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Abstract This contribution addresses the problem of optimal control for a class of
hybrid systems, where discrete transitions are accompanied by instantaneous changes
in the continuous state variables, and where these changes can be considered as
control variables. Based on a variational approach, necessary conditions of opti-
mality are first established. The problem is then cast as a parametric optimization
problem for which gradient information is derived. Finally, we discuss assumptions
that guarantee convergence of a conceptual algorithm to a stationary solution. A
brief discussion on the main implementation issues is also included.

Keywords Hybrid systems · Optimization · Gradient methods · State jump ·
Switching · Parameter optimization

1 Introduction

For a long time, discrete-continuous dynamical interactions have been recognized as
a major challenge in the process control area. The emergence of a hybrid systems
modelling framework has provided a new perspective on some important problems.
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The ability to operate hybrid systems in an optimal way remains a challenging task.
Indeed, for the general setting of hybrid systems, one has to deal not only with the
infinite dimensional optimization problems related to the continuous dynamics, but
also with a potential combinatorial explosion related to the discrete part.

In this context and with focus on particular classes, many schemes have been
proposed to tackle the problem. Some are based on a newly elaborated condition
of optimality (see e.g., Shaikh and Caines 2003, 2007; Rantzer 2006), others are more
related to semi-classical approaches, (see e.g., Attia et al. 2005; Alamir and Attia
2004; Hedlund and Rantzer 2002; Xu and Antsaklis 2003a). In the last few years,
there has been a revived interest in gradient based methods, (see e.g., Lu et al.
1993; Cassandras et al. 1998; Azhmyakov and Raisch 2006; Egerstedt et al. 2006;
Axelsson et al. 2006). This fact is due to their intuitive interpretation, reliability and
the existence of well established convergence results. It is the aim of this contribution
to extend this approach to a particular class of hybrid systems with autonomous
switching. This class is characterized by the fact that the discrete transitions are
accompanied by instantaneous changes (jumps) in the continuous states and that
these state jumps can be considered as control variables. Discrete transitions, or
switches, are called autonomous if they cannot be triggered by a discrete control
command but depend on the evolution of the continuous states. Hybrid systems with
jumps in the continuous states are after referred to as impulsive hybrid systems. The
problem of interest here is formulated as a sequential problem i.e., for a particular
execution the time axis is partitioned into subintervals, in each interval, the dynamics
are characterized by a set of ODE’s, with transitions being triggered internally
(autonomous switches). This is the approach that has been considered since the initial
formulation of the corresponding optimal control problem (Clarke and Vinter 1989)
and can be seen as a natural way to tackle the problem. The class of impulsive hybrid
systems discussed in this paper arises most frequently in the area of process control
and may be a result of adding and processing material, (see e.g., Alamir 2006, for
a typical benchmark problem). In particular, we have been motivated by a specific
chemical process control application, namely a preferential crystallization process
used to separate enantiomers (see Elsner et al. 2005 for the physical aspects and
Raisch et al. 2005 for more details on the control problems). This process is often
operated in cyclic batch mode, where after each cycle, material to be separated is
added. This represents an instantaneous change of the system state. The amount of
added material is a degree of freedom and can be considered as an additional control
input.

Hybrid systems with autonomous switching and non-controlled state jumps have
been considered in Xu and Antsaklis (2003b). The objective is to find the sequence of
jump instants such that a cost functional is minimized. For that purpose, the authors
develop a second order scheme that is further specialized to linear systems in Xu
and Antsaklis (2003c). Recently, Verriest and coworkers (Verriest et al. 2004) have
considered another class of hybrid systems. This consists of systems with controlled
switching where some delay is present on the states and where both the jump
magnitudes and instants of switching are considered as control variables. Based on
variational arguments, necessary conditions of optimality are derived and used in
a first order scheme, see Verriest et al. (2005) for an epidemic control application.
Another contribution by the same authors is the class of hybrid systems introduced
in Verriest (2006). The class includes systems with variable state space dimensions
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where the transitions are time triggered and can thus be viewed as a general class
of switched systems. The variation of the the state space dimension is captured by
introducing fictitious reset maps. The tools developed can be as well applied to the
case where the reset maps are real as exemplified in Mehta et al. (2007) where an
optimal control problem is formulated and solved using a variational approach. In
this contribution, we consider a related problem where no delay is present on the
state and where the switching is autonomous.

