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LAPTH, Université de Savoie, CNRS,

B.P. 110, F-74941 Annecy-le-Vieux Cedex, France

E-mail: drummond@lapp.in2p3.fr

Abstract: We introduce and solve an infinite class of loop integrals which generalises

the well-known ladder series. The integrals are described in terms of single-valued poly-

logarithmic functions which satisfy certain differential equations. The combination of the

differential equations and single-valued behaviour allow us to explicitly construct the poly-

logarithms recursively. For this class of integrals the symbol may be read off from the

integrand in a particularly simple way. We give an explicit formula for the simplest gener-

alisation of the ladder series. We also relate the generalised ladder integrals to a class of

vacuum diagrams which includes both the wheels and the zigzags.

Keywords: Scattering Amplitudes, Integrable Equations in Physics

ArXiv ePrint: 1207.3284

Open Access doi:10.1007/JHEP02(2013)092

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81564497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:drummond@lapp.in2p3.fr
http://arxiv.org/abs/1207.3284
http://dx.doi.org/10.1007/JHEP02(2013)092


J
H
E
P
0
2
(
2
0
1
3
)
0
9
2

Contents

1 Introduction 1

2 Generalised ladder integrals 3

3 Single-valued polylogs 6

4 The shuffle Hopf algebra and harmonic polylogs 7

5 Solving the differential equations 9

6 Imposing single-valued behaviour 11

6.1 a1 = 0 12

6.2 a1 = 1 14

7 The depth 3 family 15

8 Single-valued polylogs and the KZ equation 17

9 A conformal generalisation 19

10 Two-point limits and vacuum graphs 20

11 Summary 24

A Discontinuities of harmonic polylogarithms 25

1 Introduction

In perturbative quantum field theory, loop integrals play a central role. In order to study

correlation functions or scattering amplitudes, the basic physical quantities of a quantum

field theory, it is often the case that one needs efficient techniques for evaluating certain

classes of diagrams in terms of explicit functions of the kinematical data, i.e. the particle

momenta or positions.

There exist powerful techniques for constructing loop integrands for scattering am-

plitudes (see e.g. [1–4]). It is often the case that corresponding integrals and amplitudes

evaluate to multi-dimensional polylogarithms, or iterated integrals. Even at low loop or-

ders, it is a non-trivial step to pass from this representation of the amplitude to one in

which the multi-dimensional polylogarithms become explicit. An explicit representation is

often desirable to allow straightforward analysis of physically interesting regimes, such as
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the OPE behaviour of correlation functions or Regge limits of scattering amplitudes, as

well as for numerical evaluation.

When the relevant class of functions of the kinematical data is known in advance

then it is often the case that quite powerful techniques can be applied to characterise an

amplitude, or a given integral, in terms of functions from that class. An example that has

been successfully employed in several recent works on amplitudes [5–10] is the notion of the

symbol [11–13], or more generally the Hopf structure [14] associated to multi-dimensional

polylogarithms.

It would be very desirable, when given an expression in terms of loop integrals, to

pass directly from the integrand to the symbol of the associated function. Here we will

present a non-trivial class of integrals where the symbol can be read off immediately from

the integrand in a very simple way. One class of diagrams that has been known for a long

time [15, 16] is the set of ladder integrals. The integrals we will introduce are a natural

generalisation of the ladder integrals and we will show how explicit solutions for the entire

class can be obtained in terms of harmonic polylogarithms.

The use of differential equations in the study of loop integrals has a long history (for

a discussion see e.g. [18]). The equations we study here are for off-shell integrals and

are second-order inhomogeneous equations which relate L-loop integrals to (L − 1)-loop

integrals. They were used in [19] to prove relations between different integrals. Similar

equations for on-shell integrals were derived and studied in [20].

The solutions to the differential equations are not unique. An interesting feature of

the class of generalised ladders is that the additional information required to select the

correct solution comes from the fact that the associated functions must be single-valued.

The single-valued polylogarithmic functions we obtain here are a family of generalisations

of the Bloch-Wigner dilogarithm, which describes the simplest integral in the class of

generalised ladders.

The map from the integrand to the symbol of the underlying function can be phrased

quite succinctly in the language of the shuffle Hopf algebra. From the integrand one reads

off a word constructed of letters drawn from the set {0, 1}. Applying some basic Hopf

algebra operations leads to a sum of products of harmonic polyogarithms. The function

obtained from these operations agrees with the correct result up to terms containing explicit

multi-zeta values multiplied by harmonic polylogarithms of lower degree. More precisely,

the functions obtained obey the necessary differential equations but are not single-valued.

In order to construct the extra terms one must look at the discontinuities of the obtained

functions and ensure that the solutions of the differential equations are indeed single-valued.

One interesting application of these results is in the study of vacuum integrals. In fact,

the generalised ladder integrals we introduce here have finite two-point limits which are

dual to the generalised zigzag vacuum diagrams studied in [35]. This is an infinite family

of vacuum diagrams which includes the wheel graphs and zigzag graphs. The zigzags are

particularly interesting in that an all-loop formula was conjectured in [34] in terms of simple

odd zetas only with a precise rational coefficient. They are also the only graphs in the class

which appear as vacuum graphs of the φ4 theory. The methods discussed in this paper

allow us to test this conjecture to quite high loop orders and will hopefully shed light on

the simple structure of the transcendental numbers that appear.
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The structure of this paper is as follows. In section 2 we review the structure of

the ladder integrals and introduce the generalised ladders. We describe the differential

equations satisfied by this class of integrals. In section 3 we show that the relevant functions

are single-valued polylogarithms and prove that this property fixes the solution of the

differential equation uniquely. Then we introduce the concepts of the shuffle Hopf algebra

and harmonic polylogarithms in section 4 and use them to express a simple integrand-

to-symbol map for the generalised ladders in section 5. We then discuss the problem of

imposing the correct single-valued behaviour in section 6, showing that this can be achieved

systematically in a recursive manner. In section 7 we give an explicit solution for the

simplest examples of integrals in the class which are not ladders, the depth 3 integrals. In

section 8 we describe the relation of the problem to the Knizhnik-Zamolodchikov equation

and the classification by Brown of single-valued polylogarithms. In section 9 we give a

generalisation of the family of generalised ladders which is most natural in terms of four-

point conformal integrals and for which the methods discussed in this article apply equally

well. In section 10 we discuss the relation to vacuum graphs and discuss a conjecture about

the transcendental structure of the zigzag graphs due to Broadhurst and Kreimer.

