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Abstract Crop performance and yield are the results of

genotypic expression as modulated by continuous interac-

tion with the environment. Among the environmental fac-

tors, water is one of the most important, which limits the

crop production on a global basis. Water resources in the

world are steadily diminishing, and in many areas, in-

cluding Poland, more frequent periods of drought are ob-

served. There are many problems that are specifically

related to water scarcity: an extremely dynamic nature of

plant water status, relationship to the severity of the effects

of water, time stress during ontogeny of plants, and the

interaction of water stress with other environmental vari-

ables. The paper presents a review of recent literature on

the effect of the grasses to drought stress at the level of

physiological processes and the possibility of yielding. A

better understanding of how long-term growth and yield

are affected by water stress should aid in improving irri-

gation efficiency and practices, in modifying plants for

more efficient water use, and in developing effective dry-

land agriculture.

Keywords Stress � Drought � Grass � Yielding �
Physiological process

Introduction

Water covers 72 % of the surface of our planet, but ac-

cording to the Report of the World Meteorological Orga-

nization (WMO 2004), salt and oceanic waters constitute

over 97 % of the water on the Earth. Due to their salinity,

they are not suitable for human consumption. Fresh water

constitutes not more than 2.5 %, only 0.6 % of which is

available to man as a source of drinking water, as the rest is

trapped in glaciers and snows. According to the UN report

(Water in a Changing World 2009), average amount of

water per inhabitant of the Earth has been steadily de-

creasing since 1970, and over the next 20 years, it will

decrease by one-third, which in 20 % is presumably the

result of climate change. The increased concentration of

greenhouse gases causes the changes of different elements

of the climate, such as temperature, precipitation, soil

moisture, and sea level. It is estimated that by 2100, the

average air temperature will have risen by 1.4 to even

5.8 �C (EEA 2004; IPCC 2014; Kozyra et al. 2009; Wigley

and Raper 2001). The temperature rise causes a danger of

reducing the amount of rain and snow, which can deepen

the deficit of water, especially during the summer and can

cause a higher occurrence of drought. Many aspects of

climate change and associated impacts will continue for

centuries, even if anthropogenic emissions of greenhouse

gases are stopped. The risks of abrupt or irreversible

changes increase as the magnitude of the warming in-

creases (IPCC–Intergovernmental Panel on Climate

Change 2014). Rapid changes in breeding, agricultural

techniques, and other aspects of human activity directly

related to crop production should be introduced in response

to the emerging forecasts. Forage grasses are an important

group of crops, characterized by a high yielding potential

of dry matter, protein, and energy, which deliver a high-
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value feed for ruminants. The aim of this paper is to present

the latest research on the reaction of different species of

forage grasses to water deficits in the soil.

Droughts in Poland

Drought is an extreme weather phenomenon, a type of

atmospheric anomaly caused by the lack of rain or repeti-

tive smaller-than-average rainfall (Paulo and Pereira 2006).

It occurs in areas with both large and small amounts of

rainfall. It is a complex phenomenon, difficult to be clearly

identified. It occurs periodically, in different seasons and

with different intensity. In agriculture, drought is a pro-

longed shortage of soil water in a given place, acting on a

specific plant species or cultivar in a certain period of time

(Łabędzki 2006a). It causes the deterioration of the con-

ditions for growth and development and the reduction of

crop yields.

For many years, scientists have devoted a lot of attention

to drought, especially if it is caused by the deficit of

rainfall. This problem is also of interest in Poland, due to

the fact that there are more and more frequent periodic

water shortages on large areas of Poland, which cause large

losses in agricultural production (Górski et al. 2008).

