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Abstract

Background: Circulating microRNAs (c-miRNAs) have be identified in saliva, urine and blood, which has led to
increasing interest in their development as biomarkers for diverse diseases including cancers. One of the key
advantages of c-miRNAs over other biomarkers is the ability to be amplified and quantified by quantitative PCR
(qPCR). However, at phlebotomy when whole blood is dispensed into heparinized tubes, residual levels of the
anti-coagulant lithium heparin may remain in the plasma and hence with RNA isolated from the plasma. This can
confound the detection of c-miRNAs by qPCR because it inhibits reverse transcriptase (RT). Here we present a
procedure, modified from earlier techniques, to detect c-miRNAs in plasma that improves sensitivity and
streamlines performance.

Findings: Treatment of total RNA isolated from human blood plasma with Bacteroides heparinase I during reverse
transcription at 37°C for one hour improved sensitivity and performance of the qPCR. This is in comparison to no
treatment or treatment of the RNA prior to RT, which is the current suggested method and exposes plasma to
Flavobacterium heparinum heparinase I for up to 2 hours before RT. This modest alteration improved qPCR
performance and resulted in lowered threshold cycles (Ct) for detection of the target sequence, candidate c-miRNA
biomarkers, and controls. It also reduced the expense and number of processing steps, shortening the duration of
the assay and minimizing exposure of RNA to elevated temperatures.

Conclusion: Incorporating Bacteroides heparinase I treatment into conventional RT protocols targeting c-miRNA in
plasma can be expected to expedite the discovery of biomarkers.
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Findings
Non-coding RNAs, including microRNAs (miRNAs), are
increasingly the target of biomarker development [1].
These molecules play a central role in gene expression
regulation, in particular at the posttranscriptional and
homeostatic levels [2,3], and have been detected in speci-
men matrices used for cancer biomarker development, in-
cluding solid tissues, urine, sera, and blood. [4-6]. Indeed,
miRNAs have been developed as informative markers for
breast [6], colorectal [7] and ovarian cancers [8,9]. As bio-
markers, circulating miRNAs (c-miRNAs) may be prefera-
ble to miRNAs located in solid tumor tissues due to their
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accessibility, stability during storage, and the increased
specificity and sensitivity of multiplexed assays i.e., ap-
proaches that allow the analysis of panels of c-miRNAs as-
sembled together to identify miRNA signatures. Discovery
of c-miRNAs biomarkers frequently begins with high
throughput approaches such as microarrays or small
RNA-Seq with subsequent verification by quantitative re-
verse transcription PCR (qPCR). The qPCR represents a
confirmatory step that allows either absolute or relative
quantitation of miRNAs expression, by integrating a
standard curve or a reference control gene in the analysis,
respectively [10].
In this short report we present a modified method for

qPCR detection of c-miRNAs in plasma from human
blood, collected using an anticoagulant, such as lithium
heparin. Whereas most macromolecular constituents of
plasma and serum are the same, and both are devoid of
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Figure 1 (See legend on next page.)
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Figure 1 Comparison of qRT-PCR controls obtained from RNA with and without treatment with Bacteroides heparinase I. Panel A:
Workflow of conditions tested for serum and plasma. Serum under standard conditions and plasma treated with Bacteroides heparinase I during
the reverse transcription (RT) of RNA to cDNA yielded the most consistent signals. The colors indicate the level of performance – poor (red); fair
(yellow); good (green). Panel B. Comparison of Ct values for qPCR controls obtained from RNA with and without treatment with Bacteroides
heparinase I. Positive PCR Control (PPC) denoted a positive qPCR control and miRTC denotes reverse transcriptase controls. The plasma was
spiked with C. elegans miR-39. Results (duplicate readings) for replicate samples for each treatment are shown. Optimization steps (Experiments 1
and 2) were carried out with plasma donated by the same persons. [Selected treatment conditions were confirmed using additional plasma
(Figure 3, Additional file 1: Figure S1).] Panels C-E, Threshold cycles (Ct ) for qPCR controls with and without heparinase I. miRTC (panel C), PPC
(D), and miR-cel-39 (E) curves of Relative Fluorescent Units RFU (Y-axis) versus cycles (X-axis) for (left to right): 1) 6 U Bacteroides heparinase I
during RT, 2) 6 U Bacteroides heparinase I treatment prior to RT, 3) 0.6 U Bacteroides heparinase I before RT, and 4) no treatment in duplicate (not visible
along X-axis in Panel C, E). Panels F-H: miRTC curves of RFU (Y-axis) versus cycle time (X-axis) for (left to right): 1) 12 U, 6 μl; 2) 12 U, 3 μl; 3) 6 U, 3 μl;
and 4) 0.6 U, 3 μl for Units of Bacteroides heparinase I and volume of RNA, respectively for miRTC (panel F), PPC (G) and miR-cel-39 (H). Condition four
yielded no curve for miR-cel-39 in panel H (presented on X-axis).
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platelets, red and white blood cells, sera and plasma can
be used interchangeably in serological analysis targeting
antibodies or antigens [11]. However, plasma - unlike
serum - retains the coagulation cascade clotting factors
and fibrinogen, and problematically, exogenous anticoagu-
lant(s) that block the blood from clotting. This presence
of extraneous anticoagulants can interfere with the qPCR,
including reverse transcription of the RNA to cDNA and
amplification of the target cDNA [12-14]. Here we present
an alternative to conventional approaches to overcome
the inhibition from residual heparin in qPCR to detect
c-miRNAs in plasma. These modifications to previously
reported methods not only improved the qPCR but also
reduced costs and streamlined the analysis by shortening
processing time, and, thereby reduced the likelihood of
RNA degradation.
Duplicate RT reactions were performed along with du-