Note added. This work was presented recently at Quantum Field Theory, Periods and

Polylogarithms III, held in honour of David Broadhurst’s 65th birthday. At this meeting I

learned of closely related work by O. Schnetz [21]

2 Generalised ladder integrals

Let us begin with the ladder integrals depicted in figure 1. We can represent the L-loop,

four-point ladder integral in terms of dual coordinates in the following way,

I(L)(x0, x1, x2, x3) =
1

π2L

∫

1

x2b12

L−1
∏

i=1

(

d4xbix
2
03

π2x2bibi+1
x2bi0x

2
bi3

)

d4xbL
x2bL0x

2
bL1

x2bL3
. (2.1)

Here the integration vertices are labelled xb1 , . . . , xbL while x2ij denotes the square distance

(xi − xi)
2 in four-dimensional Euclidean space. Since each integration vertex has four

propagators attached the integral is conformally covariant and we may express the result

as follows

I(L)(x0, x1, x2, x3) =
1

x203x
2
12

Φ(L)(s, t) . (2.2)

Here s and t are the two conformally invariant cross-ratios,

s =
x202x

2
13

x212x
2
03

, t =
x201x

2
23

x212x
2
03

. (2.3)

Note the numerators in (2.1), which are not explicitly depicted in figure 1, ensure that the

full integral has conformal weight 1 at each of the external vertices, in agreement with (2.2).

Since the integral is conformally covariant we lose no information by sending the point x3
to infinity. Doing so we obtain the horizontal ladder diagram,

I(L)(x0, x1, x2) =
1

π2L

∫

1

x2b12

L−1
∏

i=1

(

d4xbi
π2x2bibi+1

x2bi0

)

d4xbL
x2bL0x

2
bL1

, (2.4)
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Figure 1. The four-point ladder integrals with the associated four-point and three-point dual

diagrams.

which is expressed in terms of the same function Φ(L),

I(L)(x0, x1, x2) =
1

x212
Φ(L)(u, v) . (2.5)

Here u and v are the limits of the cross-ratios as x3 goes to infinity,

u =
x202
x212

, v =
x201
x212

. (2.6)

We will now describe a larger set of generalised ladder integrals. Given a word m =

a1 . . . aL−1 with letters ai drawn from the set {0, 1}, we will define a generalised L-loop,

three-point ladder integral in the following way,

Im(x0, x1, x2) =
1

π2L

∫

1

x22b1

L−1
∏

i=1

(

d4xbi
x2bibi+1

x2biai

)

d4xbL
x2bL0x

2
bL1

. (2.7)

Here the integration vertices are labelled xb1 , . . . , xbL while x2ij denotes the square distance

(xi − xi)
2 in four-dimensional Euclidean space. The case where all the ai are zero gives a

three-point horizontal ladder integral.1 This series of integrals can be expressed in terms

of classical polylogarithms [15]. The simplest example of all is where the word is empty

and corresponds to the one-loop ladder integral (or triangle integral). The integrals cor-

responding the alternating words m = 0101 . . . or m = 1010 . . . could be called ‘zigzag’

ladders and are related to the zigzag vacuum integrals as we will see later. Interestingly

the same integrals appear in the case of the supersymmetric ladders studied in [22].

1Strictly speaking these are the planar duals of the three-point horizontal ladder integrals.
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Figure 2. The generalised ladder integrals defined in dual coordinate space.

Translation and rotation invariance together with the scaling dimension tell us that

we can write the integrals as follows,

Im(x0, x1, x2) =
1

x212
Fm(u, v) , (2.8)

where u and v are given by

u =
x202
x212

, v =
x201
x212

. (2.9)

The generalised ladder integrals satisfy differential equations. This can be seen by

applying the Laplace operator at the point x2 and observing that we obtain a delta-function

under the integral [19],

�2
1

x22b1
= −4π2δ4(x2 − xb1) . (2.10)

We therefore find

�2Im(x0, x1, x2) = −
4

x2a12
Im′(x0, x1, x2), (2.11)

where the word m′ is given by chopping off the first letter of m, i.e. m′ = a2 . . . aL−1. In

the case where the word m is empty the right hand side of the above equation becomes

−4/(x202x
2
12). We can compare this with the action of the Laplace operator on the form (2.8)

and obtain [19]

uv∆(2)Fm(u, v) = −c(a1)Fm′(u, v) . (2.12)

– 5 –
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where c(0) = 1 and c(1) = u and the operator ∆(2) is given by

∆(2) = 2(∂u + ∂v) + u∂2
u + v∂2

v − (1− u− v)∂u∂v . (2.13)

It is convenient to use the complex-conjugate variables z, z̄ defined by

u =
zz̄

(1− z)(1− z̄)
, v =

1

(1− z)(1− z̄)
. (2.14)

In terms of these variables the differential equations become,

d(a1)∂z∂z̄fm(z, z̄) = −fm′(z, z̄) . (2.15)

where d(0) = zz̄ and d(1) = (1 − z)(1 − z̄). The functions fm(z, z̄) are related to the

functions Fm(u, v) via

fm(z, z̄) =
z − z̄

(1− z)(1− z̄)
Fm(u, v) . (2.16)

Note that the fm are antisymmetric in the exchange of z and z̄ due to the antisymmetric

prefactor and the symmetry of the variables u and v. In the case that the word m is empty

the equation becomes.

zz̄(1− z)(1− z̄)∂z∂z̄f(z, z̄) = −(z − z̄) . (2.17)

The differential equation (2.15) is not sufficient to fix fm in terms of fm′ . Indeed,

taking into account the antisymmetry of fm we see that if fpart
m is a particular solution

then the general solution is

fm(z, z̄) = fpart
m (z, z̄) + h(z)− h(z̄) (2.18)

for an arbitrary holomorphic function h.

3 Single-valued polylogs

Let us consider the simplest case to see how the remaining freedom can be fixed. The

one-loop ladder (or triangle) integral is given by

I(x0, x1, x2) =
1

π2

∫

d4xb
x20bx

2
1bx

2
2b

=
1

x202
Φ(1)(u, v) . (3.1)

The function Φ(1) can be expressed in terms of logarithms and dilogarithms [23, 24]. It is

convenient to use the variable z and z̄ defined in (2.14),

Φ(1)(u, v) =
(1− z)(1− z̄)

z − z̄
φ(1)(z, z̄) . (3.2)

φ(1)(z, z̄) = 2(Li2(z)− Li2(z̄)) + log(zz̄)(log(1− z)− log(1− z̄)) . (3.3)

One may easily verify that the above function obeys the differential equation (2.17),

zz̄(1− z)(1− z̄)∂z∂z̄φ
(1)(z, z̄) = −(z − z̄) . (3.4)
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In fact the function φ(1) is (up to a factor of 4i) the Bloch-Wigner dilogarithm function.

This function has the special property that it is single-valued as we take z around the points

0 or 1 in the complex plane. This is obvious from the above formula near z = 0. It follows

near z = 1 from the symmetry φ(1)(1− z, 1− z̄) = −φ(1)(z, z̄). An alternative way to state

the same property is that after an analytic continuation defined by treating the variables

z and z̄ as independent complex variables in the formula (3.3) the discontinuities around

z = 0 and z̄ = 0 (and similarly around z = 1 and z̄ = 1) are related,

disczφ
(1) − discz̄φ

(1) = 0 , disc1−zφ
(1) − disc1−z̄φ

(1) = 0 . (3.5)

This property is a special case of a more general phenomenon that the discontinuities of

physical amplitudes are constrained by unitarity and locality of the underlying theory.

The criterion of single-valuedness selects a unique solution to the differential equation.

