∩ (1, A,B). Naively, one might expand ηĈ′ = ηC 〈D1AB〉 −
ηD 〈C1AB〉, but this is wrong because ηC and ηD have already been integrated out. The

other expansion of ηĈ′ in terms of η1, ηA, ηB also does not make sense since ηA and ηB have

been integrated out. By tracing back to the forward limit calculation, we find that there

is a fermionic delta function whose support gives

ηĈ′ = ηC 〈D1AB〉 − ηD 〈C1AB〉 (4.75)

= −
ηj−1〈j, Ân, Ĉ ′, în〉+ ηj〈Ân, Ĉ ′, în, j−1〉+ ηÂn

〈Ĉ ′, în, j−1, j〉+ ηîn〈j−1, j, Ân, Ĉ
′〉

〈̂in, j−1, j, Ân〉
.

(4.76)
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This gets rid of any dependence on fermionic components of loop momentum super-twistors.

Of course, the bosonic components of Ĉ ′ are defined in the usual way.

We have checked our result, the sum of all BCFW terms, agrees with the local expan-

sion in [20] up to 12 points. Note that although the local expansion is known for any n,

our result is the first all-multiplicity BCFW representation, which we again conjecture to

give cellulations of the amplituhedron.

5 Conclusions and discussions

In this paper, we propose “momentum-twistor diagrams” as a new diagrammatic rep-

resentation of all-loop amplitudes/Wilson loops in planar N = 4 SYM. Formulated as

on-shell diagrams in momentum twistor space, the diagrams manifest the dual supercon-

formal symmetry, and naturally give factorization and forward-limit contributions for the

all-loop integrand. Compared to the original on-shell diagrams in momentum space, such

contributions are represented in a very different fashion, as we discussed in detail; and it

is much more efficient to determine and evaluate the new diagrams in practice, which we

have demonstrated through various calculations including all two-loop amplitudes. Similar

to the fact that on-shell diagrams can be associated with factorizations and forward-limits

of amplitudes in momentum space, the momentum-twistor diagrams are naturally related

to such properties of the Wilson loops, as discussed in details in [11].

Our diagrams are closely related to other types of interesting diagrams. One can take

the geometric dual of our diagrams, or “region diagrams”, where each trivalent black/white

vertex is associated with a black/white triangle, and internal/external legs correspond

to edges of the triangles, with the external n edges forming the polygon contour of the

Wilson loops. At least at tree-level, the result is the polygon triangulated by black and

white triangles, and the merge of trivalent vertices correspond to merge of triangles into

“polygon regions”, such that we can make the region diagram bi-partite. It remains an

open question to see how the loop diagrams are represented in this dual picture. We can

also modify the on-shell diagrams slightly to obtain “CSW diagrams”, which are closely

related to the MHV-vertex expansion in momentum-twistor space [22]. The reference

twistor ∗ can be represented by an additional leg from a fixed puncture in the diagram,

and the basic R-invariant (“propagator”), [∗, a, b, c, d], is given by the diagram (2.13) with

leg e replaced by the leg ∗. We can similarly write down all tree-level higher-k diagrams,

which gives the product of such R-invariants with expected shifted twistors [22], and it

may be interesting to work out such diagrams at loop-level as well. This construction may

provide new connections between on-shell diagrams and the Feynman diagrams (in an axial

gauge) [10, 22], for Wilson loops in momentum twistor space.

Perhaps more interestingly, the new diagrams are very useful for studying the geometry

of the amplituhedron for the all-loop integrands. Given any such diagram, one can extract

C,D matrices associated with it and certain positive coordinates, which in turn gives a cell

of the full amplituhedron. There is strong evidence that the collection of all such diagrams

for any loop integrand exactly gives a triangulation of the corresponding amplituhedron,

which is very non-trivial to obtain otherwise. Other known representation of the same in-

tegrand, such as MHV-vertex expansion [22], or local integral expansion [23], generally do
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not correspond to any triangulations of the amplituhedron. Given the valuable data pro-

vided by the diagrammatic formulations, it would be extremely interesting to understand

how they triangulate the amplituhedron. In fact, beyond one-loop MHV case, it seems any

BCFW representation does not give the most natural triangulation [20], and geometrically

it would be very intriguing to see why these diagrams do not overlap with each other inside

the amplituhedron, already for the 8 cells of the two-loop four-point case. We expect that

our diagrams to be vital for exploring the rich structures of the amplituhedron to all loops.

