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Abstract

Cochannel speech separation aims to separate two speech signals from a single mixture. In a supervised scenario, the
identities of two speakers are given, and current methods use pre-trained speaker models for separation. One issue in
model-based methods is the mismatch between training and test signal levels. We propose an iterative algorithm to
adapt speaker models to match the signal levels in testing. Our algorithm first obtains initial estimates of source
signals using unadapted speaker models and then detects the input signal-to-noise ratio (SNR) of the mixture. The
input SNR is then used to adapt the speaker models for more accurate estimation. The two steps iterate until
convergence. Compared to search-based SNR detection methods, our method is not limited to given SNR levels.
Evaluations demonstrate that the iterative procedure converges quickly in a considerable range of SNRs and improves
separation results significantly. Comparisons show that the proposed system performs significantly better than related
model-based systems.

1 Introduction
In daily listening environments, noise corrupts speech and
creates substantial difficulty for various applications such
as hearing aid design and automatic speech recognition.
When noise is a nonspeech signal, existing algorithms
often exploit the intrinsic properties of speech/noise for
segregation. However, when interference is another voice,
the generic properties of speech signals alone are insuf-
ficient for separation, and current methods also utilize
speaker characteristics. The problem of separating two
voices from a single mixture is often referred to as cochan-
nel speech separation. Depending on the information
used in cochannel speech separation, we can classify the
algorithms into two categories: unsupervised and super-
vised. In unsupervised methods, speaker identities and
pretraining with clean speech are not available, while
supervised methods often assume both.
Motivated by human perceptual principles, computa-

tional auditory scene analysis (CASA) aims to segregate a
voice of interest by exploiting inherent features of speech
such as pitch and common onsets [1]. CASA methods
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are typically unsupervised. For example, pitch and ampli-
tude modulation are utilized to separate voiced portions
of cochannel speech, and the estimated pitches in neigh-
boring frames are grouped using pitch continuity [2]. To
group temporally disjoint time-frequency (T-F) regions,
a system [3] employs speaker models to perform a joint
estimation of speaker identities and sequential grouping.
Later in [4], the system is extended to handle unvoiced
speech based on onset/offset-based segmentation [5] and
model-based grouping. Similarly, another CASA system
extracts speaker homogeneous T-F regions and employs
speaker models and missing data techniques to group
them into speech streams [6]. Note that the aforemen-
tioned methods use speaker models for sequential group-
ing, or to group temporally disjoint speech regions, and
thus are not completely unsupervised. A recent system [7]
applies unsupervised clustering to group speech regions
into two speaker groups by maximizing the ratio of
between- and within-cluster distances.
Supervised methods often formulate separation as an

estimation problem, i.e., given an input mixture, one esti-
mates the two underlying speech sources. To solve this
underdetermined equation, a general approach is to rep-
resent the speakers by two trained models, and the two
patterns (each from one speaker) best approximating the
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mixture are used to reconstruct the sources. For exam-
ple, an early study [8] employs a factorial hidden Markov
model (HMM) to model a speaker, and a binary mask
is generated by comparing the two estimated sources. In
another system [9], Gaussian mixture models (GMM) are
used to describe speakers, and speech signals are esti-
mated by a minimum mean-square estimator (MMSE).
In MMSE estimation, the posterior probabilities of all
Gaussian pairs are computed and used to reconstruct the
sources (see [10] for a similar system). The GMM-based
methods [9,10] do not model the temporal dynamics of
speech. A layered HMMmodel is proposed to model both
temporal and grammar dynamics by transition matrices
[11]. A 2-D Viterbi decoding technique is used to detect
the most likely Gaussian pair in each frame, and a maxi-
mum a posteriori (MAP) estimator is used for estimation.
In a speaker-independent setting, Stark et al. [12] pro-
pose a factorial HMM to model vocal tract characteristics
and use detected pitch to reconstruct speech sources. In
addition to these methods, other models are applied to
capture speakers, including eigenvectors to model and
adapt speakers [13], nonnegative matrix factorization-
based models [14,15], and sinusoidal models [16].
As pointed out in [9], one problem the model-based