Consider the general solution

f(z, z̄) = φ(1)(z, z̄) + h(z)− h(z̄) . (3.6)

Imposing that f be single-valued implies

disczh(z) = 0 , disc1−zh(z) = 0 . (3.7)

From the integral formula it is clear that h cannot have singularities at other values of z

which correspond to generic values of {x0, x1, x2}. Moreover one can see that as any of the

points {x0, x1, x2} coincide or go to infinity one can see that the divergences are at worst

logarithmic and so h cannot have poles (including at z = ∞) and hence h must be constant

and therefore drops out in the combination h(z)− h(z̄).

More generally, the L-loop ladders are known [15, 25],

f0L−1(z, z̄) = φ(L)(z, z̄) =
L
∑

r=0

(−1)r(2L− r)!

L!r!(L− r)!
logr(zz̄)(Li2L−r(z)− Li2L−r(z̄)) . (3.8)

and one can easily verify that they obey the differential equations (2.15) and are single-

valued in the same sense as the Bloch-Wigner dilogarithm.

So generically we can see that the functions fm define a family of generalisations of

the Bloch-Wigner dilogarithm, obeying the differential equations (2.15) and single-valued

as we take z around 0 or 1,

disczfm − discz̄fm = 0 , disc1−zfm − disc1−z̄fm = 0 . (3.9)

4 The shuffle Hopf algebra and harmonic polylogs

We will now introduce two concepts which are helpful to describe the generalised ladder

functions. The first is a Hopf algebra based on shuffle relations. The second is a class of

functions known as harmonic polylogs [17] which respect the shuffle product.

The shuffle algebra A is a commutative algebra generated by words of arbitrary length.

The algebra has an identity element which is a generator of length zero. Given two words

– 7 –
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w1 = a1a2 . . . ak and w2 = ak+1ak+2 . . . al the shuffle product ∐∐ is defined as the sum

over all words of length k preserving the orderings of the subsets of letters a1, . . . , ak and

ak+1, . . . , al. That is we have

a1 . . . ak ∐∐ ak+1 . . . al =
∑

σ

aσ(1)aσ(2) . . . aσ(l) (4.1)

where σ is a permutation obeying σ−1(ai) < σ−1(aj) if 1 ≤ i < j ≤ k or if k+1 ≤ i < j ≤ l.

The algebra is naturally graded with the grading equal to the length.

The shuffle algebra admits a Hopf structure. That is we have a coproduct ∆ : A −→

A⊗A which is given by the sum over all deconcatenations of a given word into two pieces,

∆(a1 . . . al) =
l

∑

j=0

a1 . . . aj ⊗ aj+1 . . . al . (4.2)

The coproduct is coassociative

(id⊗∆)∆ = (∆⊗ id)∆ . (4.3)

We also have the antipode S : A −→ A which reverses a word and flips its sign for

words of odd length

S(a1 . . . al) = (−1)lal . . . a1 . (4.4)

We will sometimes use the notation w̃ for the reversed version of w.

We will now briefly describe a special class of iterated integrals, the harmonic poly-

logarithms [17]. Here we need only those integrals defined in terms of words with letters

chosen from the set {0, 1}. If the word is a string of m zeros we have

H(0m;x) =
1

m!
(log x)m . (4.5)

Otherwise we define

H(0, w;x) =

∫ x

0

dt

t
H(w; t) ,

H(1, w;x) =

∫ x

0

dt

1− t
H(w; t) . (4.6)

We take H(1;x) =
∫ x

0
dt
1−t

= − log(1−x). Following common convention we absorb a string

of (p− 1) zeros preceding a one by replacing the letter 1 by p, i.e. H(0, 0, 1;x) = H(3;x).

Sometimes we use the notation Hw(x) for compactness. The classical polylogs are a special

case of the harmonic polylogs,

Lin(x) = H(n;x) . (4.7)

The harmonic polylogs satisfy the shuffle relation

H(w1;x)H(w2;x) = H(w1∐∐w2;x). (4.8)

We will use the notation ζ(w) ≡ H(w; 1) for w a word made of zeros and ones. In the case

that H(w; 1) is divergent we will use the shuffle algebra to separate off the divergent terms

– 8 –
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H(1; 1) = ζ(1) and then define ζ(1) = 0. Multi-zeta values defined this way are often called

shuffle zeta values and are sometimes denoted by ζ∐∐ (w). For words ending in a one this

definition coincides with the usual definition of the multi-zeta values. For words ending in

a zero, one may use the shuffle relations to relate H(w; 1) to the usual ζ functions with

words ending in ones only. For example we have

ζ(2, 0) ≡ H(2, 0; 1) = H(0; 1)H(2; 1)− 2H(3; 1) = −2ζ(3) . (4.9)

The fact that we have the shuffle relation (4.8) means that the harmonic polylogarithms

provide a representation of the shuffle algebra on words built from zeros and ones. We

can introduce the maps πx and π̃x which take a word w to the harmonic polylogarithms

corresponding to w and w̃ respectively,

πx(w) = H(w;x) , π̃x(w) = H(w̃;x) . (4.10)

The harmonic polylogarithms are examples of more general iterated integrals which

often appear in quantum field theory calculations. The functions come with a degree or

weight, denoted k below, and obey the property that

df (k) =
∑

r

f (k−1)
r d log φr (4.11)

where the sum over r is finite and φr are rational functions and f (0) are rational constants.

If f (k)(x) is a harmonic polylogarithm H(w;x), the φr are always x or (1− x).

Given the above definition we can define the symbol via

Sym(f (k)) =
∑

r

Sym(f (k−1)
r )⊗ φr . (4.12)

For the harmonic polylogarithms H(w;x) the symbol can be read off from the word w

very simply by reversing the order of the word and replacing every 0 by x and every 1

by (1 − x) and finally multiplying by (−1)d where d is the number of 1 elements in the

word w. Since the symbol is so closely related to the word defining a given harmonic

polylogarithm we will use the functions even when we want to describe the symbol of the

function. Two combinations of harmonic polylogarithms of a given weight with the same

symbol will differ only by terms involving explicit multi-zeta values (which drop out of the

symbol as defined above).

5 Solving the differential equations

First we will give a simple way to construct a function with the same symbol as the fm
describing the generalised ladder integrals. Given a word m of length (L− 1) we form the

word of length 2L given by w = m01S(m).

Then we take all deconcatenations of w = a1 . . . a2L,

∆w =
∑

i

a1 . . . ai ⊗ ai+1 . . . a2L , (5.1)

– 9 –
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Figure 3. Reading off the word w associated to a generalised ladder integral. To simplify the picture

the propagators between the integration vertices and the external points have been shortened to

stubs.

and project on the left with πz and on the right with π̃z̄ as defined in (4.10). Then finally

we subtract the same function with z and z̄ exchanged to obtain an antisymmetric function.

