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Evaluation of single cell oil (SCO) from a tropical
marine yeast Yarrowia lipolytica NCIM 3589 as a
potential feedstock for biodiesel
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Abstract

Single cell oils (SCOs) accumulated by oleaginous yeasts have emerged as potential alternative feedstocks for
biodiesel production. As lipid accumulation is species and substrate specific, selection of an appropriate strain is
critical. Five strains of Y. lipolytica, a known model oleaginous yeast, were investigated to explore their potential for
biodiesel production when grown on glucose and inexpensive wastes. All the strains were found to
accumulate> 20% (w/w) of their dry cell mass as lipids with neutral lipid as the major fraction when grown on
glucose and on wastes such as waste cooking oil (WCO), waste motor oil (WMO). However, amongst them, Y.
lipolytica NCIM 3589, a tropical marine yeast, exhibited a maximal lipid/biomass coefficient, YL/X on 30 g L-1 glucose
(0.29 g g-1) and on 100 g L-1 WCO (0.43 g g-1) with a high content of saturated and monounsaturated fatty acids
similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted
biodiesel properties of strain 3589 when grown on glucose and WCO, such as density (0.81 and 1.04 g cm-3),
viscosity (4.44 and 3.6 mm2 s-1), SN (190.81 and 256), IV (65.7 and 37.8) and CN (56.6 and 50.8) are reported for the
first time for Y. lipolytica and correlate well with specified standards. Thus, the SCO of oleaginous tropical marine
yeast Y. lipolytica NCIM 3589 could be used as a potential feedstock for biodiesel production.
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Introduction
The widespread use of fossil fuels such as petroleum,
coal and natural gas, due to the high energy demand in
today’s industrial world has led to problems of resource
scarcity and environmental pollution. Fossil fuels have
an additional disadvantage that they are not renewable.
Biofuels as alternatives for petroleum fuel have gener-
ated great interest in recent years. Amongst them bio-
diesel from plant, algal and microbial sources seems to
hold a partial solution to the ever increasing demand for
energy, since their cell or biomass is renewable. General
advantages of biodiesel include biodegradability, higher
flash point, reduction in exhaust emissions, miscibility in
all ratios with petrodiesel, compatibility with the existing
fuel distribution infrastructure and inherent lubricity
(Knothe 2008).
* Correspondence: ameeta@unipune.ac.in
1Institute of Bioinformatics and Biotechnology, University of Pune,
Ganeshkhind, Pune 411 007, India
Full list of author information is available at the end of the article

© 2012 Katre et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
The use of microbes as feedstock for biodiesel has
advantages such as their short life cycle, requires less
labor and lower land resources, are easier to scale up,
and are less affected by venue, season or climate (Li
et al. 2008). Oleaginous microbes (bacteria, fungi and
micro algae) are known to accumulate lipids in the form
of triacylglycerols (TAGs) (Ratledge and Wynn 2002).
The production of microbial lipids or Single Cell Oils
(SCOs) has evoked considerable attention during the
past decade since these SCOs can be used as a potential
feedstock for the production of biodiesel (Meng et al.
2009; Kosa and Ragauskas 2011). Ramos et al. (2009)
have shown that the biodiesel quality depends upon the
fatty acid composition of the oil feedstock. For an ole-
aginous microbe to be considered as a suitable feedstock
for biodiesel, the total lipid content (> 20%) and the
type of fatty acids (long chain saturated and/or monoun-
saturated fatty acids) are important criteria. Lipid con-
tent and fatty acid composition of SCOs varies in
response to environmental factors such as type of carbon
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source, pH, temperature and is species and strain-
specific (Subramaniam et al. 2010; Venkata Subhash and
Venkata Mohan 2011). This is evident from the studies
on the psychrophilic oleaginous yeast Rhodotorula
glacialis wherein both glucose concentration and
temperature influenced the composition and degree of
unsaturation of fatty acids (Amaretti et al. 2010). It has
also been reported that the energy capacity of the dry
yeast cell mass depends on the total lipid content,
wherein 64% of the lipid content corresponded to 73%
of the energy value of dry biomass (Minkevich et al.
2010). Consequently, since the accumulation of lipids by
oleaginous yeasts varies, not all oleaginous yeasts can be
used as a feedstock for biodiesel production. Therefore,
careful selection of the oleaginous strains of the micro-
bial species and characterization of lipid composition
need to be performed to ascertain their suitability for
biodiesel production.
Among the oleaginous yeasts, Yarrowia lipolytica, an

