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1 Introduction

The thermodynamic properties of black holes provide important clues to the behaviour of

quantum gravity. The physics of asymptotically AdS black holes has been of considerable

interest for quite some time [1] because of the AdS/CFT correspondence, which led to an

effort to understand strongly coupled thermal field theories living on the AdS boundary.

Recently the thermodynamic properties of these kinds of black holes have been a subject

of intense interest because of their qualitatively similar behaviour to a Van der Waals

fluid once rotation and/or charge are added [2–4]. However the analogy is complete [5, 6]

only when the the cosmological constant Λ < 0 is interpreted as thermodynamic pressure

P = PΛ, [7, 8]

PΛ = −
Λ

8π
=

3

8πl2
, (1.1)

and is allowed to vary in the first law of black hole thermodynamics,

δM = TδS + V δP + . . . , (1.2)
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where the quantity V

V =

(

∂M

∂P

)

S,...

(1.3)

is the thermodynamic volume and is conjugate to P [9, 10]. From this, an equation of state

P = P (V, T ) can be written down for a given black hole. By identifying the black hole

and fluid temperatures T ∼ Tf , volumes V ∼ Vf , and pressures P ∼ Pf a proper mapping

to the corresponding fluid equation of state can be made [5, 6]. Charged and/or rotating

AdS black hole thermodynamics has been shown to qualitatively mimic the behaviour of a

standard Van der Waals (VdW) fluid. The VdW liquid/gas phase transition corresponds

to a small/large black hole first-order phase transition, which terminates at a critical point

characterized by the standard mean field theory critical exponents. The Gibbs free energy

exhibits a swallowtail catastrophe in both cases [5, 6]. This analogy extends to a broad

class of black holes in higher dimensions [11].

A VdW fluid is described by the VdW equation of state (EOS)

T =
(

P +
a

v2

)

(v − b) (1.4)

which is a closed form 2-parameter equation of state, valid in any spatial dimension [6]. Here

v = V/N denotes the specific volume of the fluid, with N counting the degrees of freedom

of the fluid. The parameter a > 0 is a measure of the intermolecular attraction between

the fluid constituents and the parameter b is a measures of their volume. However the

corresponding equations of state for the black hole and the VdW fluid, though qualitatively

mathematically similar, are not identical. Consequently neither charge Q nor rotation J

(or other parameters for more complicated black holes [11]) can be directly identified with

the fluid parameters a and b. In the following, we will denote the pressure associated with

the cosmological constant PΛ to avoid confusion with the pressure of the fluid sourcing the

Einstein equations.

Recently a proposal was put forward to construct an exact black hole analog of the

VdW fluid in 4 space-time dimensions [12], inspired by this qualitative analogy. There

is a fluid yielding a metric from the Einstein equations that can indeed give rise to the

equation of state (1.4). However it can only obey the standard energy conditions for

sufficiently small pressures and in a region sufficiently close to the event horizon. Here we

extend this result to arbitrary number of dimension and arbitrary horizon topologies. The

higher-dimensional cases may be of some physical relevance; in particular, in 5 dimensions

AdS black holes have a well understood 4 dimensional CFT counterpart. We further

examine in more detail properties of these black holes such as their domain of existence,

and interpret the free constants appearing in the solutions. We also discuss the limiting

cases of non interacting gas with finite size, interacting points and perfect gas, and map

them to the corresponding black hole solutions.

This paper is organized as follows: In section 2, we review the basic thermodynamic

properties of AdS black holes in d dimensions and extend them to a parametrized metric

suited for our construction [12]. In section 3, we derive the d-dimensional solution describ-

ing a VdW black hole, and discuss the domain of existence of the latter. Next, we analyze
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the source of the Einstein equation yielding the VdW black hole and discuss their energy

conditions. In section 4 we provide an explicit realization of a VdW black hole satisfying

the energy conditions in a range close to the horizon. In section 5, we discuss the limiting

cases where a = 0 or b = 0. Finally, section 6 is devoted to providing an explicit compari-

son of the Reissner-Nordström black hole with the VdW black hole, in order to understand

the qualitative similarities from a metric point of view. We summarize our finding in the

concluding section 7.