methods face is generalization to different input signal-
to-noise ratio (SNR) levels (note here that we consider
interfering speech as noise). The system [9] does not
address this problem and assumes that test mixtures have
the same energy level as the training mixtures. Further,
the system is designed to only handle 0-dB mixtures. Sim-
ilarly, a conditional random field-based method in [17] is
only applied to separate 0-dB speech mixtures. The fac-
torial HMM system [12] employs a quantile filtering to
estimate a gain for each frame and then uses that to adjust
the correspondingmean vector in a codebook. Radfar and
Dansereau [18] propose a search-based method to detect
the input SNR, but one has to specify the search range. In
this method, different gains are hypothesized, and the one
maximizing likelihood of the whole utterance is taken as
the estimate. Radfar et al. [19] use a quadratic function to
approximate the likelihood function of a factorial HMM
and employ an iterative approach to estimate the gain.
The HMM system [11] detects the model gains jointly
with the speaker identities given a closed set of speak-
ers and uses an expectation-maximization (EM) algorithm
to further adapt the gains. However, the complexity of
gain adaptation is quadratic to the number of states, and
the convergence speed of the EM algorithm is unknown.
Sinusoidal models are also employed to model speakers
for joint speaker separation and identification [20], and
SNR estimation can be achieved by adapting a universal
background model using segregated speech [21].
In this work, we propose an iterative algorithm to gen-

eralize to different input SNR conditions given speaker

identities. Building on the GMM system [9], we first
incorporate temporal dynamics using transition matrices
[11]. Then, our algorithm estimates initial T-F masks for
two speakers by assuming that the input SNR is 0 dB.
The initial masks are used to estimate an utterance-level
SNR, which is in turn used to adapt the speaker models.
Then, the adapted models are used in a new iteration of
separation. The above two steps iterate until both input
SNR and the estimatedmasks become stable. Experiments
show that it converges relatively fast and is computation-
ally simple. Compared to the method of [19], our method
is simpler and can be applied to factorial HMMs as well
as other models (e.g., GMMs). In addition, our method
does not require a search range for the estimated input
SNR. Comparisons show that the proposed algorithm
significantly outperforms related methods.
The rest of the paper is organized as follows. We first

present the basic model in Section 2. Section 3 describes
iterative estimation. Evaluation and comparison are given
in Section 4, and we conclude the paper in Section 5.

2 Model-based separation
We first introduce speaker models and source estima-
tion methods. Throughout the paper, we denote vectors
by boldface lowercase and matrices by boldface upper-
case letters. Given two speakers a and b, the time-domain
cochannel speech signal is a simple addition of two source
speech signals. Decomposing the signals into the T-F
domain using a linear filterbank and assuming two source
signals are uncorrelated at each channel, we have

Y (c,m) = Xa(c,m) + Xb(c,m), (1)

where Xa(c,m) and Xb(c,m) denote the power spectrum
at the T-F unit of channel c and time frame m of speakers
a and b, respectively, and Y (c,m) is the spectrum of the
mixture. We then take the logarithm of all entities and use
log-max approximation tomodel the relationship between
the mixture and sources: in the log-spectral domain, the
mixture at each T-F unit is equal to the stronger source.
Thus, (1) can be approximated as

y(c,m) ≈ max(xa(c,m), xb(c,m)), (2)

where xa(c,m), xb(c,m), and y(c,m) represent the loga-
rithms ofXa(c,m),Xb(c,m), and Y (c,m), respectively. The
log-max approximation is originally proposed in [22] to
describe the mixing process of speech and noise in robust
speech recognition and is later employed in two-speaker
separation. A mathematical analysis in [9] shows that the
approximation error in (2) is reasonable, but more accu-
rate approximations exist that take both amplitude and
phase into consideration [23].
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2.1 Speakermodels
We use a gammatone filterbank consisting of 128 filters
to decompose the input signal into different frequency
channels [1]. The center frequencies of the filters spread
logarithmically from 50 to 8,000 Hz. Each filtered signal
is then divided into 20-ms time frames with 10-ms frame
shift, resulting in a cochleagram. The log spectra are com-
puted by taking the element-wise logarithm of the energy
in the cochleagram matrix.
Following [9], we build speaker models using GMMs.

For each speaker, we build a 128-dimensional GMM from
the log spectra of their clean utterances and use a diag-
onal covariance matrix for each Gaussian for efficiency
and tractability. Letting xa be the log-spectral vectors of
speaker a, the GMM for speaker a can be parameterized
as

p(xa) =
K∑

k=1
pa(k)

128∏
c=1

N(xca;μ
c
a,k , σ

c
a,k), (3)

where K is the number of Gaussians indexed by k, c is
the index of frequency channels, and xca is the cth element
of xa. N(·;μc

a,k , σ
c
a,k) denotes a one-dimensional Gaus-

sian distribution with mean μc
a,k and variance σ c

a,k , which
correspond to the cth dimension of the kth Gaussian in
the GMM. In addition, pa(k) denotes the prior of kth
Gaussian. Similarly, the model of speaker b is

p(xb) =
K∑

k=1

pb(k)
128∏
c=1

N(xcb;μ
c
b,k , σ

c
b,k). (4)