The paper is organized as follows: in Section 2 the problem is stated formally.
Section 3 is devoted to the statement of the necessary conditions of optimality. In
Section 4, the gradient formulas are derived and a conceptual algorithm together with
some convergence properties is stated. Finally, some conclusions and suggestions for
future work are given in Section 5.

2 Problem formulation

We consider the following class of impulsive hybrid systems with autonomous
switching (see e.g., Simic et al. 2009, for the general modelling framework).

Definition 1 An impulsive hybrid system with autonomous switching is a collection

H = (Q, E , X , F , G , R)

where

– Q = {q0, q1 . . . , qQ} is a finite set of locations
– E ⊆ Q × Q is a set of edges
– X = {Xq}q∈Q is a collection of state spaces where, for all q ∈ Q, Xq is an open

subset of R
n.

– F = { fq}q∈Q is a collection of vector fields. For all q ∈ Q, fq : Xq → R
n

– G = {Ge}e∈E is a collection of guards. For all possible transitions e = (qi, q j) ∈ E ,
Ge ⊂ Xqi

– R = {Re}e∈E is a collection of reset maps. For all e = (qi, q j) ∈ E , Re : Ge →
2Xq j where 2Xq j denotes the power set of Xq j

We assume that the vector fields fq are smooth enough (see assumptions below),
and that the sets Ge are nonempty for all e ∈ E . An execution is as follows: starting
from an initial condition (x0, qi0) the continuous state evolves according to the
autonomous differential equations

ẋ(t) = fqi0
(x(t)) (1)

The discrete state q(·) = qi0 remains constant as long as the trajectory does not reach
a guard G(qi0 ,qi1 ). In our set up, once this guard is reached, q(·) will switch from qi0 to
qi1 ,1 at the same time the continuous state gets reset to some value according to the

1Note that this is different from the standard hybrid automaton framework, where switches are
enforced by the continuous state violating invariants.
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map R(qi0 ,qi1 ) and the whole process is repeated. Next, we suppose that the guards
can be described by smooth (n − 1) dimensional surfaces in R

n

Ge = {x | Se(x) = 0}, for all e ∈ E (2)

and that the reset maps are linear maps of the form, for all e ∈ E ,

R(qik−1 ,qik )(x) = x + θk (3)

with θk belonging to � a compact subset of R
n. In our setup, the variables θk are

degrees of freedom that can be selected by the controller.
The dynamic optimization problem of interest can now be formulated as follows:

Problem 1 Under a fixed switching sequence of locations {qik}k, solve the following
optimization problem

min
θ

J[θ ] :=
K∑

k=0

∫ tk+1

tk
L(x(τ ))dτ (4)

such that

ẋ(t) = fq(t)(x(t)) (5)

q(t) = qik , t ∈ [tk, tk+1) (6)

x(t+0 ) = x(t0) + θ0 (7)

x
(
t+k+1

) = x(tk+1) + θk+1, S(qik ,qik+1 )(x(tk+1)) = 0 (8)

ẋ(t) = fqiK
(x(t)), t ∈ [tK, tK+1] (9)

with x(t0) = x0, K ∈ Z
+ is the total number of switches, the vector θ denotes the

n × (K + 1) dimensional vector
(
θ ′

0 . . . θ ′
K

)′, L : R
n → R

+ is a supplied cost function,
t0 and tK+1 = T are both finite and given.