2 AdS Black Hole in d dimensions

2.1 Metric ansatz and matter source

Let us first review the basic properties of the AdS vacuum black hole solution in d dimen-

sions, described by the AdS-Tangherlini black hole [13]:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

k,d−2, (2.1)

where dΩk,d−2 is the line element on the unit d− 2 constant curvature surface, with k the

sign of the curvature. The vacuum solution is given by

f(r) =
r2

ℓ2
+ k −

µ

rd−3
, (2.2)

where ℓ is the cosmological radius defined by Λ = − (d−1)(d−2)
2ℓ2

and µ is related to the ADM

mass M of the black hole:

M =
(d− 2)Ωk,d−2

16π
µ. (2.3)

This solution satisfies the AdS vacuum equation Gab + Λgab = 0. In the following, we

will follow the construction of [12] and build f(r) such that a desired equation of state on the

black hole thermodynamics is obtained. Generically, the solution of this procedure will no

longer be a vacuum solution but will contain sources. A satisfying solution will be obtained

if some basic properties remain valid, such as e.g. preservation of energy conditions.

Generically, given a function f , the stress tensor is obtained using the field equations.

Here, we assume the stress tensor to be given by an anisotropic fluid of the form

T ab = ρea0e
b
0 +

∑

i

Pie
a
i e

b
i = Gab + Λgab, (2.4)

where eaµ are the components of the vielbein and i = 1, . . . , d and where

ρ = −Pr = −
(d− 2)f ′(r)

2r
−

(d− 3)(d− 2)f(r)

2r2
+

(d− 3)(d− 2)k

2r2
+ 8πPΛ,

Pα =
(d− 3)f ′(r)

r
+

(d− 4)(d− 3)f(r)

2r2
−

(d− 4)(d− 3)k

2r2
+

f ′′(r)

2
− 8πPΛ, (2.5)

where α labels the coordinates in the angular sector. Note that we use the convention

G = 1/(8π), while [12] uses G = 1, G being Newton’s constant.
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2.2 Thermodynamic properties

In d space-time dimensions the cosmological constant will be interpreted as thermodynamic

pressure, given by [7–10, 14]

PΛ = −
Λ

8π
=

(d− 1)(d− 2)

16πℓ2
(2.6)

and without loss of generality, we write the function f as

f =
r2

ℓ2
−

µ

rd−3
− h(r, PΛ), (2.7)

where h is a function to be determined and µ is related to the mass of the black hole as

in (2.3).

The temperature T of a black hole in this class of solutions is obtained by requiring

regularity of the Euclidean section, yielding

T =
f ′(rh)

4π
, (2.8)

where rh is the location of the horizon radius. The entropy is given by the Bekenstein-

Hawking law

S =
A

4
=

Ωd−2

4
rd−2
h , (2.9)

where Ωn is the surface of the n-dimensional unit sphere and the mass is given by M

provided h doesn’t contain terms linear in 1/rd−3, and can be expressed in terms of other

quantities by solving f(rh) = 0 for M .

The first law of thermodynamics then reads

dM = TdS + VΛdPΛ, (2.10)

where the momentum VΛ conjugated to PΛ is interpreted as a volume, given by

VΛ =
∂M

∂P

∣

∣

∣

∣

S

, (2.11)

and M is the enthalpy,

M =
(d− 2)

16π
Ωk,d−2r

d−3
h

(

16πPΛr
2
h

(d− 1)(d− 2)
− h(rh, PΛ)

)

. (2.12)

The specific volume is then given by

vΛ = κ
VΛ

A
, (2.13)

where κ = 4d−1
d−2 . We are assuming one degree of freedom per Planck horizon area [12].
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3 Van der Waals Black Holes

3.1 Construction of the solution

Using (2.7), the thermodynamic quantities defined in the previous sections reduce to

T = −
(d− 3)h(rh, PΛ)

4πrh
−

h(1,0)(rh, PΛ)

4π
+

4PΛrh
d− 2

(3.1)

M =
Ωd−2

d− 1
PΛr

d−1
h −

Ωd−2

16π
(d− 2)rd−3

h h(rh, PΛ), (3.2)

vΛ =
4rh
d− 2

−
(d− 1)h(0,1)(rh, PΛ)

