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Abstract In this paper, we investigate three symmetry
breaking effects in strong and radiative decays of strange
heavy mesons. We study 1/mQ corrections within the heavy
quark effect theory, as well as SU(3) and SU(2) symmetry
breakings induced by light-quark mass differences and the
η–π mixing vertex. These effects are studied in a covariant
model. The numerical results show that the 1/mQ corrections
of the coupling constants are consistent with αs�QCD/mQ .
The SU(3) symmetry violating effect of the strong coupling
constant is obviously larger than that of the magnetic cou-
pling constant. The value of the η–π mixing vertex has some
changes because of the renewed data. As compared with the
other theoretical calculations and the experimental data, our
radiative decay rates are much larger than those of the other
theoretical methods, except for χPT; however, our branching
ratios are close to the experimental data.

1 Introduction

For excited strange heavy mesons (D∗
s , B

∗
s ), pion and/or

photon emissions are the dominant decay modes which
determine their lifetimes [1]. Of these decay modes, the
radiative decay, D∗

s → Dsγ , and the only kinematically
allowed strong decay, D∗

s → Dsπ , which is the isospin-
violating mode, have been observed, and the branching ratio
�(D∗

s → Dsπ)/�(D∗
s → Dsγ ) has been measured by

the CLEO [2] and BaBar collaborations [3]. The latter col-
laboration obtained �(D∗

s → Dsπ)/�(D∗
s → Dsγ ) =

0.062 ± 0.005(stat.) ± 0.006(syst.), which was a signifi-
cant improvement over the former one. This precise value
provides an ideal occasion to test different theoretical esti-
mations for the strong and electromagnetic interactions of
strange heavy mesons.

a e-mail: t2732@nknucc.nknu.edu.tw

In 1989, it was realized that, in low-energy situations
where the typical gluon momenta are small compared with
the heavy quark mass (mQ), quantum chromodynamics
(QCD) dynamics becomes independent of the flavor (mass)
and spin of the heavy quark [4–6]. These new spin and fla-
vor symmetries combine to form an SU (2NQ

f ) symmetry,
called heavy quark symmetry (HQS), which is not manifest
in the original QCD Lagrangian. HQS allows us to factorize
the complicated light-quark and gluon dynamics from that of
the heavy one, and thus provides a clearer physical picture
in the study of heavy quark physics. Beyond the symmetry
limit, a heavy quark effective theory (HQET) can be devel-
oped by systematically expanding the QCD Lagrangian in
powers of 1/mQ , with which HQS breaking effects can be
studied order by order [6–8]. Although the development of
HQET from QCD has simplified the analysis of heavy hadron
physics, many properties of hadrons, for example, their decay
constants and axial coupling constants, are still not calculable
directly from QCD. To study these quantities, one unavoid-
ably has to use phenomenological models to describe the
structures of hadrons. These include the constituent quark
model (CQM) [9,10], the MIT bag model [11,12], the lat-
tice QCD calculations [13,14], QCD sum rules [15], and the
light-front quark model (LFQM) [16–18]. In spite of the fact
that the CQM and the MIT bag models have been widely
used, the results calculated from these two models are trust-
worthy only for processes involving small momentum trans-
fers. The LFQM is a relativistic quark model with simple
boost kinematics which allows us to describe physical pro-
cesses with large momentum transfers. However, this model
is not fully Lorentz covariant [19], and this defect limits its
usefulness to matrix elements with space-like momentum
transfers (q2 ≤ 0) only. Moreover, the LFQM is not capable
of handling the so-called Z-diagrams [20]. In Ref. [19], a
covariant light-front model of heavy mesons has been sug-
gested. However, the approach taken there is not systematic,
and light-quark currents are not considered. To overcome
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the drawbacks mentioned above, a covariant field theoretical
model has been proposed for the heavy meson bound state
problem [21–23]. This model is fully covariant and satisfies
HQS; at the same time, it retains the simplicity of the quark
model picture. This theory allows us to formulate theoreti-
cal calculations in terms of the standard Feynman diagrams.
Therefore, the lack of Z-diagrams in the ordinary LFQM is
no longer a problem. Combining this model with HQET, we
can systematically study various 1/mQ corrections to heavy
meson properties in the framework of perturbative field the-
ory.

In the other extreme, due to the relatively small light-
quark masses (mu,md ,ms), the light-quark sector of the
QCD Lagrangian obeys an approximate SU(3)L× SU(3)R
chiral symmetry [24]. Due to the spontaneous breaking of
the chiral symmetry, there exist eight pseudoscalar bosons
(called Goldstone bosons, which include three π ’s, four K ’s,
and one η), whose dynamics obeys the SU(3)L × SU(3)R
chiral symmetry. If we want to study the low-energy inter-
actions of heavy hadrons and Goldstone bosons, we need to
build an effective theory that obeys both chiral and heavy
quark symmetries. This was done in references [25–31],
where chiral symmetry and HQS were synthesized in a sin-
gle effective chiral Lagrangian which described the strong
interactions between heavy hadrons and Goldstone bosons.
The theory has since been extended to incorporate elec-
tromagnetic interactions as well [29–34]. In principle, the
effective chiral Lagrangian provides an ideal framework in
which to study the strong decay mode. However, symme-
try considerations alone, in general, do not lead to quanti-
tative predictions, unless further assumptions are made to
extract the values of the various coupling constants appear-
ing in the Lagrangian. Furthermore, the framework of an
effective chiral Lagrangian does not allow for a systematic
discussion of HQS violating 1/mQ effects, which is impor-
tant for a thorough understanding of heavy quark physics.
In fact, in the heavy-light (Qs̄) system, there are three dif-
ferent types of symmetry breaking mechanisms: (1) HQS
breaking from 1/mQ corrections, (2) SU(3) symmetry break-
ing due to strange quark mass (ms �= mu,d), and (3) SU(2)
symmetry breaking due to the up-down quark mass differ-
ence (mu �= md). The purpose of this paper is to systemat-
ically study these symmetry breaking effects in a covariant
model for the strong and radiative decays of strange heavy
mesons.