Remark 1 Note that in the problem formulation, the sequence of locations is fixed.
Although the sequence of locations that the model defined in Definition 1 will
exhibit, is not fixed à priori and will depend on the chosen control inputs (para-
meters), we concentrate on finding the optimal parameters for a given sequence of
locations. This implies that the solution developed in the reminder of this paper will
preserve the specified sequence of locations. Additionally, a dynamic programming
or a heuristic search approach can be added to generate possible sequences, but this is
beyond the scope of the paper. Note also that the switching instants are not defined
à priori. This follows from the degree of freedom allowed on the state jumps, i.e.,
variation of these quantities induces variations of the switching instants, see Fig. 1
for an example of an execution within the framework of Problem 1.

We assume the following to hold:

A1 For all qi in Q, Xqi = R
n

A2 For all qi in Q, the functions fqi are continuously differentiable
A3 L is a twice continuously differentiable function
A4 There exists a constant M such that ‖ fqi(x)‖ < M for all x ∈ Xqi and qi ∈ Q
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Fig. 1 An example of
execution with K = 4 switches

Remark 2 Since the number of switchings and the sequence of locations are fixed,
the problem is well posed. Indeed, sliding and Zeno behaviors are ruled out.

Problem 1 could be seen as a collection of initial value optimization subproblems.
Using classical approaches, the subproblems might be solved separately but nothing
guarantees that the trajectory obtained by concatenation of the different solutions is
the optimal one. The link between the different subproblems is provided by a set of
necessary conditions stated in the next section.

3 Necessary conditions of optimality

In this section, necessary conditions of optimality of a solution to Problem 1 are
derived. The arguments used are of variational type (see e.g., Gelfand and Fomin
(1963) and Bryson and Ho (1975) for basic material on the Euler-Lagrange theory).
Let us first define the Hamiltonian associated to location qik as

Hqik
(x, λ) = L(x) + λ′ fqik

(x) (10)

where λ denotes the adjoint variables. We then have the following result

Theorem 1 If θ∗ is an interior optimal solution to Problem 1 under Assumptions
A1–A4 and x∗(t) is its corresponding state trajectory for t ∈ [t0, T], then there exists
a nontrivial adjoint λ∗(t) and multipliers π∗

k such that the following equations hold

λ̇∗(t)′ = −∇x H∗
qik

, t ∈ [tk, tk+1) (11)

At the switching instant tk+1, the following jump conditions are satisfied

λ∗|t+k+1
= λ∗|tk+1 − π∗

k ∇xS′(
qik ,qik+1

)
∣∣∣
tk+1

(12)

H∗
qik+1

|t+k+1
= H∗

qik
|tk+1 (13)

for k = 0, . . . K − 1, with

λ∗|tK+1 = 0 (14)
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and

∇θ J[θ∗] = 0 (15)

Proof The augmented Lagrangian can be written as

L =
K∑

k=0

[∫ tk+1

tk

(
Hqik

(x, λ) − λ′ ẋ
)

dτ + πkS(qik ,qik+1 )|tk+1

]
(16)

where for simplicity time dependence is dropped. The increment of L with respect
to x can be written as

�xL = L (x + h) − L (x) (17)

where h is a continuously differentiable function of time. Development of the these
terms lead to the following

�xL =
K∑

k=0

[ ∫ tk+1+dtk+1

tk+dtk

(
Hqik

(x + h, λ) − λ′
(

ẋ + ḣ
) )

dτ

−
∫ tk+1

tk

(
Hqik

(x, λ) − λ′ ẋ
)

dτ + πk�xS(qik ,qik+1 )|tk+1)

]
(18)

with dtk a small time increment (the existence of which follows from the smoothness
assumptions). After integration by part of the second term under the integral sign
and rearrangement, Eq. 18 can be written as