Thus we define the ‘top part’,

f top
m (z, z̄) = (πz ⊗ π̃z̄)∆w − (z ↔ z̄) . (5.2)

As we will see in section 8, the top part has an interpretation in terms of the Knizhnik-

Zamolodchikov equation. We will refer to the number of ones in the word w as the depth

of the integral. The depth of the generalised ladders is odd as each one in the word m

counts twice and there is an additional 1 between m and S(m).

Let us see how the function f top
m is constructed on some examples. First we consider

the ladder case where m is a string of (L− 1) zeros, w = 0L−1. The antipode applied to m

gives the word S(m) = (−1)L−10L−1 thus the word w of length 2L is

w = (−1)L−10L10L−1 . (5.3)

Taking all deconcatenations and projecting as above gives us

f top
0L−1

(z, z̄) = (−1)L−1

[L−1
∑

r=0

HL+1,0L−1−r
(z)H0r(z̄) +

L
∑

r=0

H0r(z)HL,0L−r
(z̄)

]

− (z ↔ z̄) .

(5.4)

In fact the ladder case is particularly simple in that the function f top
0L−1

is simply equal to

the known ladder functions φ(L)(3.8). Note that the combinatorial coefficients in (3.8) have

been absorbed into the way the zeros and ones are ordered in (5.4).

Even without knowing the equivalence of f top
0L−1

and φ(L) for general L we can see very

simply that it is true for L = 1. Moreover f top
0L−1

obeys the differential equation,

zz̄∂z∂z̄f
top
0L−1

(z, z̄) = −f top
0L−2

(z, z̄) . (5.5)

Then we can see that f top
0L−1

obeys the single-valuedness criteria (3.9) from the fact that

discxHa1...ak1(x) = 0, discxHa1...ak0p(x) =

p
∑

r=1

Ha1...ak,0p−r(x)
(2πi)r

r!
(5.6)

while

disc1−xHp(x) = (2πi)H0p−1(x) , disc1−xHp,0k(x) = 0 for k > 0 . (5.7)

– 10 –
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This is another way to see that f top
0L−1

must be the ladder function φ(L) = f0L−1 .

Indeed in general we can see that f top
m obeys

d(a1)∂z∂z̄f
top
m (z, z̄) = −f top

m′ (z, z̄) . (5.8)

where m = a1 . . . aL−1 = a1m
′ and d(0) = zz̄ and d(1) = (1−z)(1− z̄). Note that the word

w of length 2L begins and ends with a1, the first letter of m. This is why the prefactor

of the differential operator ∂z∂z̄ only depends on a1. The discontinuities can be checked

using (5.6) and

disc1−xH(a1 . . . ak1;x) = (2πi)H(a1 . . . ak;x) +MZVs ,

disc1−xH(a1 . . . ak0;x) = MZVs , (5.9)

where ‘MZVs’ means terms involving explicit multi-zeta values (i.e. terms with vanishing

symbol in the sense of (4.12)) . The equations (5.6) mean that f top
m (z, z̄) is single-valued

around z = 0, while (5.9) implies that it is single-valued around z = 1 modulo terms

involving explicit multi-zeta values. Thus we find that, modulo terms involving explicit

multi-zetas, the function f top
m is the correct solution to the differential equation for the

generalised ladder functions. To obtain the full function fm(z, z̄) we will, in general, require

additional terms containing explicit multi-zeta values to impose single-valued behaviour

around z = 1.

As an example we give the top part corresponding to the word containing a single 1,

m = 0L−p−210p. Following the procedure described above we find

f top
0L−p−210p

(z, z̄) = (−1)L−1

[L−p−2
∑

r=0

HL−p−1,p+2,p+1,0L−p−2−r
(z)H0r(z̄)

+

p
∑

r=0

HL−p−1,p+2,0p−r(z)HL−p−1,0r(z̄)

+

p+1
∑

r=0

HL−p−1,0r(z)HL−p−1,p+1,0p+1−r(z̄)

+

L−p−2
∑

r=0

H0r(z)HL−p−1,p+1,p+2,0L−p−2−r
(z̄)

]

− (z ↔ z̄) . (5.10)

For this example we will go on to find the explicit multi-zeta terms needed to complete this

function to the full f0L−p−210p describing the associated generalised ladder integral. Before

we do so we will explain some general conditions for imposing single-valued behaviour

iteratively in the family of generalised ladders.

6 Imposing single-valued behaviour

We will now derive a set of constraints which will allow us to fix the ambiguity in solving the

differential equation described in (2.18). We will impose single-valued behaviour iteratively,

that is we will assume that fm′ is single-valued and then we will derive conditions which

imply that fm is also single-valued. The two cases m = 0m′ and m = 1m′ are a little

different so we proceed case by case.
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6.1 a1 = 0

Let us consider the differential equation (2.15) in the case that a1 = 0 (i.e. m = 0m′),

zz̄∂z∂z̄fm(z, z̄) = −fm′(z, z̄) . (6.1)

We will suppose that all the fm are expressible in terms of a finite sum of products of

harmonic polylogarithms evaluated at argument z (an assumption that will be justified a

posteriori). In this sum we will single out the terms which are proportional to a power

of the logarithm of z or z̄, including the power 0, i.e. including any holomorphic or anti-

holomorphic terms, so that for fm′ we have

fm′(z, z̄) = f0
m′(z, z̄) +

∑

α≥0

[

gαm′(z)H0α(z̄)− (z ↔ z̄)
]

. (6.2)

Note that if the first letter of m′ is a 0, the term f0
m′(z, z̄) is always simply obtained by

integrating the corresponding function f0
m′′ from one loop lower,

f0
m′(z, z̄) = −

∫ z

0

dt

t

∫ z̄

0

dt̄

t̄
f0
m′′(t, t̄) . (6.3)

The case where m′ = 1m′′ is even simpler. The function f0
m′ is obtained by integrating the

full function fm′′ from one loop lower,

f0
m′(z, z̄) = −

∫ z

0

dt

1− t

∫ z̄

0

dt̄

1− t̄
fm′′(t, t̄) . (6.4)

We will suppose further that fm′ and all lower loop functions are single-valued func-

tions. In particular we have for the analytic continuation of fm′ ,

(discz − discz̄)fm′(z, z̄) = 0 , (disc1−z − disc1−z̄)fm′(z, z̄) = 0 . (6.5)

The first of these conditions implies

(discz − discz̄)f
0
m′(z, z̄)

+

[

∑

α≥0

[

disczg
α
m′(z)H0α(z̄)− gαm′(z̄)

α
∑

r=1

H0α−r(z)
(2πi)r

r!