The paper is organized as follows. In Sect. 2, we briefly
review the covariant model, which is based on HQET. Some
heavy meson properties in the heavy quark limit and 1/mQ

corrections are considered. The numerical calculations and
discussions are expressed in Sect. 3. In Sect. 4, we make
some concluding remarks.

2 Formalism

The covariant model starts from HQET in the heavy quark
limit (mQ → ∞) and describes a heavy meson as a com-
posite particle, consisting of a reduced heavy quark coupled
with a brown muck of light degrees of freedom. It is formu-
lated in an effective Lagrangian approach, so that it is fully
covariant, and we can use Feynman diagrammatic techniques
to evaluate various processes.

2.1 Covariant model

Using the 1/mQ expansion to the heavy quark QCD
Lagrangian [6,7], the QCD Lagrangian for heavy and light
quarks plus gluons can be written as L = L0 + LmQ , where

L0 = h̄viv · Dhv + q̄ (iγμD
μ − mq) q − 1

4
Fμν
a Faμν,(2.1)

LmQ =
∞∑

n=1

(
1

2mQ

)n

h̄vi �D⊥(−iv ·D)n−1i �D⊥hv, (2.2)

Dμ
⊥ = Dμ −vμv · D is orthogonal to the heavy quark veloc-

ity, L0 is responsible for binding a heavy quark and a light
quark in the heavy quark limit, and LmQ contains 1/mQ cor-
rections to L0. The effective Lagrangian we have constructed
to describe the low-energy dynamics of pseudoscalar heavy
mesons reads [21–23]

Leff = L + 
†
v(iv· ↔

∂ −2�̄)
v − h̄viγ5qv
v + h.c. (2.3)

where 
v represent the composite pseudoscalar heavy meson
fields which appear only as external states,

�̄ ≡ lim
mQ→∞mM − mQ (2.4)

is their residual mass in the heavy quark limit,

qv = GF(−iv · ∂)q (2.5)

represents collectively the degrees of freedom in a heavy
meson, where F is a form factor whose presence is
expected for an effective interaction resulting from the non-
perturbative QCD dynamics, and G is the normalization con-
stant given by

G−2 = i
∫

d4 p

(2π)4 F
2(v · p) v · p + mq

(�̄ − v · p)2(p2 − m2
q)

. (2.6)

At this point, we note that F(v · p) is analogous to the meson
wave function in the LFQM, and G is the corresponding
normalization constant. To explicitly evaluate G and other
physical quantities, we need to specify the structure function
F(v · p), which is unfortunately not calculable from first
principles. Nevertheless, from the constraints that F does
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Fig. 1 Feynman rules in the
heavy quark limit

(a) (b)

(c) (d)

Fig. 2 Feynman diagram for heavy meson decay constant

not depend on the heavy quark residual momentum and it
forbids on-shell dissociation of the heavy meson into Qq̄ , a
plausible form for F is

F(v · p) = ϕ(v · p)(�̄ − v · p), (2.7)

where the function ϕ(v · p) does not have a pole at v · p = �̄.
Within this framework, hadronic matrix elements are cal-

culated via standard Feynman diagrams where heavy mesons
always appear as external legs. The Feynman rules for this
effective theory are shown in Fig. 1. Figure 1a specifies the
meson–Q–q vertex with �M = iγ5(− � ε), for M is the pseu-
doscalar (vector) meson. All the other Feynman rules are the
same as in QCD and HQET.

Thus, if the power of | 
p| in the wave function ϕ is less
than − 2

3 , this model will work well. After building a covari-
ant framework to describe heavy meson structures, we go
on to evaluate some of the basic heavy meson properties.
These include the decay constant, the 1/mQ corrections of
the heavy meson mass, and the axial-vector and electromag-
netic coupling constants of the strange heavy mesons.

2.2 Decay constants and 1/mQ corrections of the heavy
meson mass

Consider the heavy meson decay constants defined by

〈0|q̄γ μγ5hv|P(v)〉 = i f̄ Pvμ,

〈0|q̄γ μhv|V (ε)〉 = f̄V εμ.

The Feynman diagram to be evaluated is illustrated in Fig. 2.

Using the Feynman rules in Fig. 1, the matrix element is
evaluated as

〈0|ψ̄q�μhv|M(v)〉
= 2

√
Nci

∫
d4 p

(2π)4

GF(v · p)(v · p + mq)

(p2 − m2
q + iε)(�̄ − v · p + iε)

Tr

[−1

4
�μ(1+ �v)�M

]

≡ f̄M Tr

[−1

4
�μ(1+ �v)�M

]
, (2.8)

where Nc = 3 is the number of colors, while
√
Nc arises from

the color wave function of meson, (rr̄ + gḡ+bb̄)/
√
Nc, and

�M = iγ5(− �ε) for a pseudoscalar (vector) heavy meson;
the corresponding weak current vertex is �μ = γμγ5(γμ).
Here, as mentioned in the last subsection, the meson field is
represented by the form factor F . Thus, the decay constant
in the heavy quark limit is given by

f̄M = 2
√

3iG
∫

d4 p

(2π)4

ϕ(v · p)(v · p + mq)

(p2 − m2
q)

. (2.9)

We find that this decay constant is the same for pseudoscalar
and vector heavy mesons, which is in accord with the pre-
diction of HQS. f̄M is related to the usual definition of the
decay constant fM by fM = f̄M/

√
mM .

Next, we consider the 1/mQ corrections of the heavy
meson mass. The Lagrangian in Eq. (2.2) can be expanded
as

LmQ = O1 + O2 + O
(

1

m2
Q

)
, (2.10)

where O1 = 1
2mQ

h̄v (i D⊥)2 hv , O2 = g
4mQ

h̄v σμν Gμν hv ,

and Gαβ = TaG
αβ
a = i

gs
[Dα, Dβ ] is the gluon field strength

tensor. O1 is the gauge invariant extension of the kinetic
energy arising from the off-shell residual motion of the heavy
quark, and O2 describes the color magnetic interaction of the
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(a) (b)

(c) (d)

Fig. 3 a, b, c Feynman rules for O(k)
1 , O(g)

1 , and O(g)
2 ; d is the light quark coupling to a gluon

Fig. 4 Feynman diagrams for
1/mQ corrections to meson
mass

(a) (b)

heavy quark spin with the gluon field. It is clear that both
O1 and O2 break the flavor symmetry, while O2 breaks the
spin symmetry. The Feynman rules for these HQS breaking
interactions are given in Fig. 3.