�xL =
K∑

k=0

[ ∫ tk+1

tk

(
Hqik

(x + h, λ) − Hqik
(x, λ) + λ̇′h

)
dτ

−
(

Hqik
(x, λ) − λ′ ẋ

)
|t+k dtk +

(
Hqik

(x, λ) − λ′ ẋ
)

|t+k+1
dtk+1

− λ′h|tk+1

t+k
+ πk�xS(qik ,qik+1 )|tik+1

]
(19)

Now, using Taylor’s theorem, we obtain (up to first order) the following expression

�xL =
K∑

k=0

[ ∫ tk+1

tk

(
∇x Hqik

+ λ̇′
)

hdτ −
(

Hqik
(x, λ) − λ′ ẋ

)
|t+k dtk

+
(

Hqik
(x, λ) − λ′ ẋ

)
|tk+1 dtk+1 − λ′h|tk+1

t+k
+ πk

∂S(qik ,qik+1 )

∂x

∣∣∣∣
tk+1

dx(tk+1)

]

(20)

where dx(tk+1) is the exact state variation at the instant tk+1. Following simple
geometrical arguments, it can be approximated to the first order by the following
expression

dx(tk+1) = h(tk+1) + ẋ(tk+1)dtk+1 (21)
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Using Eq. 21, the first order variation of the augmented Lagrangian L can be writ-
ten as

δxL =
K∑

k=0

[ ∫ tk+1

tk

(
∇x Hqik

+ λ̇′
)

hdτ −
(

Hqik
|tk+1 dtk+1 − Hqik

|t+k dtk
)

+ λ|t+k dx(tk) +
(

πk∇xS(qik ,qik+1 )

∣∣∣
tk+1

− λ|tk+1

)
dx(tk+1)

]
(22)

Along the optimal pair (x∗, θ∗) the following is satisfied

δxL = 0 (23)

After rearrangement and using the fact that the optimal problem is without terminal
constraints but with fixed initial and final time, the desired result (11)–(14) follows.
The necessity of Eq. 15 can be shown analogously. 
�

Remark 3 Instead of affine reset maps, it is straightforward to derive necessary
conditions of optimality for the case of a nonlinear parametrized map of the form
x(t+k ) = ψ(x(tk), θ), provided that some smoothness requirements are satisfied. In
this case, the gradient of ψ would have appeared in the above conditions. On the
other hand, the gradient formulas obtained next will be much harder to derive for
this case, which will therefore not be pursued further in this contribution.

Remark 4 The proof techniques used here are of the variational type meaning that
the derived necessary conditions of optimality are valid for smooth hybrid impulsive
systems under the aforementioned assumptions. The characterized minimum is of
the weak type in contrast to a strong minimum that has been recently derived for
other classes of hybrid systems (see e.g., Sussmann 1999; Shaikh and Caines 2007).

Remark 5 The conditions stated above characterize a local minimum in the sense
that the optimal trajectory is compared only to trajectories that have the same
switching sequence of locations (Fig. 2).

Fig. 2 A figure showing how
the optimal solution to
problem 1, under Assumptions
A1–A4, looks like. The
implementable Algorithm 1 in
Section 4 shows how to find
the optimal parameters, and
thus the optimal trajectory,
iteratively by solving a set of
initial value problems
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4 A gradient based approach

The basic idea is to cast Problem 1 into a parameter optimization framework and
then to compute, as required by the necessary conditions of optimality, the gradient
of the cost functional. Gradient descent techniques can then be used to compute
the optimal parameter values. Before the gradient formula is stated in a theorem, a
lemma concerning the sensitivity of the states is given.