4πrh
(3.3)

and the entropy S is given by (2.9). Specifying an equation of state yields a set of partial

differential equations for the function h. Here we impose the equation of state (1.4)

T =

(

PΛ +
a

v2Λ

)

(vΛ − b) , (3.4)

where we set v = vΛ, P = PΛ and will regard T as being given by (3.1). To solve the

resultant partial differential equations that emerge from (3.4) requires an ansatz. Here

we employ h = A(r) − PΛB(r); inclusion of higher powers of PΛ does not yield solutions

consistent with the asymptotic AdS structure [12]. Note that strictly speaking, the equation

of state provides a boundary condition on the event horizon. However, if this condition is

satisfied everywhere, obviously it is also satisfied on the horizon. We shall first follow this

strategy and then comment on the limitations of this approach.

Our ansatz for h yields two ordinary differential equations for A and B. The equation

for B is independent of the number of the number of dimensions and is given by

rB′ − 2B + 4πrb = 0, (3.5)

which is solved by

B = 4πr(Cℓr + b), (3.6)

where Cℓ is an integration constant whose meaning will be discussed later.

The equation for A is

rhA
′(rh)+(d− 3)A(rh)+

16π2a(d−2)r2h
(

(d−2)(d−1)B(rh)+16πr2h−4πrhb(d−2)
)

((d− 2)(d− 1)B(rh) + 16πr2h)
2

= 0

(3.7)

Using (3.6), the general solution of this equation is given by (see appendix)

A(r; d) =
aπx4(d− 2)

(1 + C̃ℓ)(d2 − 1)
((d− 4) 2F1 (1, d+ 1; d+ 2;−x)− 2F1 (2, d+ 1; d+ 2;−x))

−
πa(d− 2)x

(

(d− 4)(d− 1)x2 − (d− 3)dx+ (d− 1)d
)

(C̃ℓ + 1)(d− 1)2d
+

C̃M

rd−3
, (3.8)
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where x = 4(C̃ℓ+1)r
b(d−2)(d−1) , C̃ℓ = (d − 1)(d − 2)Cℓ/(16π), C̃M is a constant of integration and

2F1 is the hypergeometric function.

For d a positive integer, the solution (3.8) reduces to a finite number of terms. For

particular values of d = 4, 5, 6, 7 and arbitrary values of Cℓ we obtain

d = 4 : A = −
4πa

r(3Cℓ + 2)2

(

3

(

−
b2

3Cℓr + 3b+ 2r
+ Cℓr

)

− 4b log(4π(3(Cℓr + b)

+2r)) + 2r

)

+
CM

r

d = 5 : A = −
3πa

4r2(3Cℓ + 1)3

(

27b3

3Cℓr + 3b+ r
+ 54b2 log(4π(3(Cℓr + b) + r))

−15br(3Cℓ + 1) + 2(3Cℓr + r)2

)

+
CM

r2
,

d = 6 : A = −
4πa

3r3(5Cℓ + 1)4

(

−
375b4

5Cℓr + 5b+ r
− 600b3 log(4π(5(Cℓr + b) + r))

+105b2r(5Cℓ + 1)− 9b(5Cℓr + r)2 + (5Cℓr + r)3

)

+
CM

r3

d = 7 : A = −
5πa

6r4(15Cℓ + 2)5

(

1518750b5

15(Cℓr + b) + 2r
+ 1012500b4 log(4π(15(Cℓr + b) + 2r))

−60750b3r(15Cℓ + 2) + 1800b2r2(15Cℓ + 2)2 + 3r4(15Cℓ + 2)4 − 70br3(15Cℓ + 2)3

)

(3.9)

where we have retained the constants of integration in the solutions, and CM is related to

C̃M by d-dependent transformations that can be computed straightforwardly.

The resultant space-time metric is given by

ds2 =−

(

r2

ℓ2
−

µ

rd−3
−A(r; d) + PΛB(r)

)

dt2+
dr2

(

r2

ℓ2
− µ

rd−3 −A(r; d)+PΛB(r)
) + r2dΩ2

k,d−2.

(3.10)

Results from [12] are recovered in the d = 4 case by setting Cℓ = 0, CM = 3abπ.