With the 1/mQ corrections included, the heavy meson
masses can be expressed as

mM = mQ + �̄ − 1

2mQ
(λ1 + dMλ2), (2.11)

where dM = 3(−1) for the pseudoscalar (vector) meson,
λ1 comes from O1, and λ2 comes from O2. λ1 receives two
different contributions, which are a kinetic energy piece and
a one-gluon exchange piece, thus, λ1 = λ

(k)
1 + λ

(g)
1 . The

relevant Feynman diagrams are shown in Fig. 4.
Using the Feynman rules in Figs. 1 and 3, we can readily

write down the various contributions:

λ
(k)
1 = iG2

×
∫

d4 p

(2π)4

|ϕ(v · p)|2
(p2 − m2

q)
2(p2 − v · p2)(v · p + mq),

(2.12)

λ
(g)
1 = −C f G

2g2
s

×
∫

d4 p d4 p′

(2π)4(2π)4

ϕ†(v · p′)ϕ(v · p)
(p′2 − m2

q)(p
2 − m2

q)(p − p′)2 T 1
M ,

(2.13)

dMλ2 = −g2
s C f G

2

×
∫

d4 p d4 p′

(2π)4(2π)4

ϕ†(v · p′)ϕ(v · p)
(p′2 − m2

q)(p
2 − m2

q)(p − p′)2 T 2
M

(2.14)

where C f = 4
3 is a color factor and T 1,2

M are defined by

T 1
M ≡ 2

{
(p · p′ + p′2 − v · pv · p′ − v · p′2)(mq + v · p)

+(p · p′ + p2 − v · pv · p′ − v · p2)(mq + v · p′)
}
,

(2.15)

T 2
M ≡ 4

3
dM

{
(p′2 − p · p′ + v · pv · p′ − v · p′2)(mq + v · p)

−(p · p′ − p2 − v · pv · p′ + v · p2)(mq + v · p′)
}
.

(2.16)

As expected, λ(k)
1 and λ

(g)
1 are the same for both pseudoscalar

and vector mesons. The hyperfine mass splitting is obtained:

�mHF = mV − mP = 2λ2

mQ
. (2.17)

2.3 Strong coupling constant

First, we study the zero order of strong coupling constants.
An effective Lagrangian of pseudoscalar (P) and vector (V )
mesons and their couplings to the Goldstone bosons is con-
structed as [27,28]
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Fig. 5 Feynman diagram of f0

LV P = DμP DμP† − M2
H PP† + i f MH (P AμV †

μ

−VμAμP†) − 1

2
VμνV †

μν + M2
HV

μV †
μ

+1

2
gεμναβ(VμνAαV β†+V βAαVμν†), (2.18)

where DμP† ≡ (∂μ + Vμ)P†, V †
μν = DμV †

ν − DνV †
μ , and

Vμ(Aμ) is the (axial) vector field:

Vμ = 1

2
(ξ†∂μξ + ξ∂μξ†), (2.19)

Aμ = i

2
(ξ†∂μξ − ξ∂μξ†). (2.20)

ξ is defined as ξ ≡ eiM/ fπ , M is a 3 × 3 matrix for the octet
of Goldstone bosons:

M =

⎡

⎢⎢⎣

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K 0

K− K̄ 0 −
√

2
3η

⎤

⎥⎥⎦ , (2.21)

and fπ is the pion decay constant. Through the partial conser-
vation of axial-vector current (PCAC), a soft pion amplitude
can be related to a matrix element of the axial-vector current
Aa

μ = ψ̄ λa

2 γμγ5ψ as

〈Bπa(q)|A〉 = qμ

fπ
〈B|Aa

μ|A〉. (2.22)

From the chiral Lagrangian, we obtain

〈Pπa(q)|V 〉 = −i

fπ

f

2
q · ε. (2.23)

On the other hand, the matrix element on the right hand side
of Eq. (2.22) can be evaluated in the covariant model. The
Feynman diagram to be evaluated is illustrated in Fig. 5, and
the relevant Feynman rules are illustrated in Fig. 1.

The result is

〈M ′(v)|ψ̄qT
aγμγ5ψq |M(v)〉

≡ G Tr

[
γμγ5�M ′

(1+ �v)

4
�M

]
χ†

M ′ λ
aχM , (2.24)

where the χ are SU(3) wave functions of the heavy mesons
and

G = −i

3
G2

∫
d4 p

(2π)4 |ϕ(v · p)|2(�̄ − v · p)

×3m2
q + p2 + 2(v · p)2 + 6mqv · p

(p2 − m2
q)

2 . (2.25)

For V → Pπ (�M = − � ε, �M ′ = iγ5), we compare Eq.
(2.24) with Eq. (2.18) and conclude that f0 = 2G, where the
subscript 0 denotes zeroth order in 1/mQ .

Next, we shall calculate the first order 1/mQ corrections
of strong coupling constants. The relevant matrix elements
are collectively illustrated in Fig. 6.

