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Abstract

Background: All living cells display a rapid molecular response to adverse environmental conditions, and
the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair
the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock
protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity.

Methods: We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated
further the most susceptible strains. We analyzed survival, protein carbonylation (as a marker of oxidative
stress) and Parkinson’s disease related gene expression immediately after Mn exposure. Lastly, we observed
dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the
data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc
Bonferroni test if the overall p value was less than 0.05.

Results: We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as
exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of
hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was
aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1, a gene that has been
linked to Parkinson’s disease.

Conclusions: Taken together, our data suggest that Mn exposure modulates heat shock protein expression,
particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic
neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1
increased expression, thus potentially exacerbating the vulnerability to this metal.
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Background
Molecular chaperones are highly evolutionarily con-
served and ubiquitously found in subcellular compart-
ments, cells, and tissues, being essential for the stability
of the proteome under normal and stressful conditions
[1]. The expression of many molecular chaperones is
regulated by environmental and physiological stresses
that can interfere with folding stability, leading to a flux
of misfolded proteins [2]. Stress responsive molecular

chaperones are referred to as heat shock proteins (HSPs)
and classified by gene families according to their mo-
lecular mass as Hsp100, Hsp90, Hsp70, Hsp60, Hsp40
and small Hsps (sHsps). HSPs exert their physiological
effect by assisting the formation of new proteins as well
as by preserving existing structures. However, they also
display major functions in pathological conditions, espe-
cially through structural rectification of denatured pro-
teins and solubilization of protein aggregates carrying
them on to the proteasome system [2, 3].
Metal exposure at different levels can cause oxidative

stress, which can lead to protein aggregation [4, 5].
Thereby, metals themselves are able to generate aberrant
interactions with proteins such as beta-amyloid, α synu-
clein and prion proteins [5, 6]. In this context, Manganese
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(Mn) poisoning has been associated with increased heat
shock protein levels, especially HSP70 [7–9]. Mn is widely
used in industry and in agriculture, being found in several
products such as batteries, pesticides, gasoline, parenteral
nutrition, water purification agents and drugs [10–14]. As
a consequence, exposed subjects may develop a syndrome
known as manganism, where alterations in movement,
speech and face expression may appear [14–16].
Manganism and Parkinson´s disease (PD) share several

symptoms and molecular mechanisms [17]. Several lines
of evidence point out that the behavioral and cognitive
impairments are due to the dopaminergic alterations in
brain areas that are involved in the movement circuitry.
Depletion of dopamine (DA) from the dopaminergic
(DAergic) neurons, mitochondrial dysfunction, oxidative
stress and neuronal death have been reported in both
disorders. While PD is mostly idiopathic in its etiology,
many genes have now been associated with the disease
called as PD-related genes. The mutation of dj-1, pink-1,
parkin, for example, have been strongly linked to the
early-onset of PD neurodegenerative disease in humans.
In addition, it has been demonstrated that mutation in
these genes also relate to onset of manganism [18–20].
As a putative treatment, recently, studies provided evi-
dence on the important role of HSP70 in recovering
DAergic neurons or degrading misfolded proteins in PD
models [21, 22].
In order to study the involvement of HSPs on Mn-

induced neurotoxicity, we used the Caenorbabditis ele-
gans model. This nematode incorporates 302 neurons, 8
of them being dopaminergic. Its transparent body and
ease of genetic manipulability turns it into very interest-
ing model to study neurodegeneration and to unravel
molecular targets of toxicants. Our group has already
demonstrated that Mn causes specific degeneration in
the dopaminergic neurons through molecular mecha-
nisms that replicate the effects observed in mammalian
models. Furthermore, C. elegans possess 21 isoforms of
HSP, which have been shown to function as chaperones
and to have antioxidant role in worms as well as in
mammals [23, 24].
Hence, we hypothesized that the deletion of hsp genes

would increase Mn- induced oxidative stress and DAer-
gic neurotoxicity. Furthermore, we investigated whether
this deletion would affect the expression of some PD-
related genes, based on the hypothesis that HSPs might
be carriers of DJ1, PDR1 and PINK1 to the mitochondria
following Mn stress.

Methods
Chemicals
Oxyblot protein oxidation analyses kits were purchased
from Millipore (S7150- Billerica, CA). All the other re-
agents were obtained from Sigma (St Louis, MO).