3.2 Interpretation of the constants and domain of existence

The choice of integration constants is governed by physical criteria [12]. If the cosmological

pressure (2.6) is required to be generated entirely by the fluid, then Cℓ = 0. However if

this criterion is relaxed, then the effective AdS length is ℓ−2
eff = ℓ−2(1+ (d− 1)(d− 2)Cℓ/4).

Physically this means that the thermodynamic pressure is given entirely by the cosmological

constant, but the fluid has an additional density and pressure that is similar to the cosmic

vacuum. The constant CM , however, simply yields a shift in the parameter µ; we can

therefore set it to zero without loss of generality.

– 6 –
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The constant a can be set so that the constant term in r in the asymptotic form of f is

k, similar to the d = 4 case. This leads to a = d−3
π(d−2)k. This means that the intermolecular

attraction of the fluid is governed by the curvature of event horizon. A VdW black hole with

a flat horizon section has a = 0, and one with constant negative curvature (corresponding

to topological black holes [15–17] ) has an effective intermolecular repulsion.

We note that the Van der Waals black holes (3.10) do not possess horizons for all

generic values of the parameters. Indeed, for some values of the parameters, the horizon

radius crosses 0 and becomes negative. Such solutions correspond to solitons (or bubbles);

we shall not consider them here.

The allowed region in parameter space for black holes is given by rh > 0. The boundary

of this region can be obtained by solving for the mass in terms of other parameters upon

imposing rh = 0. This leads to

16πM

2Ω2
≥ −

4πab(1 + 4 log(12πb))

(2 + 3Cℓ)2
, for d = 4, (3.11)

16πM

3Ω3
≥

27πab2(1 + 6 log(12πb))

4(3Cℓ + 1)3
, for d = 5,

16πM

4Ω4
≥ −

100πab3(1 + 8 log(20πb))

(5Cℓ + 1)4
, for d = 6,

16πM

5Ω4
≥

84375πab4(1 + 10 log(60πb))

(15Cℓ + 2)5
, for d = 7,

and other numbers of dimensions are straightforwardly computed.

Note that the specific volume (3.3) becomes

v =

(

4

d− 2
+ (d− 1)Cℓ

)

rh + (d− 1)b (3.12)

yielding

R =

(

(d− 1)V

Ωd−2

)
1

d−1

(

Ωd−2

A

)
1

d−2

=

(

1 +
(d− 1)(d− 2)

4

(

Cℓ +
b

rh

))
1

d−1

(3.13)

for the isoperimetric ratio R. This will obey the reverse isoperimetric inequality [18]

provided Cℓrh + b > 0, or in other words if Cℓ is not too negative.

Finally, we stress that, for a given set of parameters (and horizon radius), the so-

lution (3.10) derived here need only hold in a neighbourhood of the horizon, since the

relation (3.4) involves quantities defined at the horizon. The highest derivative order ap-

pearing in this relation is 1. Therefore, the same thermodynamic properties are satisfied

in a neighborhood of the horizon by black holes with

f(r) =
r2

ℓ2
−

µ

rd−3
− h(r, PΛ)H(r, PΛ), (3.14)

where H is an arbitrary function with the following properties at the horizon

H(rh, PΛ) = 1, ∂rH(rh, PΛ) = 0 = ∂PΛ
H(rh, PΛ). (3.15)

– 7 –
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Indeed, in this case,

∂r(H(r, PΛ)h(r, PΛ))|r=rh = ∂rh(r, PΛ)|r=rh ,

∂PΛ
(H(r, PΛ)h(r, PΛ))|r=rh = ∂PΛ

(h(r, PΛ)|r=rh , (3.16)

H(r, PΛ)h(r, PΛ)|r=rh = h, (3.17)

leading to the exact same equation for h as the one obtained with H = 1.

The functionH can serve as a modulating function for the fluid. If it falls off sufficiently

fast for large radii, µ remains unambiguously related to the mass (or enthalpy). This also

ameliorates the consequences of the linear and logarithmic terms in [12]. If the falloff rate

of H is sufficiently rapid, the conditions on the constant of integration Cℓ, CM can be

relaxed (as noted above), and the near horizon spacetime has an ‘effective cosmological

radius’ different from the one given by Λ.

