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The East Asian winter monsoon (EAWM) consists of subsystems such as the Siberian high, Aleutian low, East Asian trough, 
low-level northerly wind and high-level East Asian jet stream. It is revealed that the interannual variation of the EAWM-related 
atmospheric circulation has exhibited an obvious weakening since the mid-1980s. During 1956–1980, significant negative corre-
lations between the EAWM and sea surface temperature are observed in the oceans along the east coast of East Asia, accompanied 
by significant positive correlations in the western Warm Pool. However, the significant interannual relationship in the previous 
period is found to have been disrupted during 1986–2010. Further analysis reveals that the Arctic Oscillation after the mid-1980s 
tends to suppress the interannual variability of the EAWM. In addition, it was found that the large-scale warming after the 
mid-1980s is favorable to reduce the land-sea thermal contrast variability on both the interdecadal and interannual time scales. 
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The East Asian winter monsoon (EAWM) is the dominant 
climate feature over East Asia during boreal winter. The 
variation of the EAWM has substantial impacts in many 
Asian countries. For instance, a strong EAWM is often ac-
companied by cold waves and snowstorms in Japan, Korea 
and northern China [1–3] and by persistent cooling of air 
temperatures in South China [4,5]. The severe freezing dis-
aster that struck South China in January 2008 is attributed to 
the EAWM-related circulation anomalies induced by La 
Niña [6]. 

One of the most striking features of the EAWM is the 
cold Siberian high, which occupies almost the entire eastern 
Eurasian continent, with strong northwesterly wind along 
the high’s east flank. A broad East Asian trough is centered 
along the longitudes of Japan at the middle troposphere. 
Additionally, the upper troposphere is characterized by the 
East Asian jet stream, with its maximum located in the 

south of Japan. Many previous studies have indicated that 
the variation of the above-mentioned subsystems of the 
EAWM can reflect the intensity of the EAWM. To our 
knowledge, at least 18 EAWM indices (Table 1) have been 
proposed based on these subsystems, such as pressure [7–13], 
low-level wind [14–17], East Asian jet stream [18,19], East 
Asian trough [20,21] and integrated indices [22–24]. How-
ever, no matter which definition is chosen for the EAWM, 
there is an obvious interdecadal weakening around the mid- 
1980s [24]. Some studies have focused on this interdecadal 
variation of the EAWM since the mid-1980s [12,25]. The 
interdecadal weakening of the EAWM would lead to an 
increase in the winter surface air temperature and a decrease 
in the frequency of cold waves over East Asia [12,24,25]. 
The EAWM is also characterized by interannual variability. 
In recent years, the interannual variability of the EAWM 
and related driving factors (e.g. Arctic Oscillation (AO); El 
Niño-Southern Oscillation (ENSO); Hadley circulation; 
Antarctic Oscillation) has been extensively studied [26–29].  
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Table 1  Description of different definitions of the EAWMa) 

Index Defining variable(s), level, and region Reference 

IXJ Ps
norm (30°–40°N, 100°–120°E)Ps

norm (30°–40°N, 130°–140°E) [7] 

IGQY (Ps110°E–Ps160°E)(10°–60°N) [8] 

ISN (Ps110°E
norm–Ps160°E

norm)(20°–50°N) [9] 

IWW (Ps110°E
norm–Ps160°E

norm)(20°–70°N) [10] 

ICL Ps
norm (30°–55°N, 100°–120°E)Ps

norm(30°–55°N, 150°–170°E) [11] 

IWHG (Ps110°E
norm–Ps160°E

norm)(40°–70°N) [12] 

IGWZ Ps, (40°–60°N, 70°–120°E) [13] 

I*LC v, 1000 hPa, (7.5°–20°N, 107.5°–120°E) [14] 

I*CS v, 1000 hPa, (15°–30°N, 115°–130°E) [15] 

I*CHH v, 10 m, (10°–25°N, 110°–130°E)+(25°–40°N, 120°–140°E) [16] 

IHLK v, 10 m, (15°–40°N, 115°–130°E) [17] 

I*YLK v, 850 hPa, (20°–40°N, 100°–140°E) [18] 

IJL u, 300 hPa, (27.5°–37.5°N, 110°–170°E)(50°–60°N, 80°–140°E) [19] 

I*SL h, 500 hPa, (30°–45°N, 125°–145°E) [20] 

I*CS hNorm, 500 hPa, (35°–40°N, 110°–130°E) [21] 