For each speaker, the conditional distribution given a spe-
cific Gaussian is a 128-dimensional Gaussian distribution,
i.e., p(xa|ka) = ∏128

c=1 N(xca ;μc
a,ka , σ

c
a,ka) and p(xb|kb) =∏128

c=1 N(xcb;μ
c
b,kb , σ

c
b,kb), where ka and kb are two Gaussian

indices, and p(xca|ka) and p(xcb|kb) are one-dimensional
Gaussians.
Given the above speaker models and the mixing

Equation (2), we can derive a per-channel statistical rela-
tionship between the mixture and two sources as follows:

p(yc|ka, kb) = pxca(y
c|ka)�xcb(y

c|kb)+pxcb (y
c|kb)�xca(y

c|ka).
(5)

Here, we use subscripts xca and xcb to differentiate the
probability functions for speakers a and b. �xca(·|ka) and
�xcb(·|kb) are their corresponding cumulative distribu-
tions. In a probabilistic manner, (5) provides a way of
approximating the mixture using two clean speaker mod-
els, which in turn can be used to estimate two source
signals given the mixture as the observation.

2.2 Source estimation
One method to estimate the sources is the MMSE estima-
tor, which aims to minimize the expectation of the square
error between the estimated and underlying true signals
given the observations [9]. As a result, for a log-spectral
vector y, the cth element of source xa can be estimated as

x̂ca =
∫ ∞

−∞
xca · p(xca|y). (6)

According to the total probability formula, p(xca|y) in (6)
can be expanded as follows:

p(xca|y) =
∑
ka,kb

p(ka, kb|y)p(xca|ka, kb, yc). (7)

Note that p(xca|ka, kb, yc) here only depends on yc instead
of y due to the diagonal covariance assumption. The
posterior p(ka, kb|y) in (7) can be calculated as

p(ka, kb|y) = pa(ka)pb(kb)p(y|ka, kb)∑
k′
a,k′

b
pa(k′

a)pb(k′
b)p(y|k′

a, k′
b)
, (8)

where p(y|ka, kb) = ∏128
c=1 p(yc|ka, kb) again because

of the diagonal covariance matrix. On the other hand,
p(xca|ka, kb, yc) in (7) can be computed by using the Bayes
rule:

p(xca|ka, kb, yc) =p(xca, yc|ka, kb)
p(yc|ka, kb) (9)

=pxca(x
c
a|ka)pxcb(yc|kb)
p(yc|ka, kb) δ(xca < yc)

+ pxca(y
c|ka)�xcb(y

c|kb)
p(yc|ka, kb) δ(xca = yc).

(10)

From (9) to (10), the constraint xca ≤ yc and the log-
max assumption are used, and a detailed derivation can be
found in [22]. We then incorporate (8) and (10) to (7) and
combine with (6) to estimate the source speaker a

x̂ca =
∑
ka,kb

p(ka, kb|y)
p(yc|ka, kb) {px

c
b
(yc|kb)[μc

a,ka�xca(y
c|ka)

− σ c
a,kapxca(y

c|ka)]+�xcb(y
c|kb)pxca(yc|ka)yc}. (11)

The MMSE estimate of speaker b can be computed
similarly.
In addition to directly estimating the sources, we esti-

mate a soft mask for speaker a as

p(xca > xcb|y) =
∑
ka,kb

p(ka, kb|y) · p(xca > xcb|yc, ka, kb)

=
∑
ka,kb

p(ka, kb|y) · px
c
a(y

c|ka)�xcb(y
c|kb)

p(yc|ka, kb) .

(12)
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Note that the soft mask for speaker b is p(xca ≤ xcb|y) =
1− p(xca > xcb|y). In [9], the soft mask is found to perform
consistently better than a binarized mask.
An alternative to theMMSE estimator is a MAP estima-

tor. The essence of MAP estimation is similar to MMSE,
but instead of using every pair of Gaussians in (7), it only
uses the most likely Gaussian pair

{k∗
a , k

∗
b} = argmax

ka,kb
p(ka, kb|y), (13)

where k∗
a and k∗

b correspond to the pair of Gaussians yield-
ing the highest posterior probability among all possible
pairs. The estimate of source signals can be computed
similarly to (11) but using only k∗

a and k∗
b . A soft mask

can also be derived like (12) using only k∗
a and k∗

b . In
experiments, we find that the performance of the MAP
estimator is similar to that of MMSE, mainly because at
each frame, one pair of Gaussians often approximates the
mixture much better than others.