However, this remark is true only in the case where we assume a given horizon radius, or

alternatively a given mass. If the purpose is to build a family of black holes (parametrized,

say, by horizon radius) where all solutions satisfy the VdW EOS, then H = 1. Furthermore,

if H 6= 1 it is no longer clear that M be regarded as enthalpy, and that the volume v will

remain the same. This is because in v is not a near horizon property but is instead a global

property of the spacetime.

3.3 Source fluid and energy conditions

Recall that the metric (2.7) with the solution (3.9) does not satisfy the AdS vacuum

Einstein equations. Instead the VdW black hole is sourced by a non isotropic fluid along

with (2.5). The source stress tensor is conserved by construction, since it is identically the

Einstein tensor, which satisfies the Bianchi identities.

A crucial remark is that close to the horizon, while ρ, Pr do not depend on H, Pα does,

since the f ′′ term yields a term of the form −1
2H

′′h.

The energy conditions for a non isotropic fluid are given by

• Weak: ρ ≥ 0, ρ+ Pi ≥ 0,

• Strong: ρ+
∑

i Pi ≥ 0, ρ+ Pi ≥ 0,

• Dominant: ρ− |Pi| ≥ 0.

In the case of van der Waals black holes, the density and pressures are given by (2.5)

together with the solution for h.

In the rest of this subsection, we will consider the VdW black hole generalizing the 4

dimensional solution of [12] by setting H = 1.

We first emphasize that since we have a vacuum solution when h + k = 0, and since

eq. (2.5) is linear in f (and its derivatives), the density and pressure depend solely on h+k.

As an important consequence, the properties of the sourcing fluid do not depend on the

black hole mass, nor on the parameter CM since it accounts for a mass term.

– 8 –
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We also note that since CM can always be reabsorbed in the definition of the mass,

we set it to 0 for definiteness. Let us analyze whether it is possible to build a VdW black

hole that satisfies the energy conditions close to the horizon.

First, it is instructive to inspect the small and large r behaviour of the fluid density

and pressure. For large r, ρ, Pα behave as

ρ = −2πCℓd1d2PΛ −
2πbd22PΛ

r
+

d3d2k −
4πad2

2

Cℓd2d1+4

2r2
(3.18)

Pα = 2πCℓd2d1PΛ +
2πbd3d2PΛ

r
+

4πad4d2
Cℓd2d1+4 − d4d3k

2r2
(3.19)

where dj ≡ (d− j). For small radii, it can easily be checked that

ρ =
d2d3
2r2

+O(r)−1, Pα = −
d3d4
2r2

+O(r)−1. (3.20)

As a consequence, the VdW BH with Cℓ = 0 always violates the weak and strong

energy conditions at large radii, and are satisfied at small radii. Although the physical

relevance of the small-r is dubious, mathematically it follows that there always exists a

region where these energy conditions are satisfied. This is illustrated on figure 1, where

we show the weak and strong energy conditions for b = rh, a = 1/(2π) and d = 4. Other

values of d leads to the same pattern.

Since the source of the stress tensor does not depend on the mass of the black hole,

we conclude that there always exists a parameter set for which the energy conditions can

be satisfied close to the horizon. However not all horizon radii lead to positive M , see

section 3.2. The question then reduces to finding parameter sets so that the region where

the energy conditions are satisfied is outside the horizon.

Note that for negative values of Cℓ it is always possible to satisfy ρ ≥ 0 everywhere.

However the second part of the weak energy condition, namely ρ + Pα, always yields a

negative falloff for sufficiently large r

ρ+ P = −
2πbd2PΛ

r
+O(r)−2, as r → ∞ (3.21)

contrary to what was originally reported [12] for the d = 4 case.

This further supports the idea that the VdW black hole metric should be thought as

a near horizon solution. In the next section, we will provide evidence that it is possible to

build a VdW black hole that satisfies the energy conditions at least in a region close to the

horizon by explicitly constructing it in some number of dimensions.

4 Consistent VdW black hole

In this section, we propose a systematic prescription for constructing VdW black holes

that satisfy the energy conditions close to the horizon. For definiteness, we set H = 1 and

CM = 0 in the rest of this section.