For V → Pπ and �Q = �
(g)
Q1, we can readily write down

the matrix elements and calculate the traces for Fig. 6a as

M(a)
α = C f G2

2mQ
g2
s

∫
d4 p d4 p′

(2π)4(2π)4

× ϕ(v · p)ϕ(v · p′)
(p2 − m2

q)(p
′2 − m2

q)
2(p′ − p)2 R

(a)
1 (2.26)

where

R(a)
1 =

{
(p′ · p + p2 − v · p′ v · p − (v · p)2)

×
[
(mq + v · p′)2 + 1

3
(p′2 − v · p′2)

]

+(p′2 + p′ · p − (v · p′)2 − v · p′v · p)
2

3
(mq + v · p)(2mq + v · p′)

}
. (2.27)

Similarly, we can evaluate M(b)
α for Fig. 6b, and it turns

out that M(a)
α = M(b)

α . Then a comparison with the chiral
Lagrangian result shows

δ f (g)
1 = −2

C f G2

mQ

∫
d4 p d4 p′

(2π)4(2π)4

× g2
s ϕ

†(v · p′)ϕ(v · p)
(p2 − m2

q)(p
′2 − m2

q)
2(p′ − p)2 R

(a)
1 . (2.28)

The above calculation can be repeated for �Q = �Q2. We
find that δ f2 is given by

δ f2 = C f G2

mQ

×
∫

d4 p d4 p′

(2π)4(2π)4

g2
s ϕ

†(v · p′)ϕ(v · p)
(p2 − m2

q)(p
′2 − m2

q)
2(p′ − p)2 R

(a)
2 ,

(2.29)
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Fig. 6 1/mQ corrections to
strong f and magnetic d
coupling constants. �α stands
for an external current. Other
notations are defined in Fig. 3

(a) (b)

(c)

where

R(a)
2 =

(
2

3

) {[
p′2 − p′ · p − (v · p′)2 + v · p′v · p

]

×(2m2
q + 2mqv · p + v · p′ v · p − p′ · p)

−
[
p′ · p − p2 − v · p′ v · p + (v · p)2

]

(m2
q + 2mqv · p′ + (v · p′)2)

}
. (2.30)

Figure 6c corresponds to the contribution from the heavy
quark kinetic energy. For V → Pπ , the matrix element can
be simplified as

M(c)
α = δ f (k)

1 Tr

[
γαγ5(− � ε′) (1+ �v)

4
(− � ε)

]
χ†

M ′ λ
aχM ,

(2.31)

where

δ f (k)
1 = 2iG2

∫
d4 p

(2π)4

|ϕ(v · p)|2
(p2 − m2 + iε)2

(p2 − v · p2)

2mQ

×
[
(m + v · p)2 + 1

3
(p2 − v · p2)

]
.

(2.32)

Therefore, we obtain the strong coupling constant, including
the 1/mQ corrections, as

f = f0 + δ f (k)
1 + δ f (g)

1 + δ f2. (2.33)

2.4 Magnetic coupling constant

We now consider the coupling constant which governs the
decay V → Pγ . The relevant lowest-order chiral and gauge-

invariant Lagrangian is given by [34]

L′
V P = MH εμναβvαV β

×
[

1

2
d(ξ†Qξ + ξQξ†)

]
FμνP† + h.c., (2.34)

where

Q =
⎡

⎣
2
3 0 0
0 −1

3 0
0 0 −1

3

⎤

⎦ (2.35)

is the light-quark charge. In the mQ → ∞ limit, the Feyn-
man diagram to be calculated is similar to Fig. 5, except that
the axial-vector current Aa

μ is replaced by the light-quark
electromagnetic current jμ = eeq ψ̄qγμψq . The result is

〈M ′(v)|ψ̄q(ieeqγμ)ψq |M(v)〉
≡ DeqTr

[
iγμ �q�M ′

1+ �v
4

�M

]
, (2.36)

where

D = 2ieG2
∫

d4 p

(2π)4 |ϕ(v · p)|2(�̄ − v · p) v · p + mq

(p2 − m2
q)

2 ,

(2.37)

and q = p′ − p → 0. For V → Pγ (�M = − � ε, �M ′ =
iγ5), we compare Eq. (2.36) with Eq. (2.34) and obtain d0 =
D/2.

Next, we calculate 1/mQ corrections to the magnetic cou-
pling d corresponding to V → Pγ . The relevant Feyn-
man diagrams are shown in Fig. 6 with �α = ieeqγα . For
V → Pγ ,

〈Pγ (q, ε)|V (ε)〉 = ieq 2d εμναβεμqνvαεβ, (2.38)

which comes from the effective chiral Lagrangian Eq. (2.34),
the calculated procedures are similar to those of the strong
coupling constants. Here, we only show the results for �Q =
�

(g)
Q1:

123
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δd(g)
1 = −2g2

s G
2

3mQ

×
∫

d4 p d4 p′

(2π)8

ϕ†(v · p′)ϕ(v · p)S(a)
1

(p2 − m2
q)(p

′2 − m2
q)

2(p′ − p)2 , (2.39)

where

S(a)
1 = −2

{[
p′2 + p′ · p − (v · p′)2 − v · p′v · p

]
(v · p + mq )

+
[
p′ · p + p2 − v · p′ v · p − (v · p)2

]
(v · p′ + mq)

}
,

(2.40)

and for �Q = �
(g)
Q2,

δd2 = 2g2
s G

2

3mQ

∫
d4 p d4 p′

(2π)8

ϕ†(v · p′)ϕ(v · p)S(a)
2

(p2 − m2
q)(p

′2 − m2
q)

2(p′ − p)2 ,

(2.41)

where

S(a)
2 = 4

3

{[
p′2 − p′ · p − (v · p′)2 + v · p′v · p

]
(v · p + mq)

−
[
p′ · p − p2 − v · p′ v · p + (v · p)2

]
(v · p′ + mq)

}
.

(2.42)

For Fig. 6c, we obtain

δd(k)
1 =−ieG2

∫
d4 p

(2π)4

ϕ(v · p)2(v · p+mq)(p2 − v · p2)

2mQ(p2 − m2
q)

2 .