2.3 Incorporating temporal dynamics
The cochannel speech separation system in [9] models
speaker characteristics using GMMs and ignores the tem-
poral information of speech signals. A natural extension
to the GMMs to incorporate temporal dynamics is using
a factorial HMMmodel. Specifically, for each speaker, we
can estimate themost likely Gaussian index for each frame
in a clean utterance using a MAP estimator. Each utter-
ance thus generates a sequence of Gaussian indices. The
transitions between all neighboring Gaussian indices are
then used to build a 2-D histogram, which can then be
normalized to produce a transition matrix [11].
In the factorial HMM system, the hidden states of the

two HMMs at each frame are the most likely Gaussian
indices of two speakers. While the detection of the Gaus-
sian indices is based on only individual frames in a GMM-
based model, a 2-D Viterbi search is used in [11] to find
the most likely Gaussian index sequences. Specifically, the
2-D Viterbi integrates all frames and the transition infor-
mation across time to find the most likely two Gaussian
sequences, each of which corresponds to one speaker [24].
We use δt(ka, kb) to denote the highest probability along

a single path (i.e., a sequence of state pairs) accounting for
the first t frames and ending at state ka, kb

δt(ka, kb) = max
s1a ,s1b,...,s

t−1
a ,st−1

b

p(s1a, s
1
b, ..., s

t
a = ka,

stb = kb, y1, y2, ...yt|λ), (14)

where sta and stb denote the hidden states of speakers a
and b at time frame t, respectively, and λ represents the
factorial HMM. (14) can be computed iteratively by

δt(ka, kb) = max
k′
a,k′

b

δt−1(k′
a, k

′
b) · p(ka|k′

a) · p(kb|k′
b)

· p(yt|ka, kb), (15)

where p(ka|k′
a) is the transition probability of speaker

a from state k′
a to ka, and p(kb|k′

b) is that of speaker
b. p(yt|ka, kb) can be calculated similarly as in (8). The
optimal Gaussian index sequences are detected by a 2-D
Viterbi decoding [24], and the MAP estimator is used for
estimating sources.
In (15), an exhaustive search for each pair of ka and kb

across T frames has a complexity of O(TK4), where K is
the number of Gaussians for each speaker and T is the
number of frames. It is time consuming if K is relatively
large. In our study, we use a beam search to speed up
the process (see also [25]). Given a beam width of W, we
only search for theW most likely previous state pairs (i.e.,
k′
a and k′

b in (15)), and the time complexity is reduced to
O(TWK2). The results presented in Section 4 indicate that
a beam width of 16 gives a comparable performance to the
exhaustive search.

3 Iterative estimation
As mentioned in Section 1, model-based methods such
as [9] face the difficulty of generalizing to different mix-
ing conditions. It is partly because the GMMs are trained
using log-spectral vectors and hence are sensitive to the
overall speech energy. More importantly, if the GMMs of
two speakers are trained using clean utterances at cer-
tain energy levels, in testing they need to be adjusted
according to the input SNR. In [9], mixtures with nonzero
input SNR are separated using unadjusted models, but the
performance is worse.
We propose to detect the input SNR and use that to

adapt the speaker models and re-estimate the sources.
To estimate the input SNR from the mixture, one has to
first have some source information. Thus, SNR detection
and source estimation become a chicken-and-egg prob-
lem, i.e., the performance of one task depends on the
success of the other. One general approach to deal with
this type of problem is to perform an iterative estima-
tion (e.g., [2]). In the initial stage of the iterative proce-
dure, we apply the unadapted speaker models to obtain
initial separation. Based on the initial source estimates,
we calculate the input SNR and use that to adapt the
speaker models. The adapted models are in turn used to
re-estimate the sources. The two steps iterate until con-
vergence. As an alternative, we also explore a search-based
method which jointly estimates sources and the input
SNR.

3.1 Initial mask estimation
For a pair of speakers, we first perform an initial esti-
mate by using their models pre-trained using clean utter-
ances at a per-utterance energy level of 60 dB. Initially,
the input SNR is assumed to be 0 dB, and a mixture
is scaled to an energy level of 63 dB corresponding to
the addition of two 60-dB source signals. We use the
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2-D Viterbi decoding based on (15) to detect the most
likely Gaussian index sequence and then estimate a soft
mask of the target speaker using the MAP estimator in
Section 2.2.

3.2 SNR estimation andmodel adaptation
Denoting the estimated soft masks of speakers a and b as
Ma and Mb, respectively, we use them to filter the mix-
ture cochleagram to obtain the corresponding segregated
signals. With the mixture cochleagram Ey, the SNR of the
target and interferer in the cochleagram domain can be
calculated as

R = 10 log10

(∑
c,m Ey(c,m) · Ma(c,m)∑
c,m Ey(c,m) · Mb(c,m)