In this aspect, it would be highly desirable to completely understand how to obtain

C,D-matrices, to arbitrary loop order, from iterating forward-limits, or equivalently, how

to write the forward limit as an matrix operation acting on the C,D-matrices. We suspect

that there may be interesting combinatoric structures behind momentum-twistor diagrams

at loop level, generalizing the permutations for the reduced diagrams (in both original and

momentum-twistor spaces). Relatedly, since each diagram by itself is Yangian invariant, it

would be very interesting to study individual diagrams, as opposed to the full integrand,

at loop level. Of course they are cells of a single object, the amplituhedron, but even

without understanding its geometry completely, can we say anything about the origin of

such diagrams? It would be highly desirable, beyond trees and one-loop MHV, to associate

the diagrams with residues of some generalized Grassmannian integrals which depend on

external and loop variables. In particular, such an understanding can shed more light on

how to relate different BCFW representations to each other, as well as to other forms such

as the local form [23]. We plan to address these questions in the future.

Furthermore, given this diagrammatic representation for the all-loop integrand, it is

natural to ask if one can understand some of their fascinating properties better, such as the

Yangian-invariance as positive diffeomorphism, the positivity of the rational integrand, and

structures of multi-loop amplitudes integrated from the integrand. One novel and unex-

pected feature of the diagrams is the appearance of non-planarity at loop level. Generally

speaking, every forward limit operation gives rise to one degree of non-planarity. Although

the diagrammatic origin of this feature is clear (i.e. doing the GL(2) integral by recon-

necting lines on the diagram), its physical interpretation is still unclear. Are there some

combinatorics behind the non-planarity? Are there extensions of our diagrams which are

related to non-planar amplitudes, or even some non-planar extension of the amplituhedron?

It is natural to ask if these diagrams can be extended to other Yangian invariant

theories like ABJM. However, doing so requires a proper construction of momentum twistor

variables in three dimensions. Given the similarities of planar integrands ofN = 4 SYM and

of N = 1, 2 SYM in momentum-twistor space, one may also ask if the momentum-twistor

diagrams can be applied to those theories as well. Finally, could the on-shell diagrams in

momentum-twistor space be generalized to study off-shell quantities, such as correlation

functions of planar SYM? After all, in the light-like limits, correlators of half-BPS operators

become equivalent to the amplitudes/Wilson loops [24, 25].

Acknowledgments

We are grateful to N. Arkani-Hamed for numerous discussions and encouragements, and

to T. Bargheer, J. Bourjaily, S. Caron-Huot, Y. t. Huang, J. Trnka for helpful comments.

– 36 –



J
H
E
P
0
2
(
2
0
1
5
)
0
6
5

Y.B. would also like to thank T. Lam for helpful discussions. The work of S.H. is supported

by Zurich Financial Services Membership and the Ambrose Monell Foundation. The work

of Y.B. is supported by Natural Sciences and Engineering Research Council of Canada

PGS M and the Department of Physics, Princeton University.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix,

JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

[2] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka,

Scattering Amplitudes and the Positive Grassmannian, arXiv:1212.5605 [INSPIRE].

[3] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop

Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[4] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon

planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243]

[INSPIRE].

[5] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills

and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

[6] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

[7] Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric

Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

[8] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop =

six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

[9] N. Berkovits and J.M. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and

the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

[10] L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop

in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

[11] S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058

[arXiv:1010.1167] [INSPIRE].

[12] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06

(2007) 064 [arXiv:0705.0303] [INSPIRE].