unconventional microbe, has been extensively studied
and is often isolated from lipid and hydrocarbon rich
habitats, such as dairy products, polluted effluents and
raw poultry. The potential biotechnological applications
of Y. lipolytica using various environmental and indus-
trial wastes have been discussed (Bankar et al. 2009).
This yeast is known to degrade alkanes, fatty acids, fats
and oil and is also a known model organism for lipid ac-
cumulation (Beopoulos et al. 2009; Fickers et al. 2005).
Moreover, the unique ability of this yeast to efficiently
use hydrophobic substrates makes this microorganism a
prime candidate for use in the production of bio-oils
(Beopoulos et al. 2009). Its hydrophobic substrate
utilization and its metabolism directed towards lipid or
SCO accumulation has been excellently reviewed by
Fickers et al. (2005). Several technologies have been tried
for SCO production by Y. lipolytica grown on various
agro-industrial by-products or wastes and reasonably
good cell growth and SCO production has been reported
to occur on technical grade glycerol, animal fats, tallow,
olive oil mill waste etc. with the major factions being
saturated fatty acids (Papanikolaou and Aggelis 2010;
Sarris et al. 2011). However, most of these studies have
been directed towards production and utilization of
these SCOs for various high value-added fats like cocoa
butter, or using genetically modified strains for polyun-
saturated fatty acids (PUFAs) having medical significance
(Papanikolaou and Aggelis 2011). But, to date, hardly
any reports from Y. lipolytica exist on either the use of
SCO as feedstock for biodiesel or their physico-chemical
characterization.
The present study investigates the biomass production

and lipid accumulation potential of five different wild-type
strains of Y. lipolytica grown on glucose. Further, utilization
of some agro-industrial and other wastes for lipid
accumulation by the selected strains were also studied.
Lipid accumulation and the fatty acid composition in Y.
lipolytica is known to depend on the substrate on which
the cells are cultivated. These yeasts accumulate high levels
of lipids when carbon is in excess and a key nutrient such
as nitrogen or phosphorous is limiting (Ratledge and Wynn
2002). The accumulated lipids or SCOs get deposited as
intracellular lipid bodies (LBs) which can easily be detected
by the fluorescent probe, Nile red (Kimura et al. 2004). The
cell mass of these yeast strains was evaluated for lipid con-
tent and their transesterified SCO profiles for biodiesel pro-
duction as the type of fatty acids present are substrate
dependent and important in ascertaining its appropriate-
ness for biodiesel. Some physico-chemical properties of the
biodiesel from the selected strain(s) were determined and
compared with known international norms in order to as-
certain its potential suitability as a fuel.

Materials and methods
Materials
Chloroform, methanol, acetone, formaldehyde, KH2PO4,
Na2HPO4.12H2O, anhydrous Na2SO4, NaCl, KCl, and
MgCl2 were of analytical grade and were purchased from
Merck Ltd., Mumbai, India. 1,1,1-trichloroethane was
obtained from National Chemicals, Vadodara, India. Po-
tassium iodide and phenolphthalein were obtained from
Fisher Scientific, Mumbai, India. Silicic acid, chromatog-
raphy grade and Nile red were purchased from Sigma-
Aldrich, Inc., USA. ‘Bead beater’ (Biospec Products, Inc.,
USA) was used for lysis of yeast cells and Kittiwake DIGI
Biodiesel test kit (Kittiwake Developments Ltd., UK) was
used for determination of Total Acid Number (TAN) and
Free Fatty Acid (FFA) content. Iodine solution (Wijs) was
purchased from Acros Organics, Belgium while alcoholic
KOH solution was procured from Merck, Germany.