C. elegans strains and handling of the worms
C. elegans Bristol N2 (wild type) PS3551 (hsf-1(sy441)I),
BR2823 (chn-1(by155)I), RB1104 (hsp-3(ok1083)X), LL 1009
(daf-21(nr2081)/nT1 [unc-?(n754) let-?] IV;V), RB825
(hsp-43(ok647)X), VC281 (hsp-12.6(gk156) IV), VC1099
(hsp-4(gk514)II), CNH-1 gf (gain-of-function) were han-
dled and maintained at 20 °C on E. coli OP50/ NGM
(nematode growth media) plates as previously described
[25]. These strains were provided by the Caenorhabditis
Genetics Center (CGC, Minnesota). hsp-70 (tm2318)
I, was a gift from the Mitani lab. Synchronous L1
population were obtained by isolating embryos from
gravid hermaphrodites using bleaching solution (1 %
NaOCl; 0.25 M NaOH), followed by floatation on a su-
crose gradient to segregate eggs from dissolved worms
and bacterial debris, accordingly to standard procedures
previously described [26].

Dose–response curves after Mn exposure
Five thousand synchronized L1 stage worms per dose
were treated for 30 min with each of the compounds,
followed by three washes with 85 mM NaCl soultion.
Worms were placed on OP50 seeded NGM plates and
the dose–response curves were plotted from scoring the
number of surviving worms on each dish at 24 h post-
exposure. Dose response curves and LD50 values were
obtained from those curves. Worms were then exposed
for 30 min to 35 mM manganese chloride (MnCl2),
which corresponds to the LD25 for MnCl2 as previously
reported by Benedetto et al. [27]. For all dose–response
curves, scores were normalized to percent control
(0 mM MnCl2 exposure).

Protein oxidation determination
Twenty thousand worms were exposed to MnCl2 (3, 10,
20, 35, 50 mM), as previously described. Next, worms
were homogenized by sonication in a lysis buffer contain-
ing 85 mM sodium chloride, 1 % Triton X-100, 10 mM
Tris Buffer (pH 6.8), 1× protease inhibitor and 50 mM
dithiotreitol (DTT). After centrifugation (11,000xg for
1 min), the supernatant was isolated and protein concen-
tration was determined with the Bradford method [28].
One hundred micrograms of proteins were derivatized
with 2,4,dinitrophenylhydrazine (DNPH), which is con-
verted to 2,4, dinitrophenylhydrazone (DNP) in the pres-
ence of carbonyls from oxidized proteins. The carbonyls
were detected by western blotting with a commercial anti-
body directed against derivatized carbonyl groups (anti
2,4- DNP, rabbit IgG), and visualized by horseradish per-
oxidase conjugated secondary antibody according to the
kit instructions (Oxyblot analysis kit, Millipore). Purified
β-actin (A1978, Sigma, St. Louis, MO) was used as a
control and the bands’ density was acquired with
Image J (Rasband, W.S., ImageJ, U. S. National Institutes
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of Health, Bethesda, Maryland, USA, http://imagej.nih.
gov/ij/, 1997–2011.).

Confocal microscopy
For each slide, at least 20 worms were mounted on 4 %
agarose pads in M9 and anaesthetized with 0.2 % tricaine/
0.02 % tetramisole in M9. Fluorescence observations were
performed with an epifluorescence microscope (Nikon
Eclipse 80i, Nikon Corporation, Tokyo, Japan) equipped
with a Lambda LS Xenon lamp (Sutter Instrument
Company) and Nikon Plan Fluor 20× dry and Nikon Plan
Apo 60 × 1.3 oil objectives. Microscopes were housed in
air-conditioned rooms (20–22 °C). Worms were observed
2 h after Mn exposure.

Real time PCR
Total RNA was isolated using the TRIzol reagent (Invitro-
gen) and the RNeasy mini kit (Qiagen). First-strand cDNA
synthesis was performed with an equal amount of RNA
using the Thermoscript real-time PCR kit (Invitrogen) as
per the kit's instructions. The genes observed through
real-time PCR were as follows: hsp-70, pdr-1, dj-1, parkin
(Table 1). The housekeeping gene act-1 was used as an in-
ternal control. Primer sequences are available on request.
mRNA expression was quantified using the SYBR green
detection method on an Bio-Rad real-time PCR system.
Relative quantification for the expressed genes was done
using the comparative CT (ΔΔCT) method.

Statistics
Dose–response lethality curves, longevity curves and
ROS content and oxyblot analysis were generated with
GraphPad Prism (GraphPad Software Inc.). We used a
sigmoidal dose–response model with a top constraint at
100 % to draw the curves and determine the LD50 or the
average lifespan values reported in the graphs. Statistical
analysis of significance was carried out by one-way or
two way ANOVA, depending on the case, followed by
post-hoc Bonferroni test if the overall p value was less
than 0.05. In all figures, error bars represent the stand-
ard errors of the mean (SEM).