Lemma 1 The sensitivity �θk
qik

x(·) of the state trajectory x(·), corresponding to the
dynamics (5)–(9) under Assumptions A1–A4, w.r.t. the vectors θk can be computed
as a solution to the following variational equation

�θk
qik

ẋ(t) = ∂ fqik

∂x
�θk

qik
x(t), t ∈ [tk, tk+1) (24)

under the following initial conditions

�θ0
qi0

x(t0) = In×n (25)

�θk+1
qik+1

x
(
t+k+1

) = �θk
qik

x(tk+1) + In×n +
(

fqik
(x(tk+1)) − fqik+1

(
x

(
t+k+1

)))
�θk+1 tk+1

(26)

with

�θk+1 tk+1 = −
∇xS(qik ,qik+1 )

∣∣∣
tk+1

∇xS(qik ,qik+1 )

∣∣∣
tk+1

fqik
(x(tk+1))

�θk
qik

x(tk+1) (27)

Proof See Appendix 1. 
�

Equations 24–27 allow for the computation of the sensitivity trajectories. The first
three Eq. 24–26 reflect the sensitivity of the states with respect to the parameters
θ and are obtained by introducing smooth parametric variations in the initial
conditions corresponding to each location. The perturbations are then carefully
propagated through the dynamics of the system. Equation 27 is the sensitivity of
the switching instants with respect to the parameters θ . It is obtained using a first
order Taylor series approximation. If the switching instants were fixed or freely
controllable, the above conditions would simplify. Specifically, Eq. 27 would be zero.

The result in Lemma 1 is used to establish the following theorem.

Theorem 2 The gradient of the cost functional J corresponding to Problem 1, under
Assumptions A1–A4, can be computed as follows for k = 0, . . . K − 1

∇θ0 J = λ′|t0 (28)

∇θk+1 J = λ′|tk+1 − π∗
k+1∇xS(qik ,qik+1 )

×
(
�θk+1

qik+1
x

(
t+k+1

) + fqik+1

(
x

(
t+k+1

))
�θk+1 tk+1

)
(29)

Proof See Appendix 2. 
�
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Equation 28 is the gradient of the cost functional with respect to the parameter
vector θ0. The same type of equation can be obtained if one considers a classical
variational problem (in a non-hybrid setting) where only the initial conditions are
allowed to vary. Equation 28 can readily be used to study the impact that the initial
condition can have on a classical variational problem and can also be used on its own
in a gradient algorithm to derive optimal initial conditions. The theory developed
here recovers this important result. Equation 29 is the gradient of the cost with
respect to parameter θk+1 and is one of the main contributions of the paper. It
depends on the different sensitivity components already derived in Lemma 1. The
idea behind the proof is again to introduce variations in the parameters and study
their impact on the cost. Using the necessary conditions of optimality obtained
in Theorem 1, Eqs. 28 and 29 follow. As will be described in more detail in the
forthcoming paragraphs, the computational complexity in this type of problems is
considerable. Indeed, the difficulty consists in solving a boundary value problem of
a special type. We will now state a conceptual algorithm and show that, under some
additional assumptions, it converges to the infinimum of the optimization Problem 1
under Assumptions A1–A4.

Conceptual Algorithm 1

1. Choose an admissible parameter vector θ(0) =
(
θ

(0)
0 , θ

(0)
1 , . . . , θ

(0)

K

)
and set l = 0

2. Compute the trajectory x(l)(·) and the corresponding adjoint λ(l)(·) such that the
conditions (12)–(14) are satisfied,

3. Update the parameter vector θ(l) using the gradient information Eq. 28 and 29 in a
gradient projection algorithm, set l := l + 1 and go to step 2

We can now state the following result

Proposition 1 If θ∗ is an accumulation point of the sequence {θ(l)}l generated by the
Conceptual Algorithm 1, then it is a stationary point i.e., ∇ J[θ∗] = 0.