I*ZLK (Ps160°E–Ps110°E)Norm
(10°–50°N)+(u850–u200)

Norm(0°–10°N, 100°–130°E) [22] 

IYZY Ts, 2m, (20°–40°N, 110°–135°E) 
h, 500 hPa, (25°–40°N, 115°–140°E) 
Ps160°E–Ps110°E, (20°–50°N) 

[23] 

IHW Ps, (40°–60°N, 80°–125°E) 
h, 500 hPa, (25°–45°N, 110°E–145°E) 
u, 300 hPa, (25°–40°N, 80°–180°E)(45°–60°N, 60°–160°E) 

[24] 

a) * Multiplied by 1 with respect to the original definition so that a high index corresponds to a strong EAWMI; norm denotes the normalization; Ps, sea 
level pressure; u, zonal wind; v, meridional wind; h, geopotential height; Ts, surface air temperature.  

Wang and He [30] indicated that the ENSO-EAWM rela-
tionship has weakened after the mid-1970s due to the re-
duced EAWM interannual variability and changes of the 
Indo-Pacific SST interannual variability after the mid- 
1970s. 

Based on these previous studies, we reveal the weaken-
ing of the EAWM interannual variability after the mid- 
1980s in this research. We also try to understand the possi-
ble mechanisms for the reduced EAWM interannual varia-
bility after the mid-1980s compared with the pre-mid-1980s. 

1  Data 

The datasets used in this study include: (1) monthly-mean 
reanalysis data from the National Centers for Environmental 
Prediction/National Center for Atmospheric Research (NCEP/ 
NCAR) [31]; (2) monthly-mean sea surface temperature 
(SST) obtained from the National Oceanic and Atmospheric 
Administration (NOAA) Extend Reconstructed version 3 
analysis data [32]; (3) the North Pacific Oscillation (NPO) 
index [33], which is defined as the principal component of 
the leading mode of the empirical orthogonal function anal-
ysis for the winter SLP over the North Pacific (20°–80°N, 
120°–120°W); and (4) the AO index obtained from the Na-
tional Weather Service Climate Prediction Center (http:// 

www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_
index/ao.shtml). To emphasize the interannual variability, 
the aforementioned variables were detrended. Seasonal mean 
are constructed from monthly mean by averaged the data of 
December, January, and February of 1956–2010. 

2  Weakening of the EAWM interannual  
variability 

Figure 1 shows the 23-year sliding standard deviation of the 
18 existing EAWM indices. It is indicated that no matter 
which system the EAWM index (EAWMI) is defined as, its 
interannual variation always shows an obvious decline in 
recent decades, especially since the mid-1980s. This pattern 
means that, accompanied by the interdecadal weakening of 
the EAWM since the mid-1980s, the interannual variation 
of the EAWM-related circulation also becomes weaker. To 
document the interdecadal change in the interannual varia-
tion of the EAWM, we take two periods based on Figure 1: 
1956–1980 (P1) and 1986–2010 (P2), each period consist-
ing of 25 years.  

Figure 2 presents the differences (P2 minus P1) of inter-
annual variation, which is defined as the standard deviation 
of the EAWM-related circulation between 1956–1980 and 
1986–2010. The figure shows that during the latter period,  
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Figure 1  The 23-year sliding standard deviation of the 18 existing EAWM indices for 1950–2010 winters. 

the interannual variation of the Siberian high is weakened, 
so is the Aleutian low (Figure 2(a)). In the 500 hPa geopo-
tential height field, negative differences larger than 3 are 
located in Siberia, Japan and the northern North Pacific 
(Figure 2(b)). The implication is that the magnitude of the 
interannual variation of the East Asian trough during 1986– 
2010 is less than that in the former period. In the 300 hPa 

zonal wind field over East Asia, the negative values nearly 
cover the entire East Asian jet stream region (Figure 2(c)). 
Additionally, the interannual variation of the 850 hPa me-
ridional wind over East Asia in the latter period is also 
smaller than that during 1956–1980 (Figure 2(d)). The above 
analysis confirms that the interannual variation of the EAWM 
has weakened since the mid-1980s.  
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Figure 2  Differences (P2 minus P1) of standard deviation for the EAWM-related circulation between 1986–2010 (P2) and 1956–1980 (P1). (a) Sea level 
pressure; (b) 500 hPa geopotential height; (c) 300 hPa zonal wind; (d) 850 hPa meridional wind. The regions shaded denote the values exceeding 95% con-
fidence level.  