(2.43)

In radiative decay, there is an additional 1/mQ correction
which comes from the magnetic moment of the heavy quark.
The matrix element of this process is

〈P|ψ̄Q
i2eeQ
2mQ

σμνq
νψQ |V (ε)〉 = ie

mQ
G2

×
∫

d4 p

(2π)4

ϕ(v · p)2

(p2 − m2
q)

(v · p + mq)ieQεμναβq
νvαεβ,

(2.44)

if �M ′ = iγ5, �M = − � ε. From the normalization condition
given in Eq. (2.6), we obtain

δdQ = e

2mQ
. (2.45)

Including the above results, we can write

d = d0 + δd(k)
1 + δd(g)

1 + δd2,

d̃q = d + eQ
eq

dQ . (2.46)

3 Numerical results and discussion

For obtaining numerical results, we shall further assume the
form of ϕ(v · p): (i) ϕ(v · p) is an analytic function apart
from isolated singularities in the complex plane, and (ii) it
vanishes as |v · p| → ∞. These two conditions allow us
to evaluate the p0− (or p−−) integrations in Eq. (2.6) by
Cauchy’s Theorem. Thus, we take:

ϕn(v · p) = 1

(v · p + ω − iε)n
(n = integer), (3.1)

which was used in a previous work [35]. There are some
parameters (ms,mQ, ω, αs) in this covariant model, and we
follow the strategy described below to fix them. In a quark
model, flavor SU(3) symmetry is broken because the strange
quark mass (ms) is quite different from the up or down quark
mass (mu,d). However, the size of the difference,

δmq = ms − mu,d , (3.2)

is not accurately known. For current quark masses, the value
of δmq was quoted as δmq(μ = 1 GeV) � 190 MeV [36]
and δmq(μ = 2 GeV) � 90 MeV [1] in the different renor-
malization scales. On the other hand, for constituent quarks
in a relativistic quark model, one typically gets [37]

δmq � 140 ∼ 200 MeV. (3.3)

Because δmq is an important parameter in our calculations,
using the variant values in the above range will leading to
the quite different results. This will slash our predictive abil-
ity. Here we use the constraint that �̄s is independent of the
heavy quark mass to obtain the value of δmq . In other words,
δmq is no longer a free parameter. The processes are as fol-
lows: we first quote the value mu,d = 0.245 GeV from the
previous work and try the initial value with δmq = 140 MeV.
Subsequently, we take the charm quark mass and the quark-
gluon coupling to be the same as that for the non-strange
charm meson [35], and choose an ω to calculate λ

(k)
1 , λ

(g)
1 ,

and λ2 from Eqs. (2.12)–(2.14). Using Eq. (2.17), the value
of ω can be adjusted to fit the hyperfine mass splitting [1]

�MD∗
s Ds = 143.8 ± 0.4 MeV. (3.4)

After fixing ω, we take the bottom quark mass and the quark-
gluon coupling to be the same as that for the non-strange bot-
tom meson [35] to estimate the other hyperfine mass splitting,
�MB∗

s Bs . In addition, using Eq. (2.11), we can determine
two values of �̄s for both the charm and the bottom sectors.
Because �̄s is independent of the heavy quark mass, the
above processes are repeated by fine-tuning the value of δmq

until the two values of �̄s are the same. Finally, the decay
constant in the heavy quark limit, f̄Ms , can also be evaluated
in terms of Eq. (2.9). These results are listed in Tables 1 and
2.
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Table 1 Ds -meson parameters for ϕn

n δmq (GeV) mQ (GeV) αs ω (GeV) λ2 (GeV2) λ1 (GeV2) �̄s (GeV) f̄Ms (GeV3/2)

8 0.225 1.73 0.400 1.19 0.124 −0.210 0.290 0.507

10 0.219 1.72 0.392 1.78 0.124 −0.232 0.285 0.508

12 0.215 1.72 0.387 2.38 0.124 −0.244 0.281 0.508

Table 2 Bs -meson parameters for ϕn

n δmq (GeV) mQ (GeV) αs ω (GeV) λ2 (GeV2) λ1 (GeV2) �MB∗
s Bs (MeV) �̄s (GeV)

8 0.225 5.09 0.381 1.19 0.118 −0.230 46.3 0.290

10 0.219 5.09 0.373 1.78 0.118 −0.251 46.3 0.285

12 0.215 5.09 0.368 2.38 0.118 −0.264 46.3 0.281

First of all, we see that the choice of ϕn (n = 8, 10, 12)

makes very little difference. The value of δmq = 215 ∼ 225
MeV is close to the typical light-quark mass, Eq. (3.3), used
in a relativistic formalism [37]. The hyperfine mass splitting
�MB∗

s Bs is consistent with the average data: �Mave
B∗
s Bs

=
46.1±1.5 MeV. However, the value of αs in Bs meson seems
to be rather larger than the one which is determined by the
perturbative evolution equation (at the one-loop level in the
MS scheme):

αs(m
pole
b )= αs(MZ )

1+αs(MZ )β0ln[(mpole
b /MZ )2]/(4π)

� 0.22,

(3.5)

where mpole
b = 4.89 GeV, MZ = 91.19 GeV, β0 = 11 −

2
3 N f = 11− 8

3 for N f = 4, andαs(MZ ) = 0.119 from exper-
imental fits. The reason is that [7] if the gluons which cou-
pling to the heavy quarks are hard (i.e., the virtual momenta
is of order of the heavy quark mass), they can resolve the
nonlocality of the propagator of the small component fields
Hv ≡ i �D⊥hv/(iv · D + 2mQ − iε). Their effects are not
taken into account in the naive operator product expansion
which was used in the derivation of the effective Lagrangian
in Eq. (2.10). Thus, HQET provides an appropriate descrip-
tion only at scales μ � mb, and the relevant αs in the b-quark
mesons will be larger than αs(m

pole
b ). As to the reduced mass,

we compare �̄s = 0.281 ∼ 0.290 GeV with that of the non-
strange heavy meson, �̄ = 0.202 ∼ 0.210 GeV [35], and
find that the residual mass difference is only about 80 MeV, in
contrast to δmq = 215 ∼ 225 MeV. This can be understood
as follows. Due to its heavier mass, the strange quark is more
tightly bound than an up or down quark; thus, part of the
mass difference δmq is compensated for by a larger binding
energy of the (Qs̄)-system. We can then obtain the predicted
meson decay constant fMs by using fMs = f̄Ms/

√
MMs and

the ratio fMs/ fM :

fMs � 219 MeV,
fMs

fM
= 1.13 ± 0.05, (3.6)

where the value fM � fB = 194 ± 9 MeV (an average of
the results [38,39] in lattice QCD) is chosen. For comparison,
the QCD sum rules results of [40,41]

fBs = 242+17
−12 MeV,

fBs
fB

= 1.17+0.03
−0.04, (3.7)

and [42,43]

fBs =225.6 ± 18.3 ± 3 MeV,

fBs
fB

=1.184 ± 0.023 ± 0.007, (3.8)

and the lattice QCD calculation results [44] of

fBs = 224(5) MeV,
fBs
fB

= 1.205(7), (3.9)

are shown here. In Tables 1 and 2, the kinetic and chromo-
magnetic expectation values, λ1 and λ2, are the heavy-strange
meson parameters which were defined in some papers as μ2