Proof The proof of Proposition 1 follows using descent properties (see e.g.,
Bertsekas 1995; Pshenichny and Danilin 1982). 
�

In the following paragraph, some important implementation issues are discussed.
Denote by P� the projection operator on the set �. An implementable version of

the preceding Conceptual Algorithm can be stated as follows

Algorithm 1

Step 0 Choose parameters β, μ as positive real numbers from the set (0, 1), a small
positive real number ε and an admissible parameter vector θ(0). Set l = 0

Step 1 Compute the trajectory x(l)(·) by forward integrating the state Eqs. 5–9 under
the specified initial condition. Let t(l) be the resulting sequence of switching
instants {tk}k

Step 2 Compute the sensitivity trajectories using Eq. 24 and the corresponding initial
conditions (25) and (26) and Eq. 27
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Step 3 Backward integrate the adjoint λ(l)(·) using Eq. 11 with the terminal condition
(14). At the switching instants t(l) compute the multipliers π

(l)
k in Eq. 12 such

that Eq. 13 is enforced. Update the adjoint at the switching instants t(l) using
Eq. 12 and the so far computed multipliers π(l).

Step 4 Compute the gradient using Eqs. 28 and 29. Update the parameter vector
θ(l+1)

θ (l+1) = PΘ

(
θ(l) − γ (l)∇θ J

)
(30)

with γ (l) = μ jl and jl as the smallest nonnegative integer j satisfying the
following inequality- Armijo step size rule

J
[
θ(l) − μ j∇θ J

] − J
[
θ(l)] ≤ −βμ j‖∇θ J‖2 (31)

Step 5 If J[θ(l)] − J[θ(l+1)] ≤ ε Then STOP Else set l := l + 1 and go to Step 1

A good choice of the algorithm parameters β, μ and ε depends on the problem
at hand. Numerical experience has shown the universality of some values (see e.g.,
Polak 1971) for indications. The computation in Step 1 involves the solution of
(K+1) Initial Value Problems (IVP). Particular attention should be paid to the
detection of the switching instants. This can be done using the event location
capabilities of Matlab IVP solvers (Shampine and Thompson 2000). Step 2 involves
the solution of a linear time varying system that should pose no major difficulties. In
Step 3, the multipliers are computed such that the Hamiltonian continuity condition
is enforced. Recall here that a closed form solution of the multipliers can be found
by combining Eqs. 12 and 13. Step 4 is the costliest part of the algorithm. Indeed,
evaluation of the cost functional in the right-hand side of inequality (31) makes
internal calls to Step 1–Step 3. However, the number of such calls is finite. In Figs. 3
and 4, some iterations of Algorithm 1 applied to a first-order system are shown
schematically. The rate of decay of the cost is provided by Eq. 31. The rate is large
whenever the gradient is large and this happens usually during the first iterations of
the algorithm (Figs. 5 and 6).

Fig. 3 Iteration 0 of the
algorithm under K = 2
switches for a generic example
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Fig. 4 Iteration 1 of the
algorithm under K = 2
switches for a generic example.
Note the change of the
switching instants compared to
those in Fig. 3. See Remark 1
for a thorough discussion

Fig. 5 Iteration m of the
algorithm under K = 2
switches for a generic example.
Note that the initial value of
the adjoint is converging to the
point 0, this is a direct
consequence of the necessary
conditions of optimality (see
Eqs. 15 and 28)

Fig. 6 Optimal solution to
problem 1. For the last
iteration, all the necessary
conditions of optimality (see
Eqs. 11–15) are satisfied
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5 Conclusions

This paper addresses optimization problems for a class of hybrid systems arising fre-
quently in the process industries. Using variational principles, necessary conditions
of optimality and a gradient formula are derived. A conceptual algorithm is then
presented together with a convergence analysis and a discussion of implementation
issues. A topic of current research is the study of the cyclic operation of the system
i.e., the switching sequence of locations is periodic. We expect that a cycle-to-cycle
improvement is possible and could be used to further reduce the complexity of the
developed approach.
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Appendix 1: Proof of Lemma 1

Proof Let ρk be an arbitrary but a fixed vector in R
n with k ∈ K = {0, . . . , K}.