To uncover whether the interannual relationship experi-
ences noticeable change in the mid-1980s, we examine the 
correlation between the EAWMI [24] (defined as the mean 
geopotential height at 500 hPa in the domain of (25°–45°N, 
110°–145°E)) and SST anomalies (SSTA) in the western 
North Pacific for 1956–1980 and 1986–2010, respectively 
(Figure 3). It is found that as the interannual variation of the 
EAWM becomes weak, the correlation pattern shows re-
markable differences between the two periods. In 1956– 
1980, significant negative correlations were located in the 
oceans adjacent to East Asia, while positive correlations 
occurred in the Warm Pool (Figure 3(a)). These relation-
ships between the EAWM and the western North Pacific 
SSTA have been revealed by many previous studies [34,35]. 
However, in 1986–2010, the negative correlations become 

insignificant and the range of significant positive correla-
tions in the Warm Pool is considerably smaller. Apparently, 
the interannual relationship between the EAWM and SSTA 
in the western North Pacific has weakened since the mid- 
1980s. 

To validate the evolution of the interannual relationship 
between the EAWM and the western North Pacific SSTA, 
we introduce three SSTA indices, which are defined as ar-
ea-averaged SSTA in the South China Sea (5°–25°N, 
105°–120°E, SCI), the Kuroshio Current region (10°–30°N, 
120°–130°E, KCI) and the Warm Pool (0°–16°N, 140°– 
160°E, WPI). Figure 4 displays the 23-year sliding correla-
tion between the EAWMI and the three SSTA indices. Con-
sistent with Figure 3, the EAWMI and the three indices 
show significant negative or positive correlations before the  

 

Figure 3  Correlation coefficients between EAWMI and winter SSTA in the western North Pacific during (a) 1956–1980 and (b) 1986–2010, respectively. 
The regions shaded denote the values exceeding 95% confidence level. 
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Figure 4  The 23-year sliding correlation of EAWMI with area-averaged 
SSTA over (a) South China Sea (5°–25°N, 105°–120°E), (b) Kuroshio Current 
(10°–30°N, 120°–130°E), and (c) Warm Pool (0°–16°N, 140°–160°E). The 
dashed horizontal lines denote the 95% and 99% confidence levels. 

1980s, followed by an obvious weakening of correlations 
around the mid-1980s. Further evidence comes from the 
specific correlation coefficient (CC) between the EAWMI 
and the three indices in the different periods. During 1956– 
2010, the correlation coefficients (CCs) of the EAWMI with 
SCI, KCI and WPI are 0.45, 0.46 and 0.34, respectively. 
All the CCs can exceed the 99% confidence level. Therefore, 
it appears that the correlations between the EAWM and the 
western North Pacific SSTA are very close and stable. 
However, if we investigate the correlations in different pe-
riods, the situation is much different. In 1956–1980, for 
example, the EAWM is well concurrent with the western 
North Pacific SSTA and the CCs of EAWMI with SCI, KCI 
and WPI are 0.69, 0.75 and 0.63, respectively. However, 
the CCs decline substantially to 0.16, 0.01 and 0.29,   

respectively, in 1986–2010. 

3  Discussion  

The identified changes in the interannual variability of the 
EAWM raise two questions: (1) What caused the weakening 
of the EAWM interannual variation? (2) Why is the inter-
annual relationship between the EAWM and the western 
North Pacific SSTA significant in 1956–1980 but insignifi-
cant in 1986–2010? 

The answer to the first question may be related to AO. 
As revealed by many previous studies, there is a significant 
out-of-phase relationship between the EAWM and the AO 
[36–38]. The AO maintains a mainly positive status since 
the late 1980s [39], which is conducive to a weak EAWM. 
Furthermore, the correlations between AO index and EAWMI 
and the NPO index become more significant in the recent 
three decades (Figure 5). These observations indicate that 
the winter AO events in 1986–2010 possibly exert an inhib-
iting effect on the development of the EAWM. However, 
because the interannual variation of the Siberian high, 
which plays an important role in connecting the AO and the 
EAWM [26], has weakened in recent decades (Figure 1(g)), 
the interannual variation of the EAWM is therefore sup-
pressed. 