Strains and growth conditions
Five strains of Y. lipolytica were obtained from The Na-
tional Collection of Industrial Microorganisms (NCIM),
National Chemical Laboratory, Pune, India. These were
Y. lipolytica NCIM 3229 (NCYC 153), NCIM 3450,
NCIM 3472 (ATCC 8661 and NCYC 825), NCIM 3589
and NCIM 3590 (NCYC 789 and MTCC 35), respect-
ively. All strains were maintained on MGYP medium
(g L-1), 3.0 malt extract; 3.0 yeast extract; 5.0 peptone
and 10.0 dextrose, at 4°C. The medium used for cultiva-
tion of biomass was lipid accumulation medium (LAM),
containing excess of carbon and limited in nitrogen,
according to Suutari et al. (1993) and contained (g L-1),
30.0 glucose, 1.5 yeast extract, 0.5 NH4Cl, 5.0 Na2H-
PO4.12H2O, 7.0 KH2PO4, 1.5 MgSO4.7H2O, 0.1
CaCl2.2H2O, 0.01 ZnSO4.7H2O, 0.08 FeCl3.6H2O and
(mg L-1) 0.1 CuSO4.5H2O, 0.1 Co [NO3]2.6H2O, 0.1
MnSO4.5H2O and pH adjusted to 5.5. An initial pre-
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inoculum of cells grown for 48 h in the abovementioned
medium was used. The cells were washed with distilled
water and count adjusted to 109-1010 cells. These cells
were inoculated in 100 ml of above mentioned media
and incubated on a rotary incubator shaker (120 rpm) for
24, 48, 72 and 96 h at 30°C for all the four strains except
Y. lipolytica NCIM 3590, which was grown at 20°C. For
each sample, the experiments were carried out in
triplicates.

Nile red fluorescence
The fluorescent dye, Nile red was used to determine
lipid accumulation ability of the five strains (Beopoulos
et al. 2008; Mlickova et al. 2004). Cells were observed
microscopically with an oil immersion objective using a
Zeiss microscope (Axio Scope A1), equipped with a
digital camera and a 465–495 nm excitation filter. Pro-
gRes CapturePro 2.7 software (Jenoptik optical systems,
USA) was used for recording the images.

Extraction of yeast total lipids as SCO
The harvested cells were washed and lyophilized. This lyo-
philized dry biomass was weighed and used for extraction
of total lipid using bead beater. The cells were added to
the 20 ml chamber of the bead beater along with acid-
washed glass beads (0.5 mm) to fill 3/4th of the volume.
Methanol (15 ml) was added to fill the chamber and a total
of 10–12 cycles of 3 min each were run at 4°C to disrupt
cells which was confirmed microscopically. Total lipids
were extracted in chloroform: methanol (2:1, v/v) accord-
ing to Schneiter and Daum (2006), the solvent vaccum eva-
porated and the residual lipid estimated gravimetrically.

Lipid fractionation
The total yeast lipid (approximately 100 mg) was dis-
solved in 1 ml of chloroform: methanol (2:1, v/v) and
loaded on a 25 mm × 100 mm silicic acid column (1 g
silicic acid, activated by heating overnight at 110°C). The
lipid was eluted from the column by sequential elution
with 100 ml each of 1, 1, 1-trichloroethane, acetone, and
methanol and the fractions collected. The solvent from
each fraction was evaporated and the weight of the re-
sidual lipid determined. The fractions, in order of elu-
tion, were neutral lipids, glycolipids plus sphingolipids
and phospholipids, respectively. The collected fractions
were spotted on a silica gel F254 plate and developed
according to Latge and De Bievre (1980). Appropriate
authentic standards viz., tristearin, phosphatidylcholine
and sphingomyelin were chromatographed on each
plate. Experimental lipids were identified by comparing
their Rf values with those of the standards. The fractions
showing presence of neutral lipid were pooled to give
total neutral lipid of the strain which was estimated
gravimetrically.
Transesterification of SCO and analysis of FAMEs
The SCO obtained was transesterified according to
Leung et al. (2010). The reaction was carried out in a
50 ml round bottom flask kept in a thermostatic bath
with a reflux condenser and a magnetic stirrer using a
methanol to oil molar ratio of 60:1 and a catalyst
(NaOH) concentration of 1.5-3 wt. % relative to SCO.
The individual FAMEs in transesterified SCO (biodiesel)
were detected using gas chromatography (GC) using
CP-Sil88 column (50 m length, 0.25 μm ID) and Flame
Ionization Detector (FID) as per the AOAC method
(AOAC 2005). The resulting profile and retention times
were compared with the standard (37 component FAME
mix, Supelco, USA) and composition of the individual
fatty acid methyl ester determined.
Growth and SCO (total lipid) production of Y. lipolytica
NCIM 3589 on varying initial glucose concentrations
The growth and total lipid production of the selected
strain was checked on glucose concentration ranging
from 10–100 g L-1 up to 96 h at 120 rpm at 30°C. All
other conditions were the same as mentioned earlier.
The residual glucose in the media was estimated using
3, 5-dinitrosalicylic acid (DNSA) according to Miller
(1959).
Preliminary screening of different wastes as substrates
for SCO
Cheap and locally available substrates such as cheese
whey (50%, v/v) and agro-residues such as groundnut
shell, sugarcane bagasse, grape stalk, groundnut oil
cake, copra meal, fruit and vegetable wastes like fruit
peel (orange and banana), orange pulp and peapod were
washed, dried, ground and passed through sieve of
mesh size 1 mm and added as sole carbon and energy
source (1%w/v) to the LAM medium. Fish and chicken
wastes were autoclaved for 30 mins and added as
minces (1%w/v) to the LAM medium. Prawn shell
waste was de-mineralized by treatment with 1 N HCl
(1:15 w/v) and de-proteinized by treatment with 3%
NaOH (1:10 w/v), the residue washed, dried and added
at 1% (w/v) in the LAM medium. Waste motor oil
(WMO) and waste cooking oil (WCO) were also added
as 1% (v/v) to the medium as described above. The bio-
mass grown on WCO and WMO was made oil-free as
per the protocol of Papanikolaou et al. (2010).
A pre-inoculum of the yeast cells was prepared as