)
, (16)

where Ma(c,m) denotes the ratio of speaker a at the
T-F unit of channel c and frame m, and Mb(c,m) =
1 − Ma(c,m). R corresponds to the input SNR of the
filtered speech signals. As analyzed in [26], due to gam-
matone filtering which has a certain passband, one usually
should compensate for the loss of energy to calculate the
SNR of the original time-domain signals. However, in our
work, the frequency range of the gammatone filterbank
is between 50 and 8,000 Hz, and both target and inter-
ference are speech signals with a sampling frequency of
16 kHz. There is thus little energy loss in the filtering pro-
cess, and the estimated SNR of filtered signals is close to
that of the original time-domain signals. Thus, we directly
use the SNR of filtered signals in (16) as our estimate.
We then adapt two speaker models to match the esti-

mated input SNR. In particular, the target speaker model
(speaker a) is fixed (i.e., trained by using 60-dB clean utter-
ances), and we adapt the interferermodel and themixture.
Given an input SNR of R dB, the interfering signal energy
level is thus

10 log10(
∑
t

x2b[ t] /T) = 60 − R, (17)

where xb[ t] denotes the time-domain speech of speaker
b. That is, instead of using 60-dB utterances, the inter-
ferer model should be trained using 60 − R dB signals,
and the original utterances should be scaled by a multi-
plicative factor of 10−R/10. Since the difference lies in a
constant factor, we can directly scale the parameters of
the GMM models, i.e., the mean and variance. Specifi-
cally, the means of the interferer GMM are scaled by an
additive factor of β = log(10−R/10) since log-spectral vec-
tors are used in training, while the variances will remain
unchanged because β is an additive factor.

On the other hand, the mixture energy level can be
computed by combining the target and interfering signal
levels

10 log10(y
2[ t] /T) = 10 log10(

∑
t

(x2a[ t]+x2b[ t] )/T)

= 60 + 10 log10(1 + 10−R/10), (18)

where y[ t] is the time-domain cochannel signal, and xa[ t]
is the source signal of speaker a. In the above calculation,
we assume that the time-domain target and interfering
signal are uncorrelated at each frame. Given (17) and
(18), we have adapted the interfering speaker model and
the mixture and created a more matched condition for
separation.

3.3 Iterative estimation
Given any input mixture, we first obtain the initial mask
estimatesMa,0 andMb,0 as described in Section 3.1. Given
Ma,0 andMb,0, we then estimate the input SNR using (16).
The estimated SNR is used to adapt the model of speaker
b and mixture by (17) and (18), respectively. They are
then used together with the target speaker model to re-
estimate the soft masks based on the 2-D Viterbi decod-
ing described in Section 2.3 and the MAP estimator in
Section 2.2. To get the maximal performance, the iterative
process should continue until neither the estimated input
SNR nor speaker masks change. However, empirically, we
observe that the separation performance becomes stable
when the estimated input SNR change is smaller than
0.5 dB.We thus use this as the stop criterion and terminate
the estimation process when the difference of estimated
input SNRs between two iterations is less than 0.5 dB.
As an illustration, Figure 1a shows a cochleagram of a

cochannel signal at −9 dB consisting of two male utter-
ances, where a brighter unit indicates stronger energy.
Figure 1b shows the clean target speech and Figure 1c
the clean interfering speech. We show the initially segre-
gated target and interferer in Figure 1d,e, respectively, and
the final segregated target and interferer are presented in
Figure 1f,g, respectively. As shown in the figure, the itera-
tive estimation improves the quality of segregated speech
signals.

3.4 An alternativemethod
In addition to the iterative method, we have also tried a
search-based method to jointly estimate the source state
sequences and the input SNR. For example, we use a test
corpus described in Section 4 and hypothesize the input
SNR in a range from −9 to 6 dB with an increment of
3 dB. At each hypothesized input SNR, we adapt the mix-
ture and interfering speaker model according to (17) and
(18) and use them to detect state sequences using the
2-D Viterbi decoding, and then estimate the soft masks
based on the MAP estimator. For all hypothesized SNR
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Figure 1 Illustration of separating two male utterances in
cochannel conditions. (a) Cochleagram of the cochannel speech
with an input SNR of −9 dB. (b) Cochleagram of clean target. (c)
Cochleagram of clean interferer. (d) Cochleagram of initially
segregated target. (e) Cochleagram of initially segregated interferer.
(f) Cochleagram of segregated target after iterative estimation. (g)
Cochleagram of segregated interferer after iterative estimation.

conditions, we calculate the joint likelihood of all mix-
ture frames and the Gaussian sequences being generated
by the factorial HMM, and the hypothesized input SNR
corresponding to the highest likelihood is selected as the
detected value. The corresponding state sequence is then
used for estimation. We have evaluated the performance
of this method using the corpus described in Section 4,
and it is about 0.5 dB worse than the iterative method and
is computationally more expensive. Note that the discrete
SNR range includes the true SNR value in each testing
condition to favor the SNR-based search method. How
to specify the input SNR levels in search is unclear in
practice.