]

+ (z ↔ z̄)

]

= 0 . (6.6)

Moreover one can see iteratively that the first term above vanishes on its own. This is

particularly clear in the case m′ = 1m′′ described in (6.4). The function fm′′ is single-

valued by assumption and the relation

discz

∫ z

0

dt

1− t
g(t) =

∫ z

0

dt

1− t
disct g(t) (6.7)

implies

(discz − discz̄)f
0
m′(z, z̄) = 0 . (6.8)

In the case m′ = 0m′′ we find that

discz

∫ z

0

dt

t
g(t) =

∫ z

0

dt

t
disct g(t) (6.9)
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implies (6.8) if fm′′,0(z, z̄) satisfies the same relation which we assume inductively. Hence

we find,

(discz − discz̄)f
0
m′(z, z̄) = 0 , disczg

α
m′(z) =

∑

β>α

gβm′(z)
(2πi)β−α

(β − α)!
. (6.10)

From the constraint at z = 1 we find

(disc1−z − disc1−z̄)f
0
m′(z, z̄) +

[

∑

α≥0

disc1−zg
α
m′(z)H0α(z̄)− (z ↔ z̄)

]

= 0 . (6.11)

Now we can write the general solution to the differential equation (6.1) as follows

fm(z, z̄) = −

∫ z

0

dt

t

∫ z̄

0

dt̄

t̄
f0
m′(t, t̄) +

∑

α≥0

[
∫ z

0

dt

t
gαm′(t)H0α+1(z̄)− (z ↔ z̄)

]

+ h(z)− h(z̄) .

(6.12)

Note that the holomorphic function h corresponds to g0m in the decomposition of fm anal-

ogous to the one for fm′ given in (6.2). Using the constraints (6.10) and the relation (6.9)

we find that single-valuedness of fm around z = 0 follows if

disczh(z) = −

∫ z

0

dt

t

∑

α≥0

gαm′(t)
(2πi)α+1

(α+ 1)!
. (6.13)

To analyse the constraint of single-valuedness around z = 1 we use (6.11) and the

relation

disc1−z

∫ z

0

dt

t
g(t) =

∫ z

1

dt

t
disc1−tg(t) . (6.14)

We find

disc1−zh(z) =

∫ z

1

dt

t

∫ 1

0

dt̄

t̄
disc1−tf

0
m′(t, t̄) = disc1−z

∫ z

0

dt

t

∫ 1

0

dt̄

t̄
f0
m′(t, t̄) . (6.15)

The r.h.s. of the final equality above can be rewritten as disc1−zf
0
m(z, 1) since the holo-

morphic functions gαm drop out after setting z̄ = 1 and taking the discontinuity. It follows

that (6.15) is equivalent to imposing

disc1−zfm(z, 1) = 0 . (6.16)

The constraints (6.13), (6.15) on its discontinuities are sufficient to determine the

function h(z) in terms of the lower loop function fm′(z, z̄). We can give an explicit con-

struction of h(z) which will have the correct discontinuities. Firstly we note that if g0m′ has

an expression in terms of harmonic polylogarithms as follows,

g0m′(z) =
∑

ciH(wi; z) , (6.17)

then the following function,

h0(z) =
∑

i

ciH(0wi0; z) (6.18)
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has the correct discontinuities around z = 0, as given in (6.13). Now, if we have a map

F which takes a combination of harmonic polylogarithms and removes the discontinuity

around z = 0 while preserving the discontinuity around z = 1, we can construct the

function h(z) as follows,

h(z) = h0(z) + F
[

f0
m(z, 1)− h0(z)

]

. (6.19)

We give an explicit construction of the map F in appendix A.

6.2 a1 = 1

Now let us consider the differential equation (2.15) in the case that a1 = 1, i.e.

(1− z)(1− z̄)∂z∂z̄fm(z, z̄) = −fm′(z, z̄) . (6.20)

In that case we may write the general solution as follows,

fm(z, z̄) = −

∫ z

0

dt

1− t

∫ z̄

0

dt̄

t̄
fm′(t, t̄) + h(z)− h(z̄) . (6.21)

Since we have

discz

∫ z

0

dt

1− t
g(t) =

∫ z

0

dt

1− t
disct g(t) , (6.22)

imposing single-valued behaviour for fm at z = 0 amounts to

disczh(z) = 0 . (6.23)

Taking a discontinuity at z = 1 requires a little care. In fact we have

disc1−z

∫ z

0

dt

1− t
g(t) = lim

ǫ→0

[

(2πi)g(1− ǫ) +

∫ z

1

dt

1− t− ǫ
disc1−tg(t)

]

. (6.24)

The regularisation ǫ is needed here in the case that g(t) diverges logarithmically as t → 1,

which happens when the first letter of m′ is also a 1. Of course the combination of both

terms on the r.h.s. above is finite in the limit as ǫ goes to zero. If m′ begins with a 0 then

g(t) is finite as t → 1 and disc1−tg(t) vanishes as t → 1. This case is sufficient for all our

purposes in this paper so to simplify the presentation we assume here that m′ begins with

a 0. Imposing single-valuedness at z = 1 for fm implies

disc1−zh(z) = −(2πi)

∫ z

0

dt

1− t
fm′(t, 1) +

∫ z

0

dt

1− t

∫ 1

0

dt̄

1− t̄
disc1−tfm′(t, t̄) . (6.25)

The formulae (6.23), (6.25) define h(z) in terms of fm′(z, z̄).

Just as in the case where a1 = 0 we may make use of the F map to write an explicit

expression for h(z). We find

h(z) = F

[
∫ z

0

dt

1− t

∫ 1

0

dt̄

1− t̄
fm′(t, t̄)−H1(z)

∫ z

1

dt

1− t
fm′(t, 1)

]

. (6.26)
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Figure 4. The depth 3 family of generalised ladders.

Here the divergent t̄ integral in the first term is regulated by the shuffle regularisation

and we have made use of the fact that disc1−zfm′(z, 1) = 0 which is the constraint (6.16)

applied to fm′ .

Using the methods outlined in this section we can automate the construction of the

single-valued polylogarithms associated to the generalised ladders up to high loop order.

The package HPL [26] is very useful for handling the harmonic polylogarithms. The mul-

tiple zeta value datamine [27] allows one to reduce all multi-zetas obtained into a minimal

basis up to quite high weights. As an example of the integrals one can obtain, the ‘zigzag’

series f1,0,1,0,... can easily be computed up to L = 12 (i.e. transcendental weight 24). In the

next section we will give formulas for the depth 3 series to arbitrary loop order.

7 The depth 3 family

Now let us explicitly construct the single-valued polylogarithms which represent the sim-

plest non-ladder class of integrals, i.e. the depth 3 integrals. This two-parameter family of

integrals is represented by the words m = 0L−p−210p. We will write the full expression for

this class of depth 3 generalised ladders as

fL−p−1,0p(z, z̄) = f top
L−p−1,0p

(z, z̄) + f ex
L−p−1,0p(z, z̄). (7.1)

The function f top
L−p−1,0p

is given explicitly (5.10). Here we will construct the piece

f ex
L−p−1,0p

(z, z̄).