[13] J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal

four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

[14] J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in

N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

[15] J.M. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP 07 (2010)

027 [arXiv:1001.3348] [INSPIRE].

– 37 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP03(2010)020
http://arxiv.org/abs/0907.5418
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5418
http://arxiv.org/abs/1212.5605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5605
http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://arxiv.org/abs/0707.0243
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0243
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.002
http://arxiv.org/abs/0707.1153
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1153
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.007
http://arxiv.org/abs/0709.2368
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2368
http://dx.doi.org/10.1103/PhysRevD.78.045007
http://arxiv.org/abs/0803.1465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1465
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.015
http://arxiv.org/abs/0803.1466
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1466
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3196
http://dx.doi.org/10.1007/JHEP12(2010)018
http://arxiv.org/abs/1009.2225
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2225
http://dx.doi.org/10.1007/JHEP07(2011)058
http://arxiv.org/abs/1010.1167
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1167
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://arxiv.org/abs/0705.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0303
http://dx.doi.org/10.1088/1126-6708/2007/01/064
http://arxiv.org/abs/hep-th/0607160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607160
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2987
http://dx.doi.org/10.1007/JHEP07(2010)027
http://dx.doi.org/10.1007/JHEP07(2010)027
http://arxiv.org/abs/1001.3348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3348


J
H
E
P
0
2
(
2
0
1
5
)
0
6
5

[16] L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and

Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

[17] N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian Origin Of Dual

Superconformal Invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

[18] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)

135 [arXiv:0905.1473] [INSPIRE].

[19] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030

[arXiv:1312.2007] [INSPIRE].

[20] N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, arXiv:1312.7878 [INSPIRE].

[21] J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-Conformal Regularization of Infrared Loop

Divergences and the Chiral Box Expansion, arXiv:1303.4734 [INSPIRE].

[22] M. Bullimore, L.J. Mason and D. Skinner, MHV Diagrams in Momentum Twistor Space,

JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].

[23] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[24] L.F. Alday, B. Eden, G.P. Korchemsky, J.M. Maldacena and E. Sokatchev, From correlation

functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

[25] B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering

amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].

[26] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A Note on Polytopes

for Scattering Amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].

– 38 –

http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0250
http://dx.doi.org/10.1007/JHEP03(2010)036
http://arxiv.org/abs/0909.0483
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0483
http://dx.doi.org/10.1007/JHEP05(2013)135
http://dx.doi.org/10.1007/JHEP05(2013)135
http://arxiv.org/abs/0905.1473
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473
http://dx.doi.org/10.1007/JHEP10(2014)030
http://arxiv.org/abs/1312.2007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2007
http://arxiv.org/abs/1312.7878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7878
http://arxiv.org/abs/1303.4734
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4734
http://dx.doi.org/10.1007/JHEP12(2010)032
http://arxiv.org/abs/1009.1854
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1854
http://dx.doi.org/10.1007/JHEP06(2012)125
http://arxiv.org/abs/1012.6032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6032
http://dx.doi.org/10.1007/JHEP09(2011)123
http://arxiv.org/abs/1007.3243
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3243
http://dx.doi.org/10.1007/JHEP12(2011)002
http://arxiv.org/abs/1007.3246
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3246
http://dx.doi.org/10.1007/JHEP04(2012)081
http://arxiv.org/abs/1012.6030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6030

	Introduction and motivations
	New on-shell diagrams in momentum-twistor space
	The Grassmannian representation of momentum-twistor diagrams
	Examples and operations on the diagrams

	The amplituhedron from momentum-twistor diagrams: tree level
	Momentum-twistor diagrams for factorizations
	Examples
	NMHV trees
	N**2 x MHV trees


	The amplituhedron from momentum-twistor diagrams: loop level
	Momentum-twistor diagrams for forward-limit contributions
	One-loop amplitudes
	One-loop MHV amplitudes
	General one-loop amplitudes

	Two-loop amplitudes
	Example: two-loop four-point MHV
	Two-loop MHV and the cells
	General two-loop amplitudes


	Conclusions and discussions