4 Evaluation and comparisons
We use two-talker mixtures in the Speech Separation
Challenge (SSC) corpus [27] for evaluation. For each
speaker, a 256-component GMM model (i.e., K = 256)

is trained using all of the speaker’s clean utterances in
the training set. Here, K is chosen with the consider-
ation of performance and computation complexity. In
training, each clean utterance is normalized to a 60-
dB energy level, and the log spectra are calculated as
described in Section 2.1. An HMM model is then built
upon each GMM using the same utterances as described
in Section 2.3. We use the test part of the SSC corpus
and create two-speakermixtures at SNRs from−9 to 6 dB
(with an increment of 3 dB) for evaluation. We randomly
select 100 two-speaker mixtures in each SNR condition
for testing. Note that the mixture utterances are the same
across different SNRs, and mixtures at opposite SNRs are
not symmetric since they are generated by fixing the target
and scaling the interfering utterances. The 100 mixtures
contain 51 different-gender mixtures, 23 male-male mix-
tures, and 26 female-female mixtures. All testmixtures are
downsampled from 25 to 16 kHz for faster processing.
We evaluate the segregation performance using the SNR

gain of the target speaker, which is calculated as the output
SNR of segregated target speech subtracted by the corre-
sponding input SNR. For each segregated target, we take
its clean speech signal as the ground truth and compute
the output SNR as

SNR = 10 log10

(∑
n

x2a[ t] /
∑
n

(xa[ t]−x̂a[ t] )2
)
,

(19)

where xa[ t] and x̂a[ t] are the original clean signals and
signals resynthesized from the estimated mask, respec-
tively. Note that a waveform signal can be obtained from
a soft mask [1]. In our test conditions, target and interfer-
ing speakers are treated symmetrically, e.g., an interferer
at 6 dB is considered as a target at −6 dB. Thus, at each
input SNR, we calculate the target SNR gain as the average
of the target SNR gain at that input SNR and the interferer
SNR gain at the negative of that input SNR. For example,
the SNR gain at −6 dB is the average of the target SNR
gain at the −6 dB SNR and the interferer SNR gain at the
6 dB SNR.

4.1 System configuration
As wementioned in Section 2.3, an exhaustive 2-D Viterbi
search is time consuming, and we use beam search for
speedup. The beam width W needs to be chosen to bal-
ance the performance and complexity. In Figure 2, we vary
W from 1, 4, 16, and 64 to 256, and the corresponding
target SNR gains are shown in different curves. For the
largest beam width of 256, the beam search already per-
forms comparably to an exhaustive search. On the other
hand, a beam width of 1 amounts to a greedy algorithm
where we only keep the path with the highest likelihood
at each frame. In Figure 2, we observe that when W is
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Figure 2 SNR gains of target speaker at different input SNR
conditions with beamwidth varying from 1 to 256.

between 16 and 256, the SNR gains at all conditions are
almost the same. However, the gains degrade significantly
when W is further reduced. We thus choose W to be
16. Compared to an exhaustive search, the computational
complexity is greatly reduced from O(TK4) to O(TK2).
Another parameter impacting the system performance

is the number of iterations in iterative estimation. In our
experiments, we observe that the estimated input SNR
and masks become stable quickly. Figures 3 and 4 show
the SNR and mask estimation performance, respectively,
in terms of the number of iterations. In Figure 3, we mea-
sure the SNR estimation performance as the difference
of the estimated from the true input SNRs. Each curve
in the figure corresponds to the estimation errors at one
SNR condition. Before any estimation (i.e., number of iter-
ations = 0), the input SNR is assumed to be 0 dB and
the error is the negative of the underlying true SNR. After
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Figure 3 Input SNR estimation error (in dB) with respect to
number of iterations used in iterative estimation.

the first iteration, the errors decrease significantly for all
SNR conditions except for the 0-dB case. This is because
at 0 dB, the initial estimate happens to be the same as
the true SNR, and any estimation can only deviate away
from 0 dB. In this case, we observe that the estimated
SNR gets a little worse and then becomes stable. For other
SNR conditions, the errors keep decreasing as more itera-
tions are performed, and all of them become stable by the
fifth iteration. In Figure 4, we measure the performance
of mask estimation by the SNR gain of the segregated tar-
get. Initially, the SNR gain is 0 dB, and then, the quality
of estimated masks improves substantially after the itera-
tion starts. As shown in the figure, the first iteration brings
about 4 to 8-dB improvements for all SNR conditions, and
the second iteration mainly improves the performance
at −6 and −9 dB (by 1.8 and 3 dB, respectively). The
performance at most SNR conditions become stable after
three iterations. At −9 dB, the estimated mask gains a
small improvement for further iterations. In the experi-
ments, we observe that the estimatedmasks often become
stable when the estimated input SNR changes less than
0.5 dB. Thus, we use this as the stop criterion for iterative
estimation. By this criterion, an average of 3 iterations is
often enough for convergence.