mentioned above and a cell count of 109-1010 cells/
50 ml was used to inoculate each flask. The flasks were
incubated in a rotary incubator shaker (120 rpm) for
72 h at 30°C for all strains except 3590, which was incu-
bated at 20°C.
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Growth and SCO (total lipid) production of Y. lipolytica
NCIM 3589 and Y. lipolytica NCIM 3472 on varying
concentrations of WCO
The growth and total lipid production of the selected
strains was checked on WCO concentrations ranging
from 10–100 g L-1 at 72 h (120 rpm, 30°C). The cells
were made fat-free (Papanikolaou et al. 2010), the SCO
extracted, transesterified and FAMEs were detected as
mentioned earlier.

Physico-chemical characterization of biodiesel properties
of Y. lipolytica NCIM 3589 on glucose and WCO and
Y. lipolytica NCIM 3472 on WCO
The physico-chemical properties of the biodiesel
(FAME) from the strains selected by screening on glu-
cose (NCIM 3589) and on WCO (NCIM 3589 and 3472)
were evaluated. Density, kinematic viscosity, saponifica-
tion number (SN), iodine value (IV) were determined
experimentally as well as by using predictive models and
mathematical equations for the transesterified SCOs.
Density was determined gravimetrically at 25°C using a
Pycnometer (10 ml). It was also predicted as per Kay’s
mixing rule (Pratas et al. 2011) as follows:

ρ ¼
X

ciρi ð1Þ

(where ci and ρi denote concentration and density of in-
dividual component i, respectively). These values were
obtained using the density of individual, pure FAME
compounds from the database (Lapuerta et al. 2010).
The values for kinematic viscosity (40°C; mm2 s-1)

were calculated by using the modified equation of
Grunberg-Nissan as follows:

vmix ¼
X

Ac � vc ð2Þ

in which νmix = the kinematic viscosity of the biodiesel
sample (mixture of fatty acid alkyl esters), AC = the rela-
tive amount (%/100) of the individual neat ester in the
mixture (as determined by gas chromatography) and
νC = the kinematic viscosity of the individual esters from
database of FAMEs present in biodiesel (Knothe and
Steidley 2011).
SN and IV were determined experimentally (AOAC

1975) and also calculated using the equations (3) and (4)
as follows:

SN ¼
X 560� Aið Þ

MWi
ð3Þ

IV ¼
X 254� D� Aið Þ

MWi
ð4Þ

where, Ai is the percentage, D is the number of double
bonds and MWi is the molecular mass of each fatty acid
methyl ester (Azam et al. 2005; Gunstone et al. 2007)
Another fuel property, Higher Heating Value (HHV), a
measure of the heat content of the oil was found to de-
pend upon SN and IV values and was estimated using
equation (5) (Demirbas 1998).

HHV ¼ 49:43� 0:04 SNð Þ þ 0:015 IVð Þ½ � ð5Þ

Cetane Number (CN) was calculated using the mul-
tiple linear regression equation. (6) (Tong et al. 2011)

CN ¼ 1:068
X

CNiWið Þ � 6:747 ð6Þ

where, CNi represent reported CN of pure fatty acid me-
thyl ester available in database (Tong et al. 2011) and Wi

is the mass fraction of individual fatty ester component
detected and quantified by GC-FID.
Water content of the sample, TAN and FFA were

determined using the Kittiwake DIGI Biodiesel test kit
while the copper strip corrosion test was carried out
according to ASTM D130 test specifications.