π

and μ2
G , respectively. The relations between them are [45]

λ1 = −μ2
π , λ2 = μ2

G/3. (3.10)

Although these heavy-strange meson parameters are not
found in the other theoretical calculations, here we show the
relevant parameters of the B meson (n = 10) which was
obtained from the previous work [35]: λ1 = −0.162 GeV2,

λ2 = 0.117 GeV2. Compared with the recent result [46]
which comes from the inclusive decays with mkin

b =
4.553 GeV (Eq. (3.10) is used): λ1 = −0.465 GeV2, λ2 =
0.111 GeV2, and we find that λ2 is consistent with ours
because of a bound from the B hyperfine splitting, but oth-
erwise λ1 is rather different from ours.

Next, the 1/mQ corrections to fs and ds are listed in Table
3.

In order to do a comparison for the 1/mQ effects, we
introduce an effective gluon mass of mg � �QCD � 300
MeV. For the D∗

s Ds mesons,
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Table 3 1/mQ corrections to f and d

D∗
s Ds B∗

s Bs

n fs0 δ fs1 δ fs2 fs ds0 δds1 δds2 ds ds0 δds1 δds2 ds

8 −3.29 0.292 −0.190 −3.18 0.529 −0.0382 0.0307 0.522 0.529 −0.0146 0.00988 0.525

10 −3.10 0.303 −0.184 −2.98 0.505 −0.0399 0.0299 0.495 0.505 −0.0150 0.00962 0.500

12 −2.99 0.308 −0.181 −2.86 0.491 −0.0408 0.0294 0.479 0.491 −0.0153 0.00948 0.485

Table 4 SU(3) symmetry breakings to f and d for n = 8

mu,d (GeV) f d(GeV)−1 δmq (GeV) fs ds (GeV)−1

0.245 −1.13 0.361 0.225 −3.18 0.522

(
δ fs2

fs

)
= 5.97 %,

(
δds2

ds

)
= 5.88 %

are consistent with the rough estimate of

αs
�QCD

mc
∼ (6 ∼ 7) %, (3.11)

for αs = 0.4. For the B∗
s Bs mesons, since mb/mc � 3, con-

sequently, the HQS violating effect and the rough estimation
are both smaller than those for the D∗

s Ds system by approx-
imately a factor of 3. Additionally, as compared with that of
the non-strange charm mesons [35], we see that the SU(3)
breaking is severe for fs , but less so for ds (see Table 4).

The reason for this can be traced back to the fact that
the strong coupling constant is sensitively dependent on �̄s ,
but the magnetic coupling constant is sensitively dependent
on both �̄s and ms in this model. The details are as follows.
From Eqs. (2.25) and (2.37), both the strong and the magnetic
coupling constants are dependent on �̄s . As the power of | 
p|
in the wave function ϕ must be smaller than − 2

3 (see Eq.
(2.6)), the strong and magnetic coupling constants satisfy a
simple relation, ds0 = −e

2ms

fs0
2 , which is similar to the result in

Appendix A of Ref. [35]. Combined with the estimation that
the total 1/mQ correction is about (3 ∼ 4)% for the D∗

s Ds

mesons, we obtain an approximate equation, ds � −e
2ms

fs
2 .

Therefore, the SU(3) breaking of ds has been reduced by the
factor ms in the denominator.

The study of SU(3) breaking in chiral perturbation the-
ory follows a different route, in which SU(3) symmetry is
assumed at the tree level and symmetry breaking effects are
induced via meson loops (see [47] for details). Thus, from
Fig. 7a we have

f =
√
Z2(V )Z2(P)Z2(φ)

Z1(V Pφ)
f 0 (3.12)

where Z1 and Z2 are, respectively, the wave function and ver-
tex renormalization constants, φ denotes a Goldstone boson,

(a) (b)

Fig. 7 Renormalizations of (a) the strong coupling constant f and (b)
the V Pγ coupling constant d in chiral perturbation theory

and f 0 is the unrenormalized coupling constant. The Zs have
all been evaluated in [30,31]. Putting in the numbers in (3.12),
we obtain

f = 1.33, fs = 1.47,

for f 0 = 0.52, which fits to the experimental data for non-
strange mesons [30,31]. Thus, we see that in chiral perturba-
tion theory, SU(3) breaking in the strong coupling constant
is not large, with

fs − f

f

∣∣∣∣
chiral

∼ 0.10. (3.13)

This is very different from what we found in the covariant
model. As for the radiative decay constants in chiral pertur-
bation theory, we have (see Fig. 7b)

d =
√
Z2(V )Z2(P)

Z1(V Pγ )
d0 (3.14)

where d0 is the unrenormalized transition magnetic moment,
and d0 = 0.394 GeV−1 is obtained from fitting to the branch-
ing ratios of D∗ → Dγ [30,31]. Putting the numbers in
(3.14), we obtain d = 0.436 GeV−1, ds = 0.575 GeV−1,
and

ds − d

d

∣∣∣∣
chiral

= 0.319.

The latter one is close to that of our model:

ds − d

d
= 0.446.