One possible way of investigating the question of consistent VdW black holes, in the

sense that they satisfy the energy conditions, is to look at the near horizon solution for

– 9 –
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0.12

r

Figure 1. The weak (ρ, ρ+Pα > 0) and strong (ρ+Pα, Pα > 0) energy conditions for b = rh, a =

2/(3π), Cℓ = 0, CM = 0, P = 0.0009 and d = 5. There exists a region where the three functions

are positive outside the horizon (located at rh = 5). This choice of parameters leads to a positive

mass.

these. However this doesn’t teach us much because the way we built the solution is such

that we express the mass in terms of the horizon radius quantities. In fact, in a near horizon

expansion, the free parameters are A(rh), B(rh), which in turn are related to CM , Cℓ. The

procedure is then to use the equations provided by the EOS, and derive them iteratively,

since they are the only equations from which we’ve built the solution.

Instead we present an algorithm in order to build a consistent solution near the horizon.

We require that mass remain positive, while the energy conditions (EC) are satisfied near

the horizon for some r > rh. Due to equations (2.5), (2.12) and the fact that h(r, PΛ) is

linear in PΛ, all these quantities can be written in the form X = X0 + PΛXP :

EC : E0(r)− PΛEP (r) ≥ 0 Mass : M0(rh) + PΛMP (rh) ≥ 0, (4.1)

where E0(r), EP (r) are both positive and increasing with decreasing r provided a = d−3
π(d−2) ,

Cℓ = 0, and k = 1. Since the energy conditions are linear in density and pressure, (4.1) is

generic and the form of E0, EP depends on which particular energy condition is considered.

This leads to a maximum pressure that saturates the energy condition just outside the

horizon:

PMax(rh) = E0(rh)/EP (rh) (4.2)

and so for a given a set of parameters (a, b, Cℓ), it is possible to choose PΛ < PMax(rh) such

that M > 0 for some finite range of r > rh. This guarantees that all requisite conditions are

satisfied at least in a neighbourhood of the horizon. We expect this procedure to be valid

over a wide range of the parameter space and we leave a more systematic investigation for

future considerations.

Setting the pressure a little bit below the maximal value, say PΛ = qPMax, q < 1, we

can write M as a q independent term and a term linear in q, M = m0 + qm1. The critical

value q∗ = −m0/m1 is a function of rh and corresponds to the fraction of the maximal

pressure where the mass changes sign. In particular, when q∗ < 1 the mass is positive

and the energy condition considered can be satisfied in a neighborhood of the horizon.

– 10 –
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Figure 2. The value of q∗ where the mass crosses 0, and where PΛ = q∗PMax. When q∗ ≤ 1, the

weak energy conditions are satisfied in a neighbourhood of the horizon. If q∗ < 0, then the mass is

positive for any choice of rh and q∗ ≤ q ≤ 1. We chose b = rh, a = (d−3)/((d−2)π), Cℓ = CM = 0.

The black parts of the curve are q∗ while the gray are −q∗ and d ranges from 5 to 9, from bottom

to top.
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Figure 3. The maximal pressure allowing to satisfy the WEC as a function of the horizon radius,

for b = rh, a = (d− 3)/((d− 2)π), Cℓ = CM = 0 and d = 5, 6, 7, 8, 9 from bottom to top.

We summarize the behaviour of q∗ for a number of dimensions and parameter values in

figure 2.

We computed PMax as the maximal pressure allowing the weak energy conditions to

be fulfilled, as a function of the horizon radius and systematically found possible to build

consistent VdW black holes for the case we considered. We expect that this is possible for

all dimensions.

Note that b is a dimensionful parameter, so we defined b̃ = b/rh. We plot the maximum

pressure as a function of rh for a fixed value of b̃, and the value q∗ such that the mass just

vanishes in figures 2 and 3 for b̃ = 1.

Focusing on the WEC (and fixing k = 1 for definiteness), we find that PMax = α/r2h,

where α depends on d and b̃. We found (for d = 5, 6, 7, 8, 9) that the ratio 0 < rh/ℓMin < 1,

where ℓMin is the value of the cosmological length corresponding to PMax. For the case we

considered, this means that the intermediate or small black hole phase leads to consistent

VdW black holes.
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5 Limiting cases: perfect gas and interating point gas, non interacting

ball gas

It is instructive to consider the 3 limits of the VdW equation of state, namely, a = 0, b =

0, a = b = 0. These correspond respectively to a gas of free particles with finite size (the

ball gas), a gas of interacting point particles, and a perfect gas.