4.2 Comparisons
We compare the proposed system to related model-based
methods, which include theMMSE-based system by [9], a
similar system based on a MAP estimator, and an HMM-
based system incorporating temporal dynamics. Note that
all aforementioned systems are implemented by us in
the cochleagram domain for matched comparisons. In
training GMMs, we follow [9] and normalize mixtures to
have 0 mean and unit variance and use 256 Gaussians in
GMMs. We use the soft mask result instead of the direct
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Figure 4Mask estimation performance in terms of target SNR
gain as a function of number of iterations.
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estimates in [9] since it gives the best result. The tran-
sition probabilities in HMM are calculated according to
[11]. The mean SNR gains with 95% confidence intervals
of these methods are presented in Figure 5.
-As shown in Figure 5, the proposed system achieves

an SNR gain of 11.9 dB at the input SNR of −9 dB, and
the gain decreases gradually as the input SNR increases.
At 9 dB, the SNR gain is about 3.9 dB. On average, our
method achieves an SNR gain of 7.4 dB. Compared to
the method of Reddy and Raj, our method performs com-
parably at 0 dB but significantly better at other input
SNRs. For example, the proposed system performs about
2.7 dB better at −9 dB, and the improvement gets smaller
as the input SNR gets closer to 0 dB. A similar trend
is also observed at positive input SNRs. On average, the
proposed system performs 1.2 dB better than the Reddy
and Raj method. In the figure, we also show the perfor-
mance of another MMSE method (black bars), a version
of the Reddy and Raj system that does not require the
energy levels of training and testing to be the same. In this
method, we assume the input SNR to be 0 dB and scale
the mixture as described in Section 3.1. As we expect,
the performance is a little worse (about 0.3 dB) than the
original Reddy and Raj system due to the unmatched sig-
nal levels. We also compare to a MAP-based separation
method described in Section 2.2. Using only the most
likely Gaussian pair for estimation, the MAP method
is more efficient than the MMSE method but performs
about 0.1 dB worse. Our system performs about 1.6 dB
better than the MAP-based method. To isolate the effect
of iterative estimation, we have also evaluated the perfor-
mance of the HMM system alone. As shown in the figure,
this method achieves an average SNR gain of about 6.3 dB,
about 0.5 dB better than the MAP-based method. This
improvement comes from the use of temporal dynamics.
Comparing this performance with the proposed system,

we get the benefit of iterative estimation, which further
increases the SNR gain of the HMM system by about
1.1 dB. In addition, we note that iterative estimation can
also be incorporated into other model-based systems.
For example, we add iterative estimation to the MMSE
method (denoted by as MMSE-iterative in Figure 5) and
obtain an improvement of 1.2 dB. Similarly, the MAP-
iterative method outperforms the original MAP method
by about 1.2 dB. Lastly, to show the upper bound perfor-
mance of our system, we have utilized the true input SNR
and ideal hidden states in estimation. This ideal per-
formance is presented as the HMM ideal in Figure 5.
It is about 0.9 dB better than the proposed system,
which indicates that our system is close to the ceiling
performance.
We have compared to a factorial HMM-based method

which is capable of adapting speaker models for sepa-
rating mixtures with different signal levels [12]. In this
method, pitches of two speakers are first estimated by a
factorial HMM. Then, vocal tract responses are modeled
by vector quantization or nonnegative matrix factoriza-
tion (NMF) and used with estimated pitches to estimate
the source signals. Since the vocal tract responses are nor-
malized in modeling, a gain factor is introduced to scale
the source spectra. Specifically, a gain vector is calcu-
lated as the difference of the mixture and source spectra,
and then quantile filtering is used to select a robust esti-
mate. To compare to this method, we use the criterion of
target-to-masker ratio (TMR) as in [12] in the following
experiments. In the speaker-dependent case, the method
reports about a 6.6-dB gain in terms of TMR at 0-dB input
TMR. Specifically, it achieves a TMR of about 7 dB in the
same-gender female (SGF) case, 4.5 dB in same-gender
male (SGM) case, and 8.3 dB in the different-gender (DG)
case. These results correspond to the best performance in
a setting where NMF is used for modeling. We evaluate

0 

2 

4 

6 

8 

10 

12 

14 

-9 -6 -3 0 3 6 9 

Reddy & Raj MMSE 

MAP HMM 

Proposed 

Input SNR (dB) 