We will start by considering the case L = p + 2 so that the associated word reads

m = 10p. In this case the associated differential equation reads

(1− z)(1− z̄)∂z∂z̄f10p(z, z̄) = −f0p(z, z̄) = −φ(p+1)(z, z̄) . (7.2)
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we see that the r.h.s. is given in terms of the ladder function φ(p+1) which is known ex-

plicitly. Now, on the one hand we have the integral formula (6.21) and on the other the

decomposition formula (7.1) separating the top part from the term containing explicit

multi-zetas. Let us split the function h(z) from the integral formula into a piece coming

from f top and a piece coming from f ex,

h(z) = htop(z) + hex(z). (7.3)

Here we have

htop(z) = (−1)p
[

H1,p+2,p+1(z)−H1,p+1,p+2(z)
]

(7.4)

Comparing the two formulas (5.10), (6.21) we see that f ex receives contributions only from

the single-variable function h(z).

f ex(z, z̄) = hex(z)− hex(z̄) . (7.5)

Now we need to impose the discontinuity constraints (6.23), (6.25) on h(z). Following the

procedure outlined in section 6 we find

hex(z) =

⌊ p−1
2

⌋
∑

m=0

2

(

2(p−m) + 1

p+ 1

)

ζ(2p+ 1− 2m)H1,2m+2(z)

−

(

2(p+ 2)

p+ 2

)

ζ(2p+ 3)H1(z)− 2δp,oddH1,p+1(z)ζ(p+ 2) . (7.6)

The final form for the single-valued polylogarithms associated with this class of of gener-

alised ladder integrals is given by

f10p(z, z̄) = f top
10p

(z, z̄) + hex(z)− hex(z̄) . (7.7)

We can continue to consider the most general depth 3 integrals. This requires solving

the differential equation

zz̄∂z∂z̄fL−p−1,0p(z, z̄) = −fL−p−2,0p(z, z̄) . (7.8)

The r.h.s. is given in terms of functions in the same class at one lower loop, with the

initial term given by the functions (7.7) that we have just solved for above. The general

solution to the equation is given by (6.12). Imposing single-valued behaviour as described

in section 6 we find the following structure for the result,

f ex
L−p−1,0p(z, z̄) = (−1)L−1

L−p−2
∑

α=0

(

qαp,L(z)H0α(z̄)− qαp,L(z̄)H0α(z)
)

(7.9)

with

qαp,L(z) =

L−p−2−α
∑

k=0

[

HL−p−1,p+2,0L−p−2−α−k
(z)cp,k +HL−p−1,p+1,0L−p−2−α−k

(z)dp,k

+

⌊ p
2
⌋

∑

m=1

HL−p−1,2m,0L−p−2−α−k
(z)ep,k,m +HL−p−1,0L−p−2−α−k

(z)tp,k

]

.

(7.10)
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The fact that the coefficients c, d, e, t do not depend explicitly on α and L follows from

imposing single-valued behaviour around z = 0. Imposing single-valuedness around z = 1

allows us to solve for the coefficients c, d, e, t given the boundary case where L = p + 2

above. We find cp,k = 0 if k = 0 or if k + p is odd. For the other coefficients we find

ep,k,m = 0 for k > 0, while tp,k = 0 for k odd. The non-zero values are given by

cp,k = 2(−1)k+1

(

k + p

p

)

ζ(k + p+ 1),

ep,k,m = (−1)p2

(

2p+ 3− 2m

p+ 1

)

ζ(2p+ 3− 2m) ,

tp,k = (−1)p+12

(

2p+ 3 + k

p+ 1

)

ζ(k + 2p+ 3) , (7.11)

while dp,0 = −cp,1 and dp,k = −cp+1,k for k > 0. Note that all coefficients above are

proportional to simple odd zeta values. The full single-valued polylogarithm for the depth

3 case is

fL−p−1,0p(z, z̄) = f top
L−p−1,0p

(z, z̄) + f ex
L−p−1,0p(z, z̄) . (7.12)

Thus we have found explicit single-valued solutions for an infinite two-parameter family of

generalised ladder integrals. The methods of section 6 can be used to extend this result to

higher depth.

8 Single-valued polylogs and the KZ equation

We saw in section 5 that the top part (5.2), or equivalently the symbol in the sense of

equation (4.12), of all the generalised ladders can be very easily constructed just by read-

ing off a word from the diagram. From this labelling word m we construct a word of

length 2L, given by m01S(m). From this word of length 2L we translate directly to the

symbol of the function fm by taking the sum over all deconcatenations and projecting onto

harmonic polylogarithms of z on the left half and harmonic polylogarithms of z̄ on the

reversed right half.

To get from the top part to the full function we saw that in the case of the ladders we

needed to do nothing extra while in the next simplest case, the depth 3 integrals, we had

to carefully make sure that the differential equation was solved by a function obeying the

criterion of single-valuedness. In the depth 3 case this meant that we had extra terms with

explicit appearances of zeta values.

Thus we can capture the essence of the problem by saying we need single-valued poly-

logarithm functions satisfying the tower of differential equations (2.15). A similar problem

is addressed in [29]2 and it can be related to solutions of the Knizhnik-Zamolodchikov

equations. Consider the KZ equation [30],

∂zL(z) =
(x0
z

+
x1

1− z

)

L(z) (8.1)

2I would like to thank Claude Duhr for bringing this reference to my attention.
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for noncommuting variables x0 and x1. The solution can be written

LX(z) =
∑

w∈X∗

H(w; z)w (8.2)

where X∗ is the set of all non-commuting words built from the alphabet X = {x0, x1}. In

the arguments of the harmonic polylogs we treat the letters x0 and x1 as the letters 0 and

1 from section 4. Now consider

L(z, z̄) = LX(z)L̃X(z̄) , (8.3)

where L̃X(z̄) is the series with reversed words,

L̃X(z̄) =
∑

w∈X∗

H(w; z̄)w̃ . (8.4)

If we define

L(z, z̄) =
∑

w∈X∗

Lw(z, z̄)w , (8.5)

then the coefficients Lw in this expansion (once antisymmetrised in z and z̄) correspond

to the functions f top
m (z, z̄) for w = m01S(m). The behaviour of the discontinuities around

z = 0 and z = 1 can be seen [28] from the fact that if we take z around the point 0 then

L(z) transforms to

M0LX(z) = LX(z)e2πix0 , (8.6)

while if we take z around the point 1 we find

M1LX(z) = LX(z)Z−1
X e−2πix1ZX (8.7)

where

ZX =
∑

w∈X∗

ζ∐∐ (w)w , (8.8)

is the Drinfel’d associator. It is essentially L(1) regularised with the shuffle relations. We

can see, therefore, that around z = 0, L(z, z̄) transforms to itself, i.e. is single-valued, in

agreement with the analogous statement about f top(z, z̄) in section 5. Around z = 1 we

see that L(z, z̄) transforms to

M1L(z, z̄) = LX(z)Z−1
X e−2πix1ZX Z̃Xe2πix1Z̃−1

X L̃X(z̄) , (8.9)

and hence is not single-valued around z = 1.