Statistical analysis
All values are means of three independent experiments.
Statistical analyses were performed using SPSS 17 statis-
tics software (SPSS Inc., Chicago, IL, USA). Means were
compared and analyzed using either t-test or one-way
analysis of variance (ANOVA) with Tukey HSD post hoc
multiple comparison test. Differences were considered
statistically significant for p< 0.05.

Results
Growth and SCO yields of Y. lipolytica strains on glucose
Lipid accumulation in oleaginous yeasts occurs as LBs
when a nutrient in the medium e.g., nitrogen or phos-
phorous is limiting and carbon is in excess. The lipid
yields, fatty acid composition and degree of unsaturation
are affected depending on the type and concentration of
carbon source (Granger et al. 1993; Ratledge and Wynn
2002; Amaretti et al. 2010). Therefore, we first investi-
gated the effect of glucose, on cell growth, lipid yields
and sugar consumption by different Y. lipolytica strains.

Determination of lipid accumulation by Nile red staining
In the present study, all five strains of Y. lipolytica when
grown in 30 g L -1 glucose revealed a variable number of
LBs which could be visualized by light microscopy of
formaldehyde fixed cells or by fluorescence microscopy
of cells stained with Nile red (Figure 1 insets). Variation
in number and size of the LBs could be seen in all the
strains grown in glucose. Therefore, all the five lipid ac-
cumulating strains viz., NCIM 3229, NCIM 3450, NCIM
3472, NCIM 3589, and NCIM 3590 were further
assessed for their total cellular lipid (SCO) content.



Figure 1 Kinetics of biomass, residual glucose and cellular lipids of Y. lipolytica strains grown on glucose. Strains (a) 3229, (b) 3450, (c)
3472, (d) 3589 and (e) 3590 were grown on 30 g L-1 glucose as mentioned in Materials and Methods. All values are represented as Mean± SD,
determined after 3 independent experiments. Biomass (g L-1) - ▼, Lipid (g L-1) - ●, Glucose res (g L-1) - ○. Inset In each graph light microscopy
(left panel) and Nile red fluorescence microscopy (right panel) images of the respective Y. lipolytica strains under 100x oil immersion objective. Bar
indicates 10 μm for a, c and d and 5 μm for b and e.
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Time course for biomass production and total SCO yields
Figure 1 depicts the time course of biomass produced
(X, g L-1), lipid yield (L, g L-1) and residual glucose
concentrations (Glucose res, g L-1) against fermentation
time in lipid accumulation medium containing 30 g L-1

glucose. Under these conditions, all the 5 strains showed



Figure 2 Neutral lipid content of different strains of Y.
lipolytica. The data are expressed as mean± standard deviation
(n = 3). Mean values for total lipid and neutral lipid content (wt %)
were determined as mentioned in Materials and Methods and did
not differ significantly (p< 0.05). Bar (empty): Total Lipids (wt %)
and Bar (oblique line): Neutral lipids (wt %).
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an increase in biomass which varied from 3.77-7.42 g L-1

while the maximal lipid yield (Lmax, g L-1) varied from
0.84-1.48 g L-1 and were achieved in 24–96 h after incu-
bation. The lipid/dry biomass yield coefficient (YL/X, g g
-1) determined were 0.22 g g-1 in 96 h for strain 3229
(Figure 1a), 0.31 and 0.28 g g-1 in 24 h for strains 3450
and 3590 (Figure 1b, e), 0.25 and 0.29 g g-1 in 48 h for
strains 3472 and 3589 (Figure 1c, d), respectively. Both,
Lmax and Y L/X were found to decrease on prolonged in-
cubation and were strain dependent. In all the strains
under study, significant amounts of glucose (8.0-
16.5 g L-1) remained unconsumed in the media even
after 96 h of incubation. Thus, all the strains showed a
tendency to degrade their storage lipids even though
significant amounts of residual glucose remained in the
medium. The total lipid content varied from 22-31% of
the total dry weight of biomass and ascertained the ole-
aginous nature (> 20% lipid of the cellular weight) of all
the five strains of Y. lipolytica tested.