plicate qPCRs for all the samples. The findings were com-
pared with informative reports from others dealing with
detection of c-miRNAs in sera. In ongoing studies, we
plan to employ this modified protocol in discovery and
validation of c-miRNAs as biomarkers for liver fluke
induced cholangiocarcinoma (CCA) [15], with plasma
collected in a longitudinal study and biobanked at -80°C.
RNA was recovered from plasma (250 μl) using the
QIAamp circulating nucleic acids kit (Qiagen) following
the manufacturer’s standard protocol. In most cases, the
RNA was reverse transcribed using the miScript II RT Kit
(Qiagen) in HiSpec buffer and cDNA screened on custom
miScript miRNA PCR Arrays (SA Biosciences). qPCR was
performed with SYBR Green PCR Master Mix (miScript,
Qiagen), a thermocycler (iCycler, Bio-Rad, Hercules, CA)
fitted with real time detector (Bio-Rad iQ5), and the fol-
lowing thermal cycling: activation at 95°C, 15 min; 40 cycles
of denaturation, 15 sec, 94°C, annealing, 30 sec 55°C,
extension, 30 sec, 70°C); melting curve analysis, 81 cycles
of 55°C, 20 sec dwell.
In contrast to studies using sera, miRNAs were not de-

tectable from plasma (Figure 1A and B), including miRTC
controls (miRTC: Reverse transcriptase qPCR; Qiagen) at
45 thermal cycles while PPC (Positive qPCR Controls,
Qiagen) Ct values ranged from 18 and 20. To address this
problem, we extracted RNA using the miRNeasy serum/
blood plasma kit (Qiagen), which uses phenol and chloro-
form, and as a positive control, spiked plasma with C. ele-
gans miR-39 mimic (Qiagen) [16]. The yield of RNA
derived from plasma in both the QIAamp and miRNAeasy
methods was 8-12 ng/μl, and was of similar quality to
that we have recovered from sera [17], although RNA
from plasma exhibited lower 260/230 ratios, (<0.7)
with the miRNeasy kit. However, when RNA isolated
using miRNeasy was subjected to qPCR, the Ct values
did not improve, including for control C. elegans
miR-39 which was employed to spike plasma (Figure 1A
and B). This suggested interference, likely during reverse
transcription; notably, the matrix of the original stored
specimens - plasma versus serum - represented the only
apparent difference from the previous analysis [17]. In
reviewing the literature [12,13,18,19], a modified protocol
was outlined for testing to overcome the residual heparin
interference.
The first modification included in the approach for pro-

cessing plasma (Experiment 1, Figure 1A and B) was re-
placement of Flavobacterium heparinum heparinase I with
Bacteroides heparinase I (New England BioLabs) during
RT (Experiment 1, Figure 1A and B). Bacteroides hepari-
nase I cleaves 2-O-sulfated glucuronic acid residues in hep-
arin in addition to the glycosidic bond between N-sulfated
hexosamines and 2-O-sulfated iduronic acid residues
cleaved by heparinase of F. heparinum [18,19]. Three reac-
tion conditions were compared: (1) pre-treatment of RNA
with B. heparinase I; (2) co-treatment of RNA during RT
with B. heparinase I; and (3) pre-amplification. For pre-
treatment of the RNA before RT [12,13], 0.6 U and 6.0 U
Bacteroides heparinase I were incubated with 3 μl RNA for
2 h at 25°C then subsequently reverse transcribed. For co-
treatment, the miScript II RT reaction (reaction volume,
20 μl) included 6 U Bacteroides heparinase I, 4 μl HiSpec
5× buffer, 2 μl 10× nucleic acids, 2 μl reverse transcriptase
mix, and 3 μl RNA. For pre-amplification, the RT reaction