Another possible answer to the first question may be the  

 

Figure 5  The 23-year sliding correlation between the AO index and 
EAWMI (a), NPO (b) indexes. The dashed horizontal lines denote the 95% 
and 99% confidence levels. 
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global warming in recent decades. Within the context of 
global warming, both the continents and oceans have a 
warmer trend (not shown). Due to the enormous heat con-
tent of the oceans, the magnitude of the interannual increase 
of winter surface temperature over the western North Pacif-
ic is less than that over the East Asian continent. Conse-
quently, the land-sea thermal gradient is weakened, leading 
to the weakened EAWM interannual variability. To identify 
the weakened land-sea thermal gradient, we introduce a 
thermal contrast index (THCI), which is defined as the dif-
ference between the area-averaged skin temperature over 
the East Asian continent (20°–40°N, 105°–130°E) and the 
area-averaged SSTA over the western North Pacific 
(10°–20°N, 105°–120°E and 20°–36°N, 120°–150°E). As 
shown in Figure 6 (thick line), both the interannual variation 
(thick line) and the 23-year sliding standard deviation of the 
THCI (solid cycle) show obvious weakening since the 
mid-1980s. It is indicated that the interannual variability of 
the land-sea thermal gradient between the East Asian conti-
nent and the western North Pacific does become smaller in 
recent decades, which likely contributes to the weakening of 
the interannual variation of the EAWM. 

Figure 7 shows the correlations between the EAWMI and 
vorticity at 10 m. During 1956–1980, significant negative 
correlations are located over East China and its eastern 
neighboring oceans and over the western Warm Pool, ac-
companied by significant positive correlations in east of 
Philippines (Figure 7(a)). This result suggests that north-
easterly and southwesterly winds prevail along the east 
coast of East China and the western Warm Pool when the 
EAWM is stronger than normal. During 1986–2010, how-
ever, the connection between the EAWM and the vorticity 
over East China and east of Philippines is disrupted (Figure 
7(b)), which is likely responsible for the weakened interan-
nual relationship between the EAWM and SSTA in the 
western North Pacific. 

4  Conclusion 

This study indicates that most of the existing EAWM indices  

 
Figure 6  The interannual variation of THCI (thick solid line) during 
1950–2010; and the standard deviation of THCI (solid cycle) calculated 
within a 23-year window that moves year by year from 1950–2010. 

 

Figure 7  Correlation coefficients between EAWMI and vorticity at 10 m 
during (a) 1956–1980 and (b) 1986–2010 winters, respectively. The regions 
shaded denote the values exceeding 95% confidence level. 

show an obvious weakening of interannual variability 
around the mid-1980s, concurrent with the interdecadal 
change of the EAWM. There are also evident changes in the 
EAWM-related atmospheric circulation. Compared with the 
situation during 1956–1980, the interannual variability of 
the Siberian high and the Aleutian low during 1986–2010 is 
much weaker. Additionally, the fluctuations of the East 
Asian trough, East Asian jet stream and meridional wind at 
850-hPa during 1986–2010 are smaller on the interannual 
time scale than those in the former period. The above ob-
servational facts suggest that the interannual variability of 
the EAWM has weakened in the recent twenty more dec-
ades. It is also revealed that the interannual relationship 
between the EAWM and western North Pacific SSTA has 
weakened since the 1980s. During 1956–1980, significant 
negative correlations are found in regions stretching from 
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the Japan Sea to the South China Sea and adjacent oceans, 
accompanied by significant positive correlations in the 
western Warm Pool. However, the magnitude of the corre-
lations in these regions decreased substantially during 1986– 
2010. 

Further analysis indicates that the interannual relation-
ship between the AO and the EAWM has strengthened in 
recent three decades. Given that the AO mainly maintains a 
positive status in winter since the mid-1980s, the develop-
ment of the EAWM may be significantly suppressed. Be-
cause the interannual variability of the Siberian high, which 
plays an important role in connecting the AO and the 
EAWM [26], has weakened since the mid-1980s, the AO is 
likely to be responsible for the weakening of the EAWM 
interannual variability. Global warming may be another 
possible factor responsible for the identified changes. Within 
the context of global warming, the magnitude of the warm-
ing trend over the East Asian continent is greater than that 
over the western North Pacific, leading to the weakening of 
the land-sea thermal contrast variability both on the inter-
decadal and interannual time scales. It should be pointed out 
that similar results would be obtained if we use the inte-
grated EAWM index defined by He and Wang [24]. Future 
studies could focus on the long-term variability of the 
EAWM-associated extreme winter climate [40] and its 
connection with the Arctic climate change.  
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