Lipid fractionation
The extracted SCOs from the five yeast strains grown on
glucose were fractionated by silicic acid column chroma-
tography to determine the individual lipid fractions. In
all cases, regardless of the quantity of lipid accumulated
inside the yeast, the neutral lipid fraction was the most
abundant, whereas glycolipid plus sphingolipid and
phosopholipid fractions were found in noticeably lower
quantities (< 10%). The neutral lipid fraction includes
triacylglycerols (TAGs), one of the key components de-
sirable for biodiesel and the neutral lipid contents of all
the strains were found to lie between 88-89% of the total
lipid or SCO content (Figure 2). Thus, the cell mass of
all 5 strains contained a high content of SCO with neu-
tral lipid as the major fraction which is the desirable
lipid type for biodiesel

Fatty acid profiles of transesterified SCOs
The SCOs obtained from the yeast strains were sub-
jected to alkali catalyzed trans-esterification to give fatty
acid methyl esters (FAME) or biodiesel. The resulting
FAME profile and retention times of each methyl ester
were compared with the authentic standard (37 compo-
nent FAME mix, Supelco, USA) by GC-FID, the com-
position of FAME determined and profiles evaluated for
their biodiesel suitability (Table 1).
The content of total saturated fatty acid (SFA) was

highest in 3229 (70.6%) followed by 3590 (64.1%), 3589
(34.6%), 3472 (17.1%) and 3450 (4.9%) when grown on
glucose. Of the total SFAs, strains 3229 and 3450 con-
tained 58.1% and 4.9% of odd-chain fatty acid - C13:0
while strains 3590 and 3229 showed 34% and 12.5% of
C15:0. Palmitic acid (C16:0) was highest in strain 3589
(24.1%) while stearic acid (C18:0) was present at 7.7%
and 4.6% in 3589 and 3590. Strain 3472 contained 4.8%
arachidic acid (C20:0) and behenic acid C22:0 (12.3%)
while 7.4% of eicosanoic (C21:0) was present in 3590.
Thus, only the strains 3589 and 3590 contained good
amounts C16:0 and C18:0 SFAs required for biodiesel.
The total content of monounsaturated fatty acids,

(MUFA) the desirable fatty acids for biodiesel was the
highest in 3589 (50.1%). Lesser amounts were present in
3450 (22.8%) and 3590 (14.3%) while negligible amounts
were present in 3472 and 3229. Palmitoleic acid (C16:1)
and oleic acid (C18:1) were highest in 3589 (11% and
38.6%, respectively). Strain 3450 contained 13.5% cis-10-
pentadecanoic acid (C15:1) while erucic acid, C22:1
(9.2%) was present in 3590 and cis-10-heptadecanoic acid
(C17:1) was present at 9.3% in 3450. Thus, the long chain
MUFAs, C16:1 and C18:1, required for good quality bio-
diesel were present in high amounts only in strain 3589.
The total polyunsaturated fatty acids (PUFAs) were

highest in 3472 (82.4%) followed by 3450 (72.4%) 3229
(28.8%), 3590 (21.6%) and the least in 3589 (15.1%).
PUFAs containing ≥ 4 double bonds are not desirable
for biodiesel (1% max, according to EN 14214). PUFAs
like arachidonic acid (C20:4), eicosapentanoic acid
(C20:5) and docosahexanoic acid (C22:6) were present in
higher amounts in all four strains except 3589 (19.6% in
3229, 45.3% in 3450, 58.5% in 3472, 0.2% in 3589 and
18.9% in 3590, respectively) making the SCOs of these
strains (except strain 3589) unsuitable for biodiesel.



Table 1 Fatty acid methyl ester profiles of Y. lipolytica strains on glucose

% of fatty acid methyl ester NCIM 3229 NCIM 3450 NCIM 3472 NCIM 3589 NCIM 3590

Caprylic acid (C8:0) ND ND ND ND 0.4

Lauric acid (C12:0) ND ND ND ND 4.8

Tridecanoic acid (C13:0) 58.1 4.9 ND ND ND

Myristic acid (C14:0) ND ND ND 0.4 3.9

Pentadecanoic acid (C15:0) 12.5 ND ND 0.1 34.4

Palmitic acid (C16:0) ND ND ND 24.1 2.8

Heptadecanoic acid (C17:0) ND ND ND ND 0.4

Stearic acid (C18:0) ND ND ND 7.7 4.6

Arachidic acid (C20:0) ND ND 4.8 0.4 ND

Heneicosanoic acid (C21:0) ND ND ND ND 7.4

Behenic acid (C22:0) ND ND 12.3 0.4 ND

Lignoceric acid (C24:0) ND ND ND 1.5 ND

Palmitoleic acid C16:1) ND ND ND 11 1.6

Oleic acid (C18:1n9c) ND ND ND 38.6 3.5

cis-10-pentadecanoic acid (C15:1) ND 13.5 ND ND ND

cis-11Eicosanoic acid (C20:1) ND ND ND 0.1 ND

Erucic acid (C22:