Finally, we consider the decay widths �(D∗
s → Dsπ

0),
�(D∗

s → Dsγ ), �(B∗
s → Bsγ ), and the ratio

rs = �(D∗
s → Dsπ

0)

�(D∗
s → Dsγ )

, (3.15)
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(a) (b)

Fig. 8 D∗
s → Ds + π0 via the η–π -mixing mechanism

which is known to be rs = 0.062±0.008 experimentally [1].
Note that the decay mode

D∗
s → Ds + π0 (3.16)

violates isospin or SU(2) symmetry, and it must proceed via
η–π mixing in the leading order [48,49], as depicted in Fig.
8a, where Hηπ = 〈π0|Hem|η〉 is the η–π mixing vertex.
Figure 8a can be replaced by Fig. 8b with an effective D∗

s Dsπ

coupling constant:

Feff = −2√
3
fs

Hηπ

m2
π − m2

η

. (3.17)

The strength of the η–π mixing interaction, Hηπ , can be
calculated in various models [50]. Here we chose to utilize
the experimental rates of η → 3π0. From the data of Particle
Data Group [1], we can use �(η → all) = 1.31 ± 0.05 keV
and Br(η → 3π0) = (32.68 ± 0.23) % to obtain

�(η → 3π0) = 0.428 ± 0.019 keV. (3.18)

As to the amplitude of η → 3π0, a fit of the data in Ref. [1]
shows Mη→3π0 to be essentially constant over phase space:
|Mη→3π0 |2 = M2

0 (1 + 2αz), where z is the square of the
relative distance to the center of the Dalitz plot and α =
−0.0315±0.0015. Then the three-body phase space integral
for constant amplitude was estimated in Ref. [51]:

�(η → 3π0) � 0.827 |Mη→3π0 |2 keV. (3.19)

Combining Eqs. (3.18) and (3.19), we obtain the constant
amplitude

|Mη→3π0 | = 0.719 ± 0.033. (3.20)

On the other hand, from the current-algebra PCAC [52], the
total amplitude of η → 3π0 is summing the three cyclic
permutations of Fig. 9 [53,54]:

Mη→3π0 = 〈π0|Hem|η〉
m2

η − m2
π

×
[

2
m2

η

f 2
π

−Mst(η→ηπ 2π0)−Mst(η→η′
π 2π0)

〈π0|Hem|η′〉
〈π0|Hem|η〉

m2
η − m2

π

m2
η′ − m2

π

]
,

(3.21)

where the first, second, and third terms of Eq. (3.21) cor-
respond to Hs in Fig. 9a–c, respectively. The former is the

Weinberg ππ → ππ [55] strong amplitude extrapolated to
the η mass shell consistent with four-momentum conserva-

tion, and the latter is the strong amplitude Mst(η → η
(′ )
π 2π0)

of the η(′ ) pole which is extrapolated from the η(′ ) mass
to the π mass. Summing the cyclic permutations and con-
sidering the η–η′ mixing, the authors of Ref. [54] obtained
Mst(η → ηπ 2π0) = 6 cos2 φ m2

π/ f 2
π , where φ is the mixing

angle:

|η〉 = cos φ|n̄n〉 − sin φ|s̄s〉,
|η′〉 = sin φ|n̄n〉 + cos φ|s̄s〉, (3.22)

with |n̄n〉 = (|ūu〉 + |d̄d〉)/√2, and the third term of Eq.
(3.21) is negligible. The mixing angle can be determined by
a theory of particle mixing [56]:

tan2 φ = (m2
η′ − 2m2

K + m2
π )(m2

η − m2
π )

(2m2
K − 2m2

π − m2
η)(m

2
η′ − m2

π )
, (3.23)

from which one obtains φ = 41.5◦. Combining Eqs. (3.20)
and (3.21) with the pion decay constant fπ = 130.41 ± 0.20
MeV and the relevant meson masses [1], we obtain

Hηπ = −6400 ± 310 MeV2. (3.24)

This value is different from that of Ref. [54]: Hηπ = −5900±
600 MeV2, the chief reason being that the new experimental
data in Eq. (3.18) is used. Then, using the fs and ds obtained
in Table 3, we can predict the ratio rs and the relevant decay
widths in Table 5.

For the different ϕn , the deviations of the decay rate are
about 5 ∼ 6 times larger than those of rs . The main reason
is that the decay rate �(D∗

s → Dsγ ), for example, can be
simplified as

�(D∗
s → Dsγ ) ∝

∣∣∣∣ − ds + e

mc

∣∣∣∣
2

, (3.25)

where the minus sign comes from the charge of the s quark.
On the other hand, the ratio rs can be simplified as

rs ∝
∣∣∣∣

dsms

−ds + e
mc

∣∣∣∣
2

, (3.26)

where ds � −e
2ms

fs
2 is again applied. In other words, the devia-

tions of rs for the different ϕn are suppressed strongly because
ds is approximately proportional to fs . Finally, we list the pre-
dicted decay rates and branch ratios within this work (n = 8)
and some theoretical models in Table 6. For comparison, the
experimental data are also included.

We can find that, first, our branching ratios and rs are close
to the experimental data. Second, there are many theoretical
calculations of �(D∗

s → Dsγ ) in the literature. However,
except for the result of χPT, our result is much larger than that
of the other theoretical methods. In fact, the estimations of
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Fig. 9 One of the three cyclic
amplitudes in η → 3π0

(a) (b)

(c)

Table 5 Predicted decay rates
(in unit of keV), the branching
ratios (in parentheses) and rs for
ϕn

n D∗
s → Dsπ

0 D∗
s → Dsγ rs B∗

s → Bsγ

8 0.277+0.028
−0.026(7.29+0.67

−0.65 %) 3.53(92.7 ∓ 0.7 %) 0.0786+0.0079
−0.0075 0.407

10 0.243+0.024
−0.023(7.48+0.69

−0.67 %) 3.00(92.5 ∓ 0.7 %) 0.0809+0.0081
−0.0077 0.371

12 0.224+0.022
−0.022(7.60+0.70

−0.67 %) 2.72(92.4 ∓ 0.7 %) 0.0823+0.0083
−0.0079 0.351

Table 6 Predicted decay rates (in units of keV) and branch ratios (in parentheses) of some models

Reaction D∗
s → Dsπ

0 D∗
s → Dsγ D∗

s → total rs(×10−2) B∗
s → Bsγ

Exp.[1] (5.9 ± 0.7 %) (94.2 ± 0.7 %) <1900 6.2 ± 0.8

This work 0.277+0.028
−0.026(7.3 ± 0.7 %) 3.53(92.7 ∓ 0.7 %) 3.56 ± 0.03 7.86+0.79