In [29], single-valued polylogarithms were constructed by replacing L̃X(z̄) by L̃Y (z̄)

which is the same series as L̃X(z̄) but built on another alphabet Y = {y0, y1}. Then

imposing that the functions are single-valued around z = 0 and z = 1 implies the relations

between the two alphabets,

y0 = x0 , (8.10)

Z̃Y y1Z̃
−1
Y = Z−1

X x1ZX . (8.11)
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To expand on the above a little, let us write down the generating series up to degree 3. We

have

ZX = 1 + ζ(2)(x0x1 − x1x0)

+ ζ(3)(x0x0x1 − 2x0x1x0 + x1x0x0 + x0x1x1 − 2x1x0x1 + x1x1x0)

+ . . . (8.12)

The relation (8.11) can be solved perturbatively for y1,

y1 = x1 − 2ζ(3)(w3x1 − x1w3) + . . . (8.13)

where w3 is shorthand for the coefficient of ζ(3) in equation (8.12). The ζ(2) part has

dropped out in the above equation due to the antisymmetry of the coefficient of ζ(2)

in (8.12). It follows from the above that

L(z, z̄) = LX(z)L̃Y (z̄) (8.14)

is single-valued around both z = 0 and z = 1. Thus an alternative to the approach we

have followed here is to start from the coeffcients Lw(z, z̄) defined by

L(z, z̄) =
∑

w∈X∗

Lw(z, z̄)w , (8.15)

and build solutions of the differential equation (2.15) from them. Note that unlike for

L(z, z̄) the differential equation we want is not automatic because the action of ∂z̄ intro-

duces the y letters on the right instead of the x letters. Interestingly, this space of functions

is also relevant for the discussion of the Regge limit of the six-particle scattering amplitudes

of N = 4 super Yang-Mills theory [31].

9 A conformal generalisation

We began the discussion with four-point ladder integrals whose dual diagrams exhibit

conformal symmetry. To simplify the diagrams we took the limit where one of the four

points was sent to infinity. We may of course restore the fourth point for the generalised

ladder integrals. Doing so we obtain a four point integral with the fourth vertex x3 attached

to all of the integration points which are in turn attached to either x0 or x1. This suggests

a natural generalisation where each integration point is attached to any two out of the

three point x0, x1 and x3. Such four-point integrals are depicted in figure 5. We keep the

convention that the integrand associated to the graph in figure 5 has numerator factors

x2ij depending only on external points such that the conformal weight at all four external

points is 1. There is a unique assignment of such numerators which ensures this property.

Sending the point x3 to infinity yields a class of three-point integrals where each

integration point is attached to x0 or x1 or both. Such integrals satisfy differential equations

of exactly the same form as described in section 2. The only difference is that, in the case

where the leftmost vertex is attached to both x0 and x1, we obtain an equation of the form

�2Im(x0, x1, x2) = −
4x201
x202x

2
12

Im′(x0, x1, x2) . (9.1)
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Figure 5. Conformal four-point integrals which generalise the three-point ladders introduced in

section 2. Taking the limit x3 → ∞ yields generalised ladders with both three-point and four-point

integration vertices.

In terms of the associated functions fm, we find the equations read

zz̄(1− z)(1− z̄)∂z∂z̄fm(z, z̄) = −fm′(z, z̄) . (9.2)

Taking the prefactor to the right and using partial fractions we see that we can write the

solution as a sum of four terms. It thus makes sense to associate an integration vertex which

is attached to both x0 and x1 to the linear combination of letters 0 + 1. The associated

word m is then given by m = (0 + 1)m′ = 0m′ + 1m′. The general approach outlined in

the previous sections then goes through with only minor adaptations. In particular the top

part is given by the same formula (5.2) with the word w built in the same way from the

word m, i.e. w = m01S(m) (hence the four terms in the differential equation (9.2) after

using partial fractions).

10 Two-point limits and vacuum graphs

We can obtain a two-point integral from one of our three-point integrals by taking a limit

where x2 approaches either x0 or x1. Such a limit will be finite as long as it does not

produce a doubled propagator. Thus in the case of the generalised ladders described in

section 2 the limit x2 −→ x1 is finite in the case a1 = 0 as is the limit x2 −→ x0 in the

case a1 = 1.

Let us consider the case a1 = 0 so that m = 0m′. We have

Vm′

x201
= Im(x0, x1, x1) =

1

x201
lim

x2→x1

vFm(u, v) =
1

x201
lim

z,z̄→1

fm(z, z̄)

z − z̄
=

1

x201
∂zfm(1, 1) .

(10.1)

The final equality gives a simple formula for the normalisation of the two-point function,

Vm′ = ∂zfm(1, 1) . (10.2)
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Figure 6. The finite two-point limit and the associated dual vacuum graph.

Similarly in the case a1 = 1 we have m = 1m′ and

Vm′ = ∂zfm(0, 0) . (10.3)

It is clear from the graph that the normalisation of the two-point integral does not depend

on the first letter of m, hence the notation Vm′ above. Moreover there is also a reflection

about the vertical axis of the graph leading to Vm = Vm̃ and a reflection on the horizontal

axis leading to Vm = Vm̌, where m̌ is the word m with zeros and ones interchanged.

We may associate the number Vm to the vacuum graph obtained from taking the planar

dual of the two-point graph and joining the incoming and outgoing momentum lines. Note

that the vacuum graph gains an additional loop when one glues the incoming and outgoing

lines and so has L + 1 loops. We use the terminology ‘vacuum graph’ here because the

associated graph has no external lines. Such graphs are referred to as ‘primitively divergent’

in the terminology of e.g. [32, 33].

The vacuum residues associated to the ladders give the wheel series,

V0L−2 = WL+1 . (10.4)

where

Wn =

(

2n− 2

n− 1

)

ζ(2n− 3) . (10.5)
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The wheel diagrams are also reproduced by the depth 3 generalised ladders, considered

in section 7, in the case L = p + 2. In fact one can easily see that the only contribution

to (7.7) that survives in the limit z → 0, z̄ → 0 is the the coefficient of H1(z) in (7.6) which

indeed reproduces the wheel formula above.

The full depth 3 series for L > p+ 2 gives the following vacuum graphs,

V0L−p−3,10p = (−1)L−1

[

ζL−p−2,p+2,p+1,0L−p−2
− ζL−p−1,p+2,p+1,0L−p−3

+

p
∑

r=0

(

ζL−p−2,p+2,0p−rζL−p−1,0r − ζL−p−1,p+2,0rζL−p−2,0r

)

+

p+1
∑

r=0

(

ζL−p−2,0rζL−p−1,p+1,0p+1,r − ζL−p−1,0rζL−p−2,p+1,0p+1−r

)

+ ζL−p−1,p+1,p+2,0L−p−3
− ζL−p−2,p+1,p+2,0L−p−2

)

+

L−p−2
∑

k=0

(

ζL−p−2,p+2,0L−p−2−k
cp,k + ζL−p−2,p+1,0L−p−2−k

dp,k

+

⌊
p
2 ⌋

∑

m=1

ζL−p−2,2m,0L−p−2−k
ep,k,m + ζL−p−2,0L−p−2−k

tp,k

)

]

.

(10.6)

The top four lines come from the derivative of f top
L−p−1,0p

while the final two lines come from

the derivative of f ex
L−p−1,0p

. The explicit form of the coefficients c, d, e, t was given in (7.11).

Note that the only multi-zeta values which are not products of lower weight zetas come

from the contribution of f top. The multi-zeta values with trailing zeros can be expressed

in terms of those without by using the shuffle relations. The depth 3 vacuum graphs are

related to the G-graphs of [34].