Define

θk(ε) = θk + ερk (32)

Where ε is an arbitrary small real number. Since the trajectory is absolutely continu-
ous between any two consecutive switching instants, we have

x(t) = x(tk+1) + θk+1 +
∫ t

tk+1

fqik+1
(x(τ ))dτ (33)

Now, the introduction of the perturbation (32) in the jump map propagates through
the whole trajectory and the following equation holds

x(t; ε) = x(tk+1(ε); ε) + θk+1 + ερk+1 +
∫ t

tk+1(ε)

fqik+1
(x(τ ; ε))dτ (34)

By differentiating the preceding Eq. 34 with respect to ε, we obtain the following
expression

∂x(t; ε)

∂ε
= ∂x

∂ε
(tk+1(ε); ε) + ρk+1 − fqik+1

(
x

(
t+k+1(ε); ε

)) d
dε

tk+1(ε)

+
∫ t

tk+1(ε)

∂ fqik+1

∂x
(x(τ ; ε))

∂x
∂ε

(τ ; ε)dτ (35)

From the preceding switching instant, we have

∂x
∂ε

(tk+1(ε); ε)= ∂x
∂ε

(tk(ε); ε) + ρk + fqik
(x(tk+1(ε); ε))

d
dε

tk+1(ε)

− fqik
(x(t+k (ε); ε))

d
dε

tk(ε)+
∫ tk+1(ε)

tk(ε)

∂ fqik

∂x
(x(τ ; ε))

∂x
∂ε

(τ ; ε)dτ (36)
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And

∂x
∂ε

(t; ε)

∣∣∣∣
t=tk+1(ε)

= ∂x
∂ε

(tk(ε); ε) + ρk − fqik
(x(t+k (ε); ε))

d
dε

tk(ε)

+
∫ tk+1(ε)

tk(ε)

∂ fqik

∂x
(x(τ ; ε))

∂x
∂ε

(τ ; ε)dτ (37)

By using Eqs. 36 and 37, Eq. 35 can be written as follows

∂x
∂ε

(t; ε) = ∂x
∂ε

(t; ε)

∣∣∣∣
t=tk+1(ε)

+ ρk+1 + fqik
(x(tk+1(ε); ε))

d
dε

tk+1(ε)

− fqik+1

(
x

(
t+k+1(ε); ε

)) d
dε

tk+1(ε) +
∫ t

tk+1(ε)

∂ fqik+1

∂x
(x(τ ; ε))

∂x
∂ε

(τ ; ε)dτ

(38)

Evaluation of the last expression (38) at ε = 0 and using the following notation for
any t ∈ [tk, tk+1] and k ∈ K

�ε
qik

x(t) = �θk
qik

x(t)ρk = ∂x(t; ε)

∂ε

∣∣∣∣
ε=0

, �qik
ẋ(t) = ∂ fqik

∂x
�ε

qik
x(t) (39)

and

�εtk = �θk tkρk = d
dε

tk(ε)

∣∣∣∣
ε=0

(40)

We then have

�ε
qik+1

x(t) = �ε
qik

x(tk+1) + ρk+1 +
(

fqik
(x (tk+1)) − fqik+1

(
x

(
t+k+1

)))
�εtk+1

+
∫ t

tk+1

∂ fqik+1

∂x
(x(τ ; ε))�ε

qik+1
x(τ )dτ (41)

With

�ε
qi0

x(t) = ρ0 +
∫ t

t0

∂ fqi0

∂x
(x(τ ; ε))�ε

qi0
x(τ )dτ (42)

By using Eq. 39 and the arbitrariness of ρk, the desired result (24)–(26) follows and
ends the first part of the proof. The second part of the result consists in proving
Eq. 27, this follows from arguments of differentiability of the switching surfaces.
Since the perturbed trajectory will, by assumption, hit the surface, we then have

S(qik ,qik+1 )(x(tk+1(ε); ε)) = 0 (43)

Expansion around the pertubed switching instant and by neglecting higher order
terms gives