Figure 2 Summary of advantages of the new approach concerning treatment of plasma with Bacteroides heparinase I before
quantitative to detect c-miRNAs in plasma that improves sensitivity and streamlines performance.
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was carried out according to the manufacturer’s protocol
with the miScript Pre-AMP PCR Kit (Qiagen) for 12 cy-
cles. In all cases, reverse transcription was carried out at
37°C for 1 h after which the RT was inactivated at 95°C,
5 min. The reaction products were diluted to 200 μl with
water, stored on wet ice or at -80°C and analyzed by qPCR
on miScript miRNA QA PCR Arrays (SA Biosciences).
Minimal or no improvement was seen with the pre-
amplification kit for the miRTC controls. By contrast, in-
cubation with Bacteroides heparinase I before and during
RT resulted in detectable miRTC values, with optimal
amplification observed after inclusion of 6 U Bacteroides
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Figure 3 Threshold cycles for qPCR targeting cholangiocarcinoma ass
of miRNAs based on their Ct values (not including the controls, PPC and RT
treated with Bacteroides heparinase I (no treatment) and with Bacteroides h
heparinase I during RT: miRTC, Ct ~28 (Figure 1B and C),
PPC (Figure 1B and D), and miR-39, Ct ~26.5 (Figure 1B
and E).
Because it eliminated one reaction step and thereby re-

duced exposure time of the RNA to elevated temperatures,
co-treatment or inclusion of Bacteroides heparinase I during
RT was examined, aiming for further improvement. Four
conditions were tested: 0.6 U, 6 U and 12 U of Bacteroides
heparinase I, with increasing quantities of RNA from 3 to
6 μl (Experiment 2; Figure 1A and B). Here Ct values
were inversely related to the concentration of Bacteroides
heparinase I (Figure 1B). Moreover, using 12 U Bacteroides
35-45 ND (>45)

RNA (no treatment)

RNA + Heparinase(RT)

ociated miRNAs in a larger panel of plasma samples. Percentage
C) from 19 samples of total RNAs isolated from plasma and not
eparinase I during RT.
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heparinase I with 3 μl and 6 μl RNA resulted in miRTC
values that were ≤ 5 cycles less than the positive qPCR con-
trols (PPC) (Figure 1B, F, G and H). Last, to determine po-
tentially negative influences of the RNA purification
(QIAamp versus miRNeasy) on residual lithium heparin,
RNA from QIAamp purifications (3 μl, 6 μl RNA) was also
tested. In this case, QIAamp purifications were likely to
have included more residual heparin since the plasma was
not subjected to extraction in phenol-chloroform, and was
in turn exposed to 12 U of Bacteroides heparinase
I during RT. This condition yielded similar signals to
matched samples treated as above (Figure 1B). To sum-
marize, treatment with 12 U of Bacteroides heparinase I
during RT at 37°C with 3 μl or 6 μl RNA delivered strong,
positive and reproducible qPCR signals, markedly im-
proving outcomes over no treatment or strategies similar
to methods reported previously [12,13]. Additionally,
co-treatment with Bacteroides heparinase I during RT
offers the following advantages: 1) streamlines the proto-
col, without additional steps and reducing process times
compared to earlier methods; 2) limits exposure of RNA to
deleterious conditions including elevated temperatures for
prolonged periods; and 3) improves sensitivity of qPCR
compared to no-treatment or other approaches (Figure 2).
To confirm that this modified method for Bacteroides

heparinase I improved sensitivity not only with assay and
reaction controls, i.e., PPC, miRTC, miR-39, but could also
be extrapolated to biomarker discovery, we examined the
Ct results from a custom miScript miRNA PCR Array (SA
Biosciences) across 19 discrete plasma samples. The arrays
included 94 miRNA (mature, human) primers that provide
potential signatures for cholangiocarcinoma [20]. We used
12 U Bacteroides heparinase I during RT and compared
this with no-treatment of RNA. Without treatment, miR-
NAs remained undetected below 45 cycles on the custom
miRNA array. By contrast, inclusion of Bacteroides he-
parinase I during RT significantly improved the sensiti-
vity of detection: ~50% of the target miRNAs were detected
at ≤ 35 cycles (Figure 3). Using this method, RNA from
plasma was reproducibility reverse transcribed and
amplified despite the presence of residual heparin in
the plasma. Further, the miRTC and the ce-miR-39
spiked controls for 19 plasma samples from our investi-
gation of biomarkers for CCA [20] are presented in
Additional file 1: Figure S1. To conclude, the method
presented here may be applicable to the analysis of
miRNAs derived from blood, and should be especially
advantageous for plasma from heparinized blood and/or
where sera are unavailable.
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Additional file

Additional file 1: Figure S1. Box-and-whisker plot of threshold cycles
(main axis) for miRTC and C. elegansmiR-39 from 19 samples of threshold
cycles exposed to Bacteroides heparinase I during the reverse transcription.
Matched samples not treated with heparinase I failed to yield measurable Ct
(>45), except for PPC.
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