The solutions are given by

fperfect =
16π(cℓ + 1)Pr2

(d− 2)(d− 1)
−

16π(cM +M)r3−d

(d− 2)Ωd−2
(5.1)

fpoint = 4πbr + fperfect, (5.2)

fball =
(d− 2)aπ

(d− 3)(1 + cℓ)
+ fperfect, (5.3)

where fperfect, fpoint, fball are the solution for the perfect gas, the interacting point particle

and the free ball gas respectively, and cM , cℓ are constants of integration, rescaled from

CM , Cℓ.

We note in passing that the Lemos string [19] has the thermodynamic properties

of a perfect gas, and the Schwarzschild AdS solution has the thermodynamics of a non

interacting ball with size parameter a = (1+cℓ)(d−3)/(π(d−2)). The interaction between

the gas particles is accommodated by a linear term in the metric function.

The massM corresponds to the enthalpy in extended phase space and can be arbitrarily

shifted, which was manifest from the CM term, commensurate with the fact that we can

set CM = 0 without loss of generality.

Interestingly, the perfect gas black hole satisfies the Weak energy conditions everywhere

as long as cℓ ≤ 0 and k 6= −1:

ρperfect =
(d− 2)(d− 3)

2r2
− 8πcℓP, (5.4)

(ρ+ P )perfect =
d− 3

r2
. (5.5)

In the other cases, there is no generic structure where the WEC are satisfied everywhere.

6 Case study: why do Reissner-Nordström black holes approximatively

follow the VdW EOS?

In this section, we will try to understand the qualitative VdW behaviour of the Reissner

Nordström black hole, by comparing its near horizon metric with that of the VdW black

hole.

The AdS Reissner-Nordström black hole solution is given by

f(r) =
r2

ℓ2
+ 1−

2M

r
+

Q2

r2
, (6.1)

where Q is the charge and M the mass of the black hole. In terms of A,B in (2.7), it is

given by

A =
Q2

r2
− 1, B = 0. (6.2)

– 12 –



J
H
E
P
0
2
(
2
0
1
5
)
0
7
0

It was shown in [5] that the combination PΛv
T

at the critical point, defined as P ′

Λ(vc) =

0 = P ′′

Λ(vc) is the same for the VdW equation of state and the Reissner-Nordström black

hole with the following identification:

a =
3

4π
, b = 2

√

2

3
Q2. (6.3)

For a given black hole to follow a VdW EOS, its metric components and first derivatives

of the metric components should be comparable to (3.10). Let us compare explicitly the

VdW metric to the Reissner-Nordström one. First, we fix the constant of integration Cℓ

by demanding that the horizon radii are the same, or equivalently that the volume of the

black hole is the same:

V Q
4 = V V dW

4 ⇒ Cℓ = −
1

rh
, (6.4)

where rh is the horizon radius of the Reissner-Nordström black hole.

Next, we compare the first derivative of the metric coefficient close to the horizon. In

the static case, this is equivalent to comparing the temperature of the black holes. We find

TQ =
8πPΛr

4
h −Q2 + r2h
4πr3h

, TV dW = −
(b− 2rh)

(

a+ 4PΛr
2
h

)

4r2h
, (6.5)

where TQ, TV dW are the temperature of the Reissner-Nordström and Van der Waals black

holes respectively. For large horizon radius, the ratio of the temperatures is given by

TQ

TV dW

= 1 +
b

2rh
+O(rh)

−2, (6.6)

while for small horizons,

TQ

TV dW

=
Q2

abπrh
+

2Q2

ab2π
+O(rh) = 1 +

b

2rh
+O(rh) (6.7)

where the latter expression follows upon using (6.3).

Matching the two expansions in the intermediate rh region suggests that the ratio goes

like 1 + b
2rh

over a wide range of rh. As a consequence, the derivatives are qualitatively

similar everywhere, except in the limit rh → 0 (more precisely they deviate in 1/rh), for

the particular choice of a, b (6.3).