Poland belongs to the group of countries with the fewest

resources of surface water in Europe. There is about

1419 m3 of water per capita per year, which at the average

for Eastern Europe being 14 818 m3, means a medium to

high risk of drought (Revenga et al. 2000). Almost all

central, north-western, and central-eastern parts of Poland

are classified as the driest regions (Łabędzki 2006a). They

are characterized by the most frequent and the strongest

droughts with very long rainless periods or with the series

of rainfalls below average. According to Bąk (2004) and

Kędziora (2005), the largest rainfall deficit occurs in the

Wielkopolska Lakeland, especially in the area of Kujawy,

where rainfall amounts to average 514 mm, and is one of

the lowest in the country. The analysis of weather condi-

tions in the Kujawy region in the years of 1945–2003

showed a positive tendency in temperature and a negative

one in rainfall during the growing season, which was ac-

companied by an increasing number of dry periods (Bąk

and Łabędzki 2003).

Agriculture is the largest user of water. It is estimated

that in the world, over 70 % of the uptaken water is used

for soil irrigation (Water in a Changing World. The United

Nations World Water Development Report 3–WWDR3

2009). In Europe, it does not play such an important role.

In the countries of the north part of the continent, 3–15 %

of the agricultural land is irrigated, while in the South,

about 30 % (Mioduszewski 2006). Agriculture in Poland

relies mainly on rain water, hence only about 0.5 % of the

farmland and forest land are irrigated (Statistical Yearbook

2013). Frequent rainfall deficiencies are a real threat to

agricultural production. Droughts can occur at different

times of the year, with varying intensity, duration, and

scope. In the system of agricultural drought monitoring,

meteorological conditions causing drought are determined

by climatic water balance (CWB). According to Dor-

oszewski et al. (2012), in recent years in Poland, in spring

and early summer, CWB values have been getting lower

and lower, which means that droughts are becoming more

and more severe (Fig. 1).
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Fig. 1 Climatic Water Balance (CWB) from May to June in Poland in the years 1959–2006. [Kozyra et al. 2009]
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Spring droughts are generally the cause of the reduction

in yield of spring cereals, the first regrowth of meadow

sward, and productivity of pastures, summer droughts—

field forage crops, and the second regrowth of meadow

sward, while the autumn ones—winter cereals (Łabędzki

2006b). A long-term catastrophic drought in 1992, which

covered almost all territory of Poland, caused a reduction

in the harvest of the main crops on average by 25 %, while

yields of hay from the meadows were smaller on average

by 27 % compared to the average yield in the years of

1986–1990 (Łabędzki 2006b). The consequence of this was

the increase in food prices and the lack of feed for animals.

Extreme drought in 2006 was the manifestation of the

tendency for water deficiency. It caused average yield of

certain crops to decrease by up to 30 % (Doroszewski et al.

2012). The periods of drought occur in Poland more and

more often. According to the report by the Institute of

Meteorology and Water Management (Drought in Poland

2006), the frequency of the occurrence of dry years in

Poland in the period of 1951–1981 was 6 (on average,

every 5 years), whereas in the period of 1982-2006, up to

13 (on average, every 2 years). It can therefore be con-

cluded that the climate in Poland has been clearly changing

in recent years, and extreme weather phenomena, such as

droughts, have become characteristics of the Polish cli-

mate. This entails a range of adverse ecological and eco-

nomic effects.

The physiological reaction of plants to drought

Stress factors are environmental factors whose effects can

lead to reversible or irreversible disturbance of the func-

tioning of the plant and its structure. If the severity of the

exposure to the stress factor does not exceed the genetically

determined resistance of the plant, it adopts to the changed

conditions, while a prolonged exposure to the stressor, with

high intensity, can lead to a permanent damage to cells,

tissues, and organs and in extreme cases even to the death

of the whole plant (Chaves and Oliveira 2004).

The deficit of water significantly limits the growth, de-

velopment, and above all, the yielding of crops. Moderate

water stress first causes the inhibition of growth and speed

of cell division in leaves. The rate of growth starts to de-

crease when the water content falls below the point of

tissue saturation with water. A longer stress can lead to

disturbances in the metabolism of plants, in particular in

the photosynthetic activity of the plant. Under drought

conditions, the rate of photosynthesis decreases, which is

probably related to a decrease in the RuBisCo activity, the

reduction of stomata conductance, and reduced availability

of CO2 (Hura et al. 2007; Jones 1998; Kalaji and Łoboda

2010).