Results
The loss-of-function of some HSP genes led to increased
sensitivity towards Mn (Table 2). While Mn-induced

lethality of the transgenic strains lacking hsp-4, hsp-43, hsf-
1 and hsp-12.6 were indistinguishable from wild type
worms, hsp-70 mutants exhibited hypersensitivity to Mn-
induced lethality (LD50 = 73.08 mM) compared to N2
worms (LD50 = 46.13 mM) (Fig. 1a, p < 0.05). Conversely,
other genetic deletions caused decreased Mn-induced
lethality in comparison to wild type worms such as hsp-3
(which has 99.1 % homology to HSPA5 from the HSP70
family, Fig. 1b) and chn-1 (homologous to CHIP (C-
terminus of Hsc70 interacting protein), Fig. 1c). In order to
identify the possible underlying mechanisms, we deter-
mined the extent of Mn-induced oxidative damage through
an indirect method: the measurement of protein carbonyl
content. We observed that all strains showed increased car-
bonylation at lower Mn concentrations in comparison to
N2, corroborating the findings of the survival assay (Fig. 2a,
b and d). Notably, the lack of HSF-1 neither change Mn
toxicity (Fig. 1d), nor increased carbonyl content (Fig. 2c).
Considering the higher sensitivity of hsp-70 worms fol-

lowing Mn exposure, we generated transgenic worms
lacking hsp-70 and expressing pdat-1::GFP. The expres-
sion of the green fluorescent protein (GFP) under the
control of a promoter for the dopamine (DA) re-uptake
transporter 1 allows the visualization of the architecture
of the DAergic neurons. Following Mn exposure the
pdat-1::GFP fluorescence and morphology of the mu-
tants lacking hsp-70 was compared to wild type (N2)
(Fig. 3). The neurodegeneration induced by Mn in wild
type worms occurred as previously reported by Bene-
detto et al. [27]. Remarkably, the knockout of the hsp-70
gene caused significant degeneration in DAergic neurons
following 10 mM (ballooning of the neurons soma) Mn
exposure (Fig. 3). Corroborating the importance of hsp-
70 gene as a Mn-responsive gene, we further observed
that the mRNA expression of this gene increases signifi-
cantly with increased Mn concentrations (Fig. 4).
In order to evaluate the effect of Mn exposure on the

expression of PD-related genes in wild type and hsp-70
mutants, we determined the mRNA levels of pdr-1, djr-
1.1 and pink-1. Increased Mn concentrations applied to
WT worms led to a dose-dependent increase in the ex-
pression of pdr-1, djr-1.1 and pink-1 (Fig. 5). Unexpect-
edly, mRNA levels of pdr-1 and djr-1.1 remained
increased in hsp-70 mutants following increased Mn
concentrations (Fig. 5a and c). However, two-way
ANOVA revealed a strong interaction between Mn con-
centration and genotype, supporting the notion that the
dynamics of the transcriptional response to Mn expos-
ure differs between wild type and hsp-70 worms. In par-
ticular, hsp-70 mutation abrogates the dose-dependent
increase in pink-1 expression typically observed upon
graded Mn exposure (Fig. 5b). Interestingly, this suggest
that HSP-70 is specifically required for the Mn-induced
increase in PINK-1 expression.

Table 1 List of primers used in this study

Gene Seq 5' to 3'- Forward Seq 5' to 3' -Reverse

hsp-70 CCATGACTTAGTGGGACAAC AAGACTACGCCTTCCTACGT

pink1 TCATGTCTCGCTGAGCAACT GGCTCCATATCCGAATGCT

djr1.1 CTCGTGGTGAAATTCGTGTG GCGGACAAGTAGGCTTTCAG

pdr1 CAAATGTCTAGCCTGCAACG CGAACTATTGCACCCTGGAT

act1 ATCACCGCTCTTGCCCCATC GGCCGGACTCGTCGAATTCTTG
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Discussion
The cellular and molecular evolutions of most organisms
rely on HSPs, which promote cell adaptation and survival
under conditions of stress [2]. In the present study, we
used an environmental and occupational metal toxicant
and observed that the absence of hsp-70 gene leads to
increased sensitivity to Mn-induced neurotoxicity, which
was associated with increased oxidative stress and specific
alterations in mRNA levels of pink-1 in C. elegans. Other
hsp genes may also be related to Mn-induced neurotox-
icity. However, worms lacking hsp-4, hsp-43, hsf-1 and
hsp-12.6 were less sensitive towards Mn-induced toxicity
as compared to nematodes lacking hsp-70.
hsp-70 encodes a member of the HSP70 family genes