S(qik ,qik+1 )(x(tk+1(ε); ε)) = ∇xS(qik ,qik+1 ) fqik

d
dε

tk+1(ε)

+∇xS(qik ,qik+1 )

∂x
∂ε

= 0 (44)
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Where all the right hand side terms are evaluated at tk+1. From the last equation
(Eq. 44), one can extract the desired expression which gives when evaluated at ε = 0

�εtk+1 = −
∇xS(qik ,qik+1 )

∣∣∣
tk+1

∇xS(qik ,qik+1 )

∣∣∣
tk+1

fqik
(x(tk+1))

�ε
qik

x(tk+1) (45)

After simplification, the desired result follows and ends the proof. 
�

Appendix 2: Proof of Theorem 2

Proof Let again ρk be an arbitrary but a fixed vector in R
n with k ∈ K = {0, . . . , K}.

Define

θk(ε) = θk + ερk (46)

Where ε is an arbitrary small real number. The pertubed cost J[θ(ε)] can be
decomposed and written as follows

J[θ(ε)] =
K∑

k=0

[ ∫ tk+1(ε)

tk(ε)

[
Hqik

(x(τ ; ε), λ(τ )) − λ′(τ ) fqik
(x(τ ; ε))

]
dτ

]
(47)

Computing the derivative of Eq. 47 with respect to ε, evaluating it at ε = 0 and using
Theorem 1 (Eq. 11) we obtain after simplification and rearrangement (using λ|T = 0
(see Eq. 14 from Theorem 1), t0 and T are fixed), we obtain

d
dε

J[θ(ε)]
∣∣∣∣
ε=0

= λ′|t+0 �ε
qi0

x(t+0 )

+
K−1∑

k=0

[(
Hqik

|tk+1 − Hqik+1
|t+k+1

+ λ′|t+k+1
fqik+1

(
x

(
t+k+1

)) − λ′|tk+1 fqik
(x(tk+1))

)
�εtk+1

+ λ′|t+k+1
�ε

qik+1
x

(
t+k+1

) − λ′|tk+1�
ε
qik

x(tk+1)

]
(48)

Simplification of the Eq. 48 can be now carried out using Eq. 41 from Lemma 1 that
is written as follows

�ε
qik+1

x
(
t+k+1

) = �ε
qik

x(tk+1) + ρk+1

−
(

fqik+1

(
x

(
t+k+1

)) − fqik
(x (tk+1))

)
�εtk+1 (49)



Discrete Event Dyn Syst (2010) 20:215–231 229

Extracting the term �ε
qik

x(tk+1) from the preceding Eq. 49 and using it in Eq. 48. This
gives after simplification

d
dε

J[θ(ε)]
∣∣∣∣
ε=0

= λ′|t+0 �ε
qi0

x
(
t+0

) +
K−1∑

k=0

Hqik
|tk+1 − Hqik+1

|t+k+1
+ (

λ′|tk+1+ − λ′|tk+1

)

×
(
�ε

qik+1
x

(
t+k+1

) + fqik+1

(
x

(
t+k+1

))
�εtk+1

)
+ λ′|tk+1ρk+1 (50)

Now using Theorem 1 the terms involving the Hamiltonians can be eliminated and
along the optimal trajectory the gradient can be written as

d
dε

J[θ(ε)]
∣∣∣∣
ε=0

= ∇θ J[θ ]ρ = λ′ (t+0
)
�θ0

qi0
x(t+0 )ρ0

−
K−1∑

k=0

π∗
k ∇xS(qik ,qik+1 )

(
�θk+1

qik+1
x

(
t+k+1

) + fqik+1

(
x

(
t+k+1

))
�θk+1 tk+1

)
ρk+1

+ λ′|tk+1ρk+1

With ρ = (
ρ ′

0 ρ ′
1 . . . ρ ′

K

)′. Direct decomposition and simplification since the arbitrari-
ness of ρ gives the desired result and end the proof. 
�
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