At the cellular level, the shortage of moisture results the

disturbance of water balance of the plant by a decrease in

water potential in the cells. Various metabolites which

lower osmotic potential and protect cellular structures are

accumulated (Ozturk and Ayolin 2004). A prolonged and

increasing stress adversely affects the structure of the

chloroplasts, causing the destruction of the thylakoid

membranes, which leads to the damage of photosystems,

mainly of PS II (Krupa and Baszyński 1989; Starck 1995).

The disturbance of cell membranes results in the changes in

the content of ions and various metabolites and overpro-

duction of active oxygen. This can cause a lot of irre-

versible adverse consequences for the plant, including

death of cells and dieback of tissues (Kacperska 1996,

2004).

In the conditions of water deficit, plants reveal the

mechanisms to combat dehydration. First of all, they in-

crease the content of abscisic acid (ABA) and synthesize

stress proteins which protect cell membranes and par-

ticipate in osmoregulation (Farooq et al. 2009; Vierling and

Kimpel 1992). The increase in the concentration of ABA in

cells leads to the reduction of transpiration by closing

stomata and, in extreme cases, to the reduction of the

surface of transpiration through leaf drop. Moreover, ab-

scisic acid has an inhibitory effect on the growth of the

shoots, but at the same time stimulates the growth and

development of roots, which largely helps to overcome

stress (Farooq et al. 2009; Munns and Scharp 1993). Amino

acid proline, which is an important structural component of

the cell wall of higher plants, is a nonspecific substance of

anti-stress activity. Its protective activity also includes

stabilizing the structure and function of cell membranes in

the stage of cell dehydration, and maintaining a constant

level of pH in the cytoplasm. A substantial and rapid ac-

cumulation of this amino acid occurs in the cells in the

conditions of water deficit. Due to their osmoregulation

properties, plants can efficiently extract water from the soil

and retain it longer (Bokhari and Trent 1985; Karolewski

1996). According to Hanson and Hitz (1982), the level of

free proline in the leaves subjected to water stress is by 20-

to 100-fold higher than in well-hydrated leaves. This amino

acid also accelerates the repair of damages in the restitution

stage (Bandurska 1999). Young plants accumulate more

proline than older ones under drought conditions (Ban-

durska et al. 2008; Karolewski 1996).

The regulation of gene expression which contributes to

changes in the metabolism of carbohydrates is an important

mechanism for the acclimation of plants to the changing

environmental conditions. According to Paul et al. (2001),

disaccharide trehalose is essential to regulate the photo-

synthesis processes and distribution of photoassimilates, as

well as to increase the resistance of plants to drought.

Trehalose is commonly found in fungi, microorganisms,
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and higher plants, including poikilohydric grasses. The use

of the latest research methods and modern equipment with

high sensitivity revealed the prevalence of this substance in

plants subjected to drought stress (Starck 2010).

Adaptation and acclimatization

The survival of the plant and produce of the agricultural

yield in the environment including a stress factor depend

on the plant resistance to a stressor. This depends on three

basic elements: properties of the organism, which deter-

mine the vulnerability or strength of its structures to stress,

the organism’s ability to damage reparation, and to adap-

tation or acclimatization (Kacperska 1991; Starck 1995).

Adaptation results from the changes in the genome of an

individual in the course of evolution, resulting from mu-

tations or breeding. It is a steady process which leads to the

differentiation of plants in terms of morphology and

metabolism, the examples being succulents, sclerophytes,

or ephemerides. On the other hand, acclimatization in-

volves the modification of the structure and functions of the

individual during its ontogeny in response to a stress factor,

and is not inherited. It allows for minimizing the damage

and a better adaptation to environmental conditions (Han-

son and Nelsen 1985).