in C. elegans with 13-members identified in the organ-
ism so far [29]. It comprises approximately 100 % hom-
ology to the human HSPA8, an isoform of heat shock

cognate of 71 kDa (hsc70) [24]. The hsp-70 gene is under
normal conditions expressed constitutively throughout
nematodes development. With increasing temperatures
hsp-70 mRNA synthesis is enhanced 2–6-fold [24, 30]. In
mammals a large variety of cellular functions have been
attributed to HSPA8 most of them through its cooper-
ation with co-chaperones. Thereby HSPA8 participates in
the chaperone-mediated autophagy, an important process
that recognizes malformed proteins in order to degrade
them through the ubiquitin/proteassome system [31].
Mn exposure modulates the expression of HSPs in dif-

ferent species [7–9, 32–35]. Most of the evidence points
out to an increase of HSP-70 levels following acute Mn
exposure, thus reflecting an attempt to protect from the
toxic and pro-oxidative effects triggered by Mn [7–9, 32].
This is corroborated herein, as the absence of hsp-70
led to higher vulnerability to Mn exposure, which was

Table 2 Lethal concentration 50 % for each HSP strain exposed to Mn

Strain N2 hsp-70 chn-1 CHN-1 gf hsp-3 daf-21 hsp-4 h sp-12.6 hsp-43 h sf-1

LD50

(mM)
73.08 ± 2.2 46.13 ± 2.17a 30.10 ± 2.74a 96.92 ± 2.78a 34.18 ± 2.83a 96.11 ± 3.28a 67.04 ± 3.027 90.40 ± 2.54a 72.34 ± 3.55 56.15 ± 1.68a

Data are expressed as mean ± SEM (n = 3). aIndicates statistical difference from N2 worms
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Fig. 1 Dose–response curves for acute treatment with Mn (30 min) in different hsp mutants, all compared to N2 (wildtype). a N2, hsp-70, hsp-4,
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associated with oxidative stress, depicted by increased
protein carbonylation. Observing the fluorescently la-
beled DAergic neurons in the outcrossed hsp-70
(tm2318);pdat-1::GFP worms, we verified the import-
ance of HSP-70 in protecting DAergic neurons from
Mn exposure. This is in agreement with recent studies
providing evidence on the important role of HSP70 in
rescuing DAergic neurons in various models of PD. For
instance, HSP70 suppressed α-synuclein toxicity in a
transgenic Drosophila model of familial PD [36]. Dong
et al. demonstrated that a Hsp70 gene transfer into
DAergic neurons protect from MPTP- induced DA loss
and the associated decline in DA levels in striatal
mouse neurons [37]. In addition, in vitro and in vivo
studies demonstrated that Hsp70 might play a role in
neuroprotection against MPTP and rotenone (two
models of PD) by inhibiting pro-apoptotic factors as

well as by activating survival pathways [38–40]. PD-
related genes DJ1, parkin and Pink1 are participating in
the oxidative stress response and protect the cell
against mitochondrial oxidative stressors such as Mn.
Regarding the gene DJ1, the nematode expresses two
orthologues named djr-1.1 and djr-1.2. Recently, our
group demonstrated that pdr-1 and djr-1.1 loss in C. ele-
gans increased their susceptibility to Mn in comparison
to wild type worms and that the observed enhanced
oxidative stress is related to increased Mn accumula-
tion [19]. In addition, the higher Mn accumulation
caused by loss of pdr-1/parkin gene was due to reduc-
tion of ferroportin (a Mn cell exporter) expression in
worms [20]. Furthermore, Chen et al. demonstrated
that worms overexpressing DJR-1.2 are not subject to
lifespan reduction caused by Mn exposure, in contrary
to djr-1.2 mutants [41]. Interestingly, under stress
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Fig. 2 Mn-induced protein carbonylation in different hsp mutants. a N2; (b) hsp-70; (c) hsf-1; (d) chn-1. Data are expressed as mean (percentage of
control) ± SEM. * indicates statistical difference from control group (p < 0.05)
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conditions, DJ-1 is translocated to mitochondria by
HSP-70 [42]. It was further shown that a bcl-2 associ-
ated Athanogene 5 (BAG5) can enhance DAergic neur-
onal death by inhibiting both Parkin and the chaperone
activity of Hsp70 [43]. Hence, we hypothesized that the
absence of hsp-70 would alter the expression of these
genes. First, we verified for the first time that Mn
increases mRNA levels of all these genes in wild type
worms, which is in agreement with the hypothesis that
these proteins are required to protect cells against Mn-
induced toxicity [19, 20, 41]. While in the hsp-70 mutants
mRNA levels of pdr-1 and djr-1.1 increased dose-
dependently in a manner indistinguishable from N2
worms, the pink1 expression failed to increase and was
not significantly different compared to non-treated
mutants. Pink1 (PTEN-induced kinase 1) is a mito-
chondrial kinase consisting of 581 aminoacids that
encode a mitochondrial targeting sequence, a trans-
membrane domain and a Ser/Thr kinase domain. PINK1
is believed to confer neuroprotection by policing mito-
chondrial integrity [44] and a growing amount of data
links dysfunction of mitochondrial dynamics with PD
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Fig. 3 Representative images from DAergic neurons in hsp-70 (tm2318);pdat-1::GFP worms exposed to Mn at different concentrations compared
to wildtype worms
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[45, 46]. Hence, loss of pink-1 is associated with
mitochondrial impairments, oxidative stress, and
DAergic neuronal loss, as DA neurons may be