S
N

R
 G

ai
n 

(d
B

) 

Figure 5 Comparisons to model-based cochannel speech separation algorithms in terms of target SNR gains.
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our method using TMR, and the results for 0-dB mixtures
are shown in Figure 6. Note that we used the same cor-
pus as in [12], but the exact mixtures may be different. As
in [12], we show the TMRs in SGM, SGF, and DG cases
separately, and the horizontal lines in the centers of the
boxes correspond to means, and the distance between a
line and a box boundary depicts standard deviation. The
improvements are 9.6, 8.4, and 10.4 dB in the SGF, SGM,
and DG cases, respectively, and on average, the improve-
ment is about 9.4 dB. These results show that our system
performs substantially better than [12] in all kinds.
In addition to the SNR performance, we also evaluate

the system using a hit minus false-alarm (HIT−FA) rate
which has been shown to be a good indicator of human
speech intelligibility [28]. As in [28], we calculate the hit
rate as the percentage of correctly labeled target dominant
T-F units and the false alarm (FA) rate as the percentage
of incorrectly labeled interferer dominant T-F units. To
calculate these rates, we convert the soft masks to binary
masks using a threshold of 0.5, i.e., the T-F units with a
probability greater than 0.5 are labeled as 1 and 0 oth-
erwise. The HIT−FA rates of our system and the Reddy
and Raj system are shown in Figure 7. We observe that
the proposed algorithm performs uniformly better than
the Reddy and Raj system at all SNR conditions. For our
system, the average HIT−FA rate is about 64.4%, and the
rates are relatively stable at different input SNR condi-
tions. On average, it is about 7.5% better than the Reddy
and Raj system. The performance gap between our sys-
tem and the Reddy and Raj system are bigger when the
input SNR deviates from 0 dB. This again confirms that
iterative estimation is effective for generalizing to nonzero
SNR mixtures.
Finally, we evaluate our system and compare with

the Reddy and Raj system using a short-time objective
intelligibility (STOI) [29], which is shown to be highly
correlated to human speech intelligibility. As shown in
Figure 8, both our method and the Reddy and Raj system
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Figure 6 TMR performance of the proposed algorithm in
different kinds of cochannel speech with 0-dB input TMR.
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Figure 7 Comparisons to amodel-based speech separation
algorithm in terms of HIT−FA rates.

perform significantly better than unprocessed mixtures.
Our method performs generally better than Reddy and
Raj’s across a range of SNRs, especially when SNR is far
away from 0 dB. As Mowlaee et al. have also evaluated
their sinusoidal modeling-based method using STOI [20],
it is interesting to draw some comparisons with their per-
formance. Since the exact mixtures in our experiments
are different from those in [20], it is more informative to
look at the relative STOI improvements over unprocessed
mixtures. Roughly speaking, our STOI improvements are
comparable to those in [20]. For example, our improve-
ment is about 0.15 at −9 dB and 0.1 at 6 dB, while in [20]
(Figure 8), the improvement at −9 dB is about 0.22, but
there is no improvement at 6 dB.

5 Conclusions
We have proposed an iterative algorithm for model-based
cochannel speech separation. First, temporal dynamics
is incorporated into speaker models using HMM. We
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algorithm in terms of STOI scores.
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then present an iterative method to deal with signal level
differences between training and test conditions. Specif-
ically, the proposed system first uses unadapted speaker
models to segregate two speech signals and detects
the input SNR. The detected SNR is then used to
adapt the interferer model and the mixture for re-
estimation. The two steps iterate until convergence.
Systematic evaluations show that our iterative method
improves segregation performance significantly and also
converges quickly. Comparisons show that it performs
significantly better than related model-based methods
in terms of SNR gains as well as HIT−FA and STOI
scores.
We note that SNR estimation in our system uses the

whole mixture, which would not be feasible for real-time
applications. However, one can slightly modify it to work
in real time. For example, at one frame, one could use only
previous frames for Viterbi decoding and SNR detection.
The detected SNR could be used to adapt speaker mod-
els for separation in later frames and then get updated
correspondingly. Such an update may be performed peri-
odically to track the input SNR, and the update frequency
would depend on the extent to which the input SNR
varies.
In this work, our description is limited to two-talker sit-

uations as in related model-based methods. The proposed
system could be extended to deal with multi-talker sepa-
ration problems. For example, the MMSE estimators can
be extended to perform three-talker separation accord-
ing to [9]. As for iterative estimation, one can estimate
the energy ratios between multiple speakers instead of the
SNR in the two-speaker case and adapt the speaker mod-
els accordingly. One issue in multi-talker situations is that
the complexity of (13) is exponential to the number of
speakers, and a faster decoding method thus needs to be
used (e.g., [9,30]).
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