Both adaptation and acclimatization may be the result of

two adaptation strategies, i.e., the ability of stress avoid-

ance and tolerance to its effects. Avoiding stress involves

producing chemical or physical barriers which protect the

plant from dehydration or prevent the stressor from enter-

ing tissues or cells, for example, by adjusting the life cycle

to seasonal changes in environmental conditions. This

phenomenon involves, for example, a very early flowering

and seeds forming before the period of the greatest severity

of drought, which can be observed, for example, in some

Mediterranean cultivars of Dactylis glomerata (Volaire and

Leliévre 2005). Plants adapt to an increasing water scarcity

by the reduction of transpiration and efficient water uptake,

conduction, and storage (Blum 2009). In most of grasses,

the root system is adapted to absorption of a large amounts

of water from a relatively small area due to fact that the

main root mass is situated in the upper soil layer

(0–20 cm). In contrast, the species considered to be resis-

tant to drought are characterized with well-developed roots

which can reach down to the depth of 2 m, like in Festuca

arundinacea (Carrow 1996; Eagles et al. 1999; Hull 1997;

Thomas 1994; Wilman et al. 1998). The reduction of

transpiration occurs through closing the stomata, increasing

the thickness of the cuticle, covering the leaves with to-

mentum, and limiting the size or reducing the number of

leaves.

Photosynthetic activity of pasture grasses
under drought stress

Physiological processes occurring in plants under stress can

be examined with a number of methods. The most thorough

methods examine the process of photosynthesis, which is one

of the most important processes in plants, but at the same

time, it is particularly sensitive to stress factors (Kalaji and

Łoboda 2010). Under optimal growing conditions, the yield

of plants depends on the intensity of this process and is re-

duced by the loss of biomass resulting from respiration

(Lawlor 1995, Nalborczyk 1996). The impact of drought on

the intensity of gas exchange depends on its duration, level of

activity, and the physiological age of leaves. The size of

assimilation area, the length of life, and the period of the

capacity of assimilation organs to efficient photosynthesis

also play an important role in biomass production. A young

leaf becomes a producer only when it reaches half of the final

size, and an aging leaf ceases to be a donor of assimilates.

During this period, young leaves of the plants of C3 photo-

synthesis export about 50–60 %, and the leaves of plants

with C4 photosynthesis up to 80 % of assimilates (Starck

2002). The first symptoms of turgidity loss appear first on

older leaves and they, first of all, reduce photosynthesis and

translocation of assimilates. In the initial period of drought,

reductions in gas exchange of plants are caused by closing of

stomata, while under the conditions of prolonged stress,

there are disorders in cellular metabolism. According to

Kacperska (1991), inhibition of photosynthesis is one of the

features of plants, which has a high diagnostic value and can

help to assess the response of plants to stress. Also Nalbor-

czyk (1996) indicates that the analysis of the evolution of gas

exchange in the canopy during the growing season of plants

should be the starting point in the study on increasing the

productivity of plants. It could also become a background for

considerations on the impact of agronomic factors.

Reduction of the intensity of photosynthesis and tran-

spiration in fodder grasses under drought stress was indi-

cated by many authors (Jones et al. 1980, Olszewska 2006,

2009, Xu and Zhou 2005). According to Olszewska et al.

(2010), among the tested species of grasses (Lolium

perenne, Dactylis glomerata, Festuca pratensis, Phleum

pratense, and Arrhenatherum elatius), the largest decrease

in CO2 assimilation under water stress was found for F.

pratensis, while in D. glomerata, the reduction was small

and insignificant. Similar dependencies occurred in the

course of transpiration. In the research of Rumasz-Rudnicka

(2010), the irrigation of Lolium westerwoldicum caused the

increase in the intensity of photosynthesis by 28 %, and

transpiration by about 64 % (Table 1). Own studies also

showed a large reduction in the intensity of photosynthesis

and transpiration in D. glomerata, F. pratensis, Festulolium
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braunii, and Lolium multiflorum under the conditions of

limited soil moisture (Staniak 2013). The biggest inhibition

of the photosynthesis process was found in F. braunii (on

average by 46 %), and the smallest in D. glomerata (on

average by 27 %). All grasses reacted strongest in the cri-

tical period—the shooting stage (Figs. 2, 3).

Yielding of forage grasses under drought stress

From the point of view of yielding biology, a plant resistant

to stress is characterized by a high yielding stability, i.e., in

adverse environmental conditions, it yields a little lower

than the yield of the plants grown under optimal condi-

tions. Such plants are capable of maintaining the life pro-

cesses at almost the same level in the environmental

conditions much different from the optimal (Dziadczyk

2002).

Yielding of forage grasses is closely dependent on soil

moisture, i.e., they react to a higher water content in the

soil with a significant increase of yield (Jurek 1994; Ol-

szewska 2009; Olszewska et al. 2010; Staniak 2013). The

composition of the sward is also very important. The more

species-rich communities produced more biomass as a re-

sult of a large and positive complementarity effect that

outweighed a small negative selection effect (Van Peer

Table 1 Effect of soil moisture on intensity of photosynthesis, transpiration, and water-use efficiency in L. westerwoldicum (Rumasz-Rudnicka

2010)

Specification Irrigation I regrowth II regrowth IIIregrowth Mean

Intensity of photosynthesis net [lmol CO2 m-2 s-1] ? 5.98b 12.61b 11.47a 10.02b

– 4.08a 9.19a 10.31a 7.86a

Intensity of transpiration [mmol H2O m-2 s-1] ? 3.45b 1.31b 2.76b 2.51b

– 2.09a 1.05a 1.48a 1.54a

Water-use efficiency WUE [mmol mol-1] ? 1.81a 10.64a 4.22a 4.16a

– 2.71a 9.44a 9.52b 5.83b

Values in the same column followed by a different letter are significantly different (p\ 0.05; Tukey’s test)
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et al. 2004]. The daily demand of grasses for water ranges

from 0.5 to 3.0 kg/m2, and the amount of the transpired

water per 1 m2/year of turf grass is almost 1000 kg (Tho-

mas 1994). The literature data show that the droughts in

Poland, especially in the summer, accompanied by high

temperatures, may cause a decrease in the yield of grasses

by about 30 % (Łabędzki 2006b). The yield is an excellent

measure of the tolerance to such a shortage of water, which

reduces the growth, but does not lead to drying of the plant,

which is very common in our climatic conditions. In

agricultural practice, the reduction in yield caused by a

specific stress factor is the best indicator of the tolerance to

this stress (Dziadczyk 2002). The studies of Olszewska

et al. (2010) showed that long-term water stress conditions

(35 % FWC) caused a significantly reduction in the

yielding of five pasture grass species. The smallest reduc-

tion in dry matter yield was recorded for L. perenne (49 %)

and the highest for F. pratensis (68 %) (Fig. 4). Own re-

search (Staniak 2013) has also shown that the prolonged

drought stress (40 % FWC) significantly reduces the yield

of grasses (Fig. 5). Among the four studied species, the

smallest decrease in the yield of dry matter was found in D.

glomerata (28 %), and the largest in F. braunii (40 %).

Also Madziar and Latanowicz (1996) indicated D. glom-

erata as a species which is significantly more resistant to

drought than F. pratensis and Ph. pratense. Kochanowska-

Bukowska (2001) reported on significant differences in the

yielding of different grass cultivars within a species. Ac-

cording to this author, among the four cultivars of D.

glomerata, the highest yields, both under the conditions of

shortages, as well as the optimum soil water content, were

recorded for Astera cultivar, and the lowest for Potomac

cultivar (Fig. 6). Taking the decrease of yield as a criterion

to measure the resistance may be useful for the final

evaluation of the effectiveness of breeding procedures
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based on specific resistance criteria, which have a high

selection value. However, it should be noted that the level

of agricultural yield results from the interaction of geno-

type with different environmental factors occurring during

the entire growing season. Only conducting the studies

under controlled conditions allows to eliminate the effect

of other environmental factors and to limit the duration of

soil drought to a specific time or development stage (Araus

et al. 2002; Kacperska 1991).

Regrowth after dehydration

The ability to regrow after drought is an important feature

of grasses. Together with the water loss, the organism

gradually inhibits metabolic processes, and during the re-

absorption, the organism is rapidly hydrated and metabolic

processes are reactivated. The degree of dehydration tol-

erance shows the differences in the resistance of different

species and grass cultivars to stress, but it can also indicate

adaptation possibilities of plants. Drought-tolerant species

are able to survive about 30 % dehydration, while main-

taining the ability of complete regeneration after hydration,

while the plants tolerating dry up survive the loss of even

92 % of water and show the ability to rehydrate and

quickly restore vital signs. These are so-called poikilohy-

dric plants (resurrective), which include some of the types

of desert grasses, such as Sporobolus, Eragrostis, and

Oropetium (Bernacchia and Furini 2004). Dried grasses

can survive up to 2 years, and after rehydration, a regen-

eration of intensity of basic physiological processes occurs

within a few dozens of hours. One of the conditions for the

survival of such a strong dehydration of these plants is a

protection against destruction of genetic apparatus and cell

membranes, mainly by the participation of different stress

proteins, or by an increase in the concentration of the cell

sap in the cytosol, resulting, among others, from the syn-

thesis of large amounts of carbohydrates (Starck 2005).

Leaf buds, which tolerate much lower values of the

osmotic potential than the fully developed leaf blade, and

which initiate the subsequent regrowth of plants, are the

key organs that determine survival of periods of water

shortages in the grasses. The dieback of leaves during the

prolonged absence of water facilitates the movement of

proteins, fats, and other macromolecules to the organs such

as buds of young leaves, flowers or seeds, from which the

plant will be able to regenerate after receding of drought

(Volaire 2003). The own results showed that pasture

grasses such as D. glomerata, F. pratensis, F. braunii, and

L. multiflorum, after a prolonged drought stress in the first

year of growth, achieved a full recovery in the second year

of vegetation characterized by an optimum soil moisture

(70 % FWC), and the obtained yields of dry matter were on

average by 7.5 % higher than those with the grasses not

subjected to stress (40 % FWC) in the first year (Table 2).

L. multiflorum showed the best regeneration abilities (yield

increase by 11.5 %), while F. braunii the weakest (yield

increase by 3.8 %) (Staniak 2013).

Breeding grasses for resistance

We have no influence on the occurrence of drought, but we

can to some extent modify the sensitivity of plants to ex-

treme weather conditions, among others, by the appropriate

use of soil, rational water management, adaptation of crops

to natural habitats, or the appropriate location of farms. The

water needs of plants can greatly reduce also a biological

progress in agriculture, because an increase in agricultural

production must not be accompanied by an increase in

water consumption. The introduction of the ‘‘thrifty’’ cul-

tivars with greater efficiency and lower habitat and agro-

nomic demands allows the cultivation of such plants in

smaller areas, with no major losses in productivity and

lower stress on the environment. Advances are being made

in breeding cultivars resistant to biotic and abiotic stresses,

including drought. At present, due to using the techniques of

genetic engineering, it is possible to introduce genes which
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increase tolerance to adverse environmental factors into the

genome of plants susceptible to environmental stress. High

hopes are laid onto intraspecies and interspecies hybrids,

which combine advantageous features of the parental spe-

cies in their genome. They are a valuable source of variation

for increasing resistance to abiotic and biotic stresses. One

of such hybrids is Festulolium braunii, the effect of the

crossing of L. multiflorum and F. pratensis (Sulinowski

1968). Parent species easily intersect and their chromo-

somes have sufficient homology, so they can be conjugated

and recombined in the hybrids. The works on the complex

hybrids of Lolium–Festuca have been conducted for many

years in various research centers in Poland (Zwierzykowski

et al. 1998, 1999) and in Europe (Fojtik and Vacek 1983;

Ghesquière et al. 1996; Jadas-Hecart et al. 1991; Levis et al.

1973; Netzband 1990; Thomas and Humphreys 1991).

Breeding plants resistant to soil drought are very com-

plex because the genes responsible for the reaction of

plants to water stress are located in different chromosomes

and their activity is sometimes coupled with the influence

of other genes. In addition, the final effect is strongly

modified by environmental conditions and depends on the

plant development stage (Dziadczyk 2002). According to

Maximov (cited by Gej 1961), each plant organ is the most

sensitive to water shortage in the most intense phenophase.

This is a critical period when the plant is extremely sen-

sitive to the stress factor. In the case of forage grasses, this

period occurs at the end of vegetative development and the

beginning of the creation of generative organs (Staniak

2013). The studies of Jurek (1994) showed that the course

of phenomena related to the effects of water deficit on the

growth and development of the perennial plants, such as

grasses, should be tested taking into account the time

factor, as young plants (in the first year of utilization) re-

spond differently to older plants (in the third year of uti-

lization) (Table 3). The own studies using different

cultivars of D. glomerata, F. pratensis, F. braunii, and L.

multiflorum also showed that young plants in the first year

of vegetation were less responsive to drought (yields lower

by an average of 35 %) than older plants in the second and

third year of use (yields lower by an average of 49 %)

(Staniak 2013).

Summary

Knowledge of the basic physiological and genetic reactions

of grasses to various environmental factors is insufficient.

More frequent drought periods in Poland and other coun-

tries indicate the need for doing research to find out about

the reactions of individual species and cultivars of forage

grasses to adverse environmental factors and about their

adaptation and acclimatization capacities to the changing

conditions. This will allow for the selection of species

Table 2 Dry matter yield of

grasses depending on the

moisture level of the soil (own

study)

Species DM yield in the first year (g pot-1) DM yield in the second year (g pot-1)

K* 70 % FWC 40 % FWC K 70 % FWC 70 % FWC

g % g %** g % g %

Dactylis glomerata 107.4 100 72.5 67.5 123.7 100 132.6 107.2

Festuca pratensis 121.0 100 74.5 61.6 129.8 100 139.6 107.5

Festulolium braunii 132.3 100 76.4 57.7 133.4 100 138.4 103.8

Lolium multiflorum 151,4 100 87.5 57.8 133.3 100 148.6 111.5

Mean 128.0 100 77.7 61.2 130.0 100 139.8 107.5

* K control object

** % relative yield in relations to the control object

Table 3 Yielding capacity of

different cultivars of L. perenne

under drought stress (Jurek

1994)

Cultivar The first year of utilization The second year of utilization

Yielding capacity* Coefficient of variation Yielding capacity Coefficient of variation

Anna 69.97a 16.34 40.38a 16.12

Argona 63.55b 15.19 39.67a 12.65

Nadmorski 60.31bc 19.70 37.38ab 20.57

Arka 56.90c 21.53 33.08bc 18.29

Maja 49.87d 33.53 25.77cd 27.08

Solen 47.46d 26.22 29.13d 15.96

Values in the same column followed by a different letter are significantly different (p\ 0.05; Tukey’s test)

* The percent of dry matter yield of plants under drought stress (35 % FWC) as compared to the control

(60 % FWC)
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which are more resistant to drought and breeding cultivars

with higher adaptation capabilities and higher tolerance to

water deficits in the soil.
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Mizak K, Łopatka A, Koza P, Wróblewska E (2012) Funda-
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Kozyra J, Doroszewski A, Nieróbca A (2009) Climate change and

their expected impact on agriculture in Poland. Studia Rap

IUNG-PIB Puławy 14:243–257
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Łabędzki L (2006a) Agricultural droughts—an outline of problems

and methods of monitoring and classification. Woda Środ Obsz
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Łabędzki L (2006b) Droughts and floods—a threat to agriculture. In:

Water in the agricultural landscape. Woda Środ Obsz Wiej,
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