particularly vulnerable to mitochondrial dysfunction
[47, 48]. A proteomic study of Triplett et al. with PINK1
knockout mice showed that these animals have reduced
HSP-70 levels in their brain [49]. Herein, we observed that
hsp-70 mutants blocked pink-1 - mRNA expression
following Mn exposure compared to the respective dose-
dependent increase observed in WT worms, which
reinforces the relationship between these two genes. In
accordance, as we observed a significant impairment of
DAergic neurons in the worms lacking hsp-70, we can
infer that the mitochondrial dysfunction provided by Mn,
plus absence of an important chaperone and the failure of
the cells to increase PINK1 expression would culminate
with the higher damage to these neurons. Constructing a
worm that overexpress PINK1 in a hsp-70 KO background
would give us a more reliable view on the role of pink-1
and hsp-70 in Mn-induced DAergic degeneration.
Working with gene profiling in C. elegans, which can be

visualized in vivo using transgenic GFP-tagged strains,
Anbalagan et al. demonstrated that Cd2+, Cu2+, Hg2+ and
Zn2+ exposure induce the heat shock genes quite strongly
(hsp-16.1, hsp-16.2, hsp-6, hsp-60 were at least 2-fold
increased) [50]. Notably, we observed that Mn exposure
increased mRNA levels of hsp-70 (Fig. 4) and that HSP-
4::GFP and HSP-6::GFP levels were significantly increased
following Mn exposure, reinforcing the fact that this metal
can indeed modulate these chaperones (data not shown).
We also observed that the absence of other chaper-

ones as hsp-3 and chn-1 led to increased Mn-induced
toxicity including compared to wild type woms. hsp-3, is
expressed constitutively and is non-heat inducible; its
mRNA is most abundant at the L1 larval stage [24].
Since mRNA of hsp-3 is found at maximum levels in the
L1 stage [30], it might be very important to protect the
larvae against toxicants. chn-1 is the homologue of the
human CHIP, which is very important for removing de-
fective and misfolded proteins. Springer et al. demon-
strated that CHN-1 forms a protein complex with
PDR1/Parkin, in order to ubiquitylate proteins [51].
Hence, loss of chn-1 already causes issues in worms de-
velopment [52]. Consequently, we decided not to pursue
further investigations into DAergic neuronal vulnerabil-
ity in these two mutants. Interestingly, loss of hsf-1 (heat
shock factor) did not cause significant vulnerability to
Mn exposure (Fig. 1d). This is not surprising because it
has been demonstrated that HSF-1 is not the only tran-
scription factor that activates HSPs expression. In fact, it
has been demonstrated that DAF-16 and SKN-1 can also
modulate the transcription of some HSPs [53, 54].

Conclusions
Taken together, our data suggest that Mn exposure modu-
lates HSP expression, particularly HSP-70, in C. elegans.
Furthermore, loss of hsp-70 prones worms to increased
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protein oxidation and increased DAergic neurodegenera-
tion following Mn exposure. This might be associated
with a blockage of the pink1 expression, which can hypo-
thetically exacerbate mitochondrial dysfunction caused by
Mn exposure since pink-1 expression is normally in-
creased in wild type worms following Mn exposure. Con-
sequently the current study provides evidence for the
neuroprotective role of hsp-70 in Mn-induced neurotox-
icity and a possible protective role of overexpressing hsp-
70 needs to be clarified in future studies.
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