−0.75 0.407

χPT [30,31]† 4.5

LFQM [57]‡ 0.18 ± 0.01 0.068 ± 0.017

RQM [58]� 0.0197 ± 0.0070 (input) 0.321+0.009
−0.008 0.341 0.136 ± 0.012

QCDSR [59] 0.59 ± 0.15

NJLM [60] 0.09 0.10

LQCD [61] 0.0040 (input) 0.066 ± 0.026 0.070 ± 0.028

MIT [62] 0.0510

NRQM [63] 0.21

NRQM [64]� 0.40 0.18

For comparison, the experimental branching ratios are given in the first row
χPT chiral perturbation, LFQM light-front quark model, RQM relativistic quark model, QCDSR QCD sum rules, NJLM Nambu–Jona-Lasinio
model, LQCD lattice QCD, MIT MIT bag model, NRQM non-relativistic quark model.
† The value for g = 0.52, β = 2.6 GeV−1, and mc = 1.6 GeV. ‡ The values correspond to a linear model. � The value for κq = 0.55. � The values
correspond to model (a)

�(D∗
s → Dsγ ) are also quite different among the other the-

oretical groups. A similar situation exists for �(B∗
s → Bsγ ).

Third, in contrast to �(D∗
s → Dsγ ), there are few computa-

tions for �(D∗
s → Dsπ) violating the isospin symmetry. The

relevant results of Refs. [58,61] come from taking the experi-
mental branching ratio as the input. Then, for �(D∗

s → Dsπ)
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as well as rs , we need to make further comparisons by means
of more experiments and theoretical calculations. It is worth
mentioning that, in our model, although the deviations of rs
are smaller than those of the decay rate for the different ϕn

(because of ds ∝ fs ; see above), this does not mean that we
can obtain almost the same rs , no matter what, for exam-
ple, the value of �(D∗

s → Dsγ ) is. The average value of
�(D∗

s → Dsγ ) for the other theoretical calculations (except
χPT) is about one-tenth of ours. From Eqs. (3.25) and (3.26),
we find that if one adjusts the ds to reduce the value of
�(D∗

s → Dsγ ) to one-tenth, the value of rs will be enhanced
to about 3 ∼ 4 times that of the experimental data. In other
words, the fact that our rs is close to the experimental data
gives us confidence in our results and the validity of our
covariant framework.

4 Conclusions

Based on HQET, we have discussed the strong and radia-
tive coupling constants of strange heavy mesons in 1/mQ

corrections and SU(3) symmetry breakings. These effects
were studied using a fully covariant model. The covari-
ant model starts from HQET in the heavy quark limit and
describes a heavy meson as a composite particle, consist-
ing of a reduced heavy quark coupled with a brown muck
of light degrees of freedom. It is formulated in an effective
Lagrangian approach, so that it is fully covariant, and we
used Feynman diagrammatic techniques to evaluate the var-
ious processes.

The parameters of this model, ms and ω, were chosen to
fit the data of the hyperfine mass splitting, �MD∗

s Ds , and
because the residual mass �̄s is independent of the heavy
quark mass. Then the other hyperfine mass splitting �MB∗

s Bs ,
�̄s , and the decay constant in the HQ limit can be calculated.
Our �MB∗

s Bs was consistent with the data. The residual mass
difference between �̄s and �̄ was only about 80 MeV, and
this is obviously smaller than that between the s and u, d
quarks. This is understood as follows. Due to its heavier mass,
the strange quark is more tightly bound than an up or down
quark; thus, part of the mass difference between the s and u, d
quarks is compensated for by a larger binding energy of the
(Qs̄)-system. The SU(3) symmetry breaking effect fMs/ fM
is close to the fBs/ fB of the QCD sum rules [40–43] and the
lattice QCD calculation [44] results.

The 1/mQ corrections of fs and ds are consistent with
αs�QCD/mQ for both the D∗

s Ds and the B∗
s Bs systems. In the

charmed meson sector, the HQS violating effects are larger
by approximately a factor of 3 because of mb/mc � 3. The
SU(3) symmetry violating percentage of fs , at about 180 %,
is obviously larger than that of the ds at 45 %. The reason for
this was that, due to an approximate equation, ds � e

2ms

fs
2 ,

the SU(3) breaking of the ds was reduced by the factor ms

in the denominator. For comparison, we estimated the SU(3)
symmetry violating percentages in chiral perturbation theory
[30,31] and obtained about 10 % and 32 % for fs and ds ,
respectively.

In order to calculate the decay rate of D∗
s → Dsπ , which

violates isospin or SU(2) symmetry, we used the new data
of �(η → 3π0) to estimate the η–π mixing vertex: Hηπ =
−6400 ± 310 MeV2. Combining the coupling constants fs ,
ds , and Hηπ , we studied �(D∗

s → Dsπ
0), �(D∗

s → Dsγ ),
�(B∗

s → Bsγ ), and the ratio rs . For the different ϕn , the
deviations of �(D∗

s → Dsπ
0) and �(D∗

s → Dsγ ) were
about 5 ∼ 6 times larger than those of rs . The main rea-
son was ds � e

2ms

fs
2 , again. In other words, the deviations

of rs are suppressed strongly because ds is approximately
proportional to fs .

Finally, we compared our results with the experimental
data and the other theoretical calculations in Table VI. Our
branching ratios of �(D∗

s → Dsπ
0), �(D∗

s → Dsγ ), and
rs were close to the experimental data. However, our pre-
dictive decay widths of �(D∗

s → Dsπ
0), D∗

s → Dsγ , and
B∗
s → Bsγ were much larger than those of the other the-

oretical groups except for χPT. Because another computa-
tional rs is not found in the literature, we tried to reduce our
�(D∗

s → Dsγ ) to the average value of the other theoretical
calculations by directly adjusting ds , and find that our rs is
enhanced to about 3 ∼ 4 times of the experimental data. In
other words, the fact that our rs is close to the experimental
data gives us confidence not only in the validity of our covari-
ant framework, but also in our predictions about the decay
widths of D∗

s → Dsπ , D∗
s → Dsγ , and B∗

s → Bsγ . Then
more experiments about the above decay widths are needed.
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