In figure 4, we show this comparison, and see that it qualitatively agrees for different

values of PΛ with a deviation typically for some small horizon radii.

7 Discussion and conclusion

In this paper, we constructed d-dimensional AdS black hole metrics whose thermodynamic

quantities satisfy the Van der Waals equation of state. These black holes are the exact dual

of a Van der Waals fluid in the conformal boundary of the AdS space. Our construction

generalizes the solutions presented in [12] and is valid for arbitrary numbers of dimensions

and spherical, planar and hyperbolic horizons. We discussed in some detail the properties
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Figure 4. Comparison of the temperature of the Reissner-Nordström and VdW black holes for

different values of PΛ.

of these black holes and found that they are of positive mass for a certain portion of the

parameter space, which we described as a domain of existence.

These black holes are non vacuum solutions. The source to the Einstein equations

yielding the Van der Waals black hole has the form of an anisoptropic fluid. The energy

associated with the sourcing fluid respects the energy conditions for a certain range of

parameters and in a region sufficiently close to the horizon. We found systematic deviation

and violation of the energy conditions far from the horizon.

However, this situation can be improved by using a modulating function H that is such

that H(rh) = 1, H′(rh) = 0 and that falls off sufficiently fast. This modulating function

can be chosen such that its defining property is valid over a range of rh where the energy

conditions remains satisfied. This leads in principle to a non vacuum black hole solution

that is an exact Van der Waals black hole in some portion of the phase space but otherwise

deviates from it outside this portion, yet satisfies the energy conditions everywhere. Indeed,

it is impossible in Einstein gravity to devise an exact Van der Waals black hole valid over

the whole (extended) phase space that satisfies the energy conditions everywhere. Note

however that a small deviation from the weak energy condition can be physically acceptable

in AdS spacetime — for instance the case of negative mass-squared scalars still leads to

a positive ADM mass in AdS [20]. Despite the systematic violation of the Weak Energy

Condition reported here, a stability analysis would be desirable to assess the potential use

of the exact VdW black holes in the AdS/CFT picture.

We also analyzed the perfect fluid, interacting point-particle, and non-interacting ball

limits of Van der Waals black holes. In particular, we noted that planar black holes are

perfect gas black holes and Tangherlini black holes are non-interacting ball gas black holes.

The effect of interaction in the equation of state on the metric is to add a term linear in

r. These observations may provide useful motivations for a phenomenological description

of CFT with the corresponding properties.

Finally, we analyzed the qualitative agreement between the thermodynamics of the
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Reissner-Nordström black hole and the Van der Waals black hole by explicitly comparing

both metrics in the same coordinate system and horizon location. We found that, as

expected, both metrics lead to the same thermodynamic properties for large enough values

of the horizon radius.
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A Deriving the d-dimensional solution

In this appendix, we give the details of the derivation of the analytic d-dimensional VdW

black hole solution. First, as already pointed out in the text, the solution for the function

B is given by

B = 4πr(Cℓr + b). (A.1)

Plugging this equation in the equation for A leads to an equation of the form

(rd−3A)′ = −
N0r

d−3(N1 +D1r)

(D0 +D1r)
, (A.2)

whereN1 = (d−2)bN0/(4aπ), D0 = (d−1)bN0/(4aπ), D1 = (4+Cℓ(d−2)(d−1))N0/(4a(d−

2)π).

Denoting d0 = D0/N0, d1 = D1/N0, n1 = N1/N0, the formal solution to this equation

is given by

rd−3A = C −
rd

d40

(

d21
d
(3n1 − 2d0) +

1

r2

(

d0n1

d− 2
+

d1(d0 − 2n1)r

d− 1

))

−
d31r

d+1

d50(d+1)

(

(2d0−3n1)2F1

(

1, d+1, d+2;−
d1
d0

r

)

+(d0−n1)2F1

(

2, d+1, d+2;−
d1
d0

r

))

,

(A.3)

where 2F1(a, b, c;x) is the hypergeometric function. For integer values of d, the solution

reduces to a finite polynomial with logarithmic terms, and C is an integration constant.
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