The series Im wherem is an alternating sequence of ones and zeros is of interest because

its coincidence limit reproduces the zigzag series of vacuum graphs (after taking the dual

and closing the loop). For even L we have

V0,1,0,...,0,1 = V1,0,1,...,1,0 = ZL+1, (10.7)

while for odd L we have

V1,0,1,...,0,1 = V0,1,0,...,1,0 = ZL+1 . (10.8)

The zigzag vacuum graphs were conjectured in [34] to be given by

Zn =
4(2n− 2)!

n!(n− 1)!

(

1−
(−1)n

22n−3

)

ζ(2n− 3) . (10.9)

Using the methods described in section 6 we have verified this conjecture to ten digit

precision3 up to 13 loops for the vacuum graphs, i.e. transcendental weight 23. Note that,

3Although higher precisions are often required to distinguish different linear combinations of multi-

zetas, here we are testing a conjectured simple zeta with a precise rational coefficient so this precision

seems perfectly adequate for our purposes.
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despite the fact that the zigzag graphs are of very high depth, the resulting vacuum residues

are conjecturally simple zetas only. In fact we observe a similar simplicity in constructing

the single-valued polylogarithms for the generalised ladders where m is an alternating

sequence of zeros and ones; the only explicit multi-zeta values which appear are odd simple

zetas for odd weights and products of two odd simple zetas for even weights.

The generalised ladders give a large family of vacuum graphs that contains both the

wheel and zigzag series. Such vacuum graphs have been called generalised zigzags [35].

The discussion above and of section 8 shows that we have related all these graphs to the

derivatives at z = 1 (or z = 0) of the single-valued polylogarithms associated to the words w

describing the generalised ladder graphs. From section 5 we have seen that these functions

can be described in terms of a top part, which can be read off straightforwardly from the

graph, and an extra part which involves explicit multi-zeta values. From (10.2) we see that

Vm′ = ∂zf0m′(1, 1) = ∂zf
top
0m′(1, 1) + ∂zf

ex
0m′(1, 1) . (10.10)

Almost all terms in the above formula are products of multi-zetas of lower weights.

The only terms which are not immediately products come from the contribution due to f top

and are given by the extreme and next-to-extreme terms in the deconcatenation coproduct

of the word w in equation (5.2). They are given explicitly by the formula,

Vm′ = (−1)L−1
[

ζ
m′01m̃′0 − ζ

m′10m̃′0 + ζ0m′10m̃′ − ζ0m′01m̃′

]

+ products. (10.11)

Using the fact that

ζ(w) = −ζ(S(w)) + products, (10.12)

we find

Vm′ = 2(−1)L
[

ζ0m′01m̃′ − ζ0m′10m̃′

]

+ products. (10.13)

In the case of the zigzag graphs with L even we have

V1,0,1,0,...,0 = 2
[

ζ2L/2−132L/2−1
− ζ2L/232L/2−2

]

+ products, (10.14)

where 2r denotes a string of r twos. Schnetz has observed [21] that if we drop all product

terms, the result of Zagier [36] implies the result (10.9). Zagier’s formula tells us4

ζ2b32a =2(−1)a+b+1

[(

2(a+ b+ 1)

2a+ 2

)

−
(

1−
1

22(a+b+1)

)

(

2(a+ b+ 1)

2b+ 1

)]

ζ2(a+b+1)+1

+ products , (10.15)

which, leads to (recall L is even)

V1,0,1,0,...,0 = ZL+1 + products. (10.16)

In agreement with (10.9). Similarly if L is odd we obtain

V1,0,1,0,...,1 = 2
[

ζ2(L−1)/232(L−3)/2
− ζ2(L−3)/232(L−1)/2

]

+ products , (10.17)

which implies

V1,0,1,0,...,1 = ZL+1 + products. (10.18)

4Note that our conventions for the ordering of the labels in the multi-zeta values differ from those of [36].
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Figure 7. The conformal three-point stars that can be obtained by a finite limit from the four-point

conformal integrals of section 9.

Thus the test of (10.9) described above is essentially a test that the product terms actually

vanish. It remains to show analytically that the products do indeed vanish to all loops. It

is reasonable to hope that the methods described in this paper will allow for such a proof.

Given the considerations of section 9 we can state more generally that we can apply the

methods described here to derive the value of all three-point conformally covariant graphs

which have all integration vertices arranged in a line and no numerators (see figure 7).

11 Summary

We have discussed the class of generalised ladder integrals and the differential equations

that they satisfy. The ambiguity in solving the differential equation is fixed by the fact that

the solutions are given by single-valued polylogarithms, which generalise the Bloch-Wigner

dilogarithm. The symbols of the corresponding functions can be immediately related to

the associated integrands via some simple operations which arise naturally from the shuffle

Hopf algebra. The ‘top part’ or, equivalently, the symbol, is related in a simple way

to a solution of the Knizhnik-Zamolodchikov equation. The additional terms involving

explicit multi-zeta values can be fixed recursively by imposing single-valued behaviour on

the solutions of the differential equations. We have given an explicit construction of an

L-loop function from an (L − 1)-loop function. In particular we have given an all-loop

formula for the depth 3 integrals, the simplest integrals in the class which are not ladders.

The results for the generalised ladders can be applied to derive an infinite class of

vacuum diagrams, the generalised zigzags, or more generally, following the relation to con-

formal four-point integrals, all conformal three-point stars with a linear integration vertex

topology and no numerators. In particular we have tested the conjecture of Broadhurst

and Kreimer for the form of the zigzag diagrams and offer a method for deriving that series

of diagrams.
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A Discontinuities of harmonic polylogarithms

Here we describe the map F we used in constructing the holomorphic function h(z) in

section 6. The map takes a linear combination of harmonic polylogs to another combina-

tion of harmonic polylogs with no discontinuity around z = 0 but without changing the

discontinuity around z = 1,

disczF [f(z)] = 0 , disc1−zF [f(z)] = disc1−zf(z) . (A.1)

On harmonic polylogs whose defining word ends in a 1, the map is the identity

F [H(w1; z)] = H(w1; z) . (A.2)

For harmonic polylogs whose defining word ends with a string of zeros we have

F [H(r1, . . . , rd, 0p; z)] =

d−1
∑

k=1

H(r1, . . . , rd−k; z)F (rd−k+1, . . . , rd, 0p) . (A.3)

Here F is a combination of multi-zeta values defined recursively by

F (s1, . . . , sn, 0p) = ζ(s1, . . . , sn, 0p)−
n−1
∑

k=1

ζ(s1, . . . , sk)F (sk+1, . . . , sn, 0p) , (A.4)

while

F (s, 0p) = H(s, 0p; 1) = ζ(s, 0p) . (A.5)

The fact that disczF [f(z)] vanishes is obvious since no harmonic polylogs on the r.h.s.

of (A.3) have trailing zeros. The fact that the discontinuity around z = 1 of F [f(z)]

matches that of f(z) can be justified recursively using (6.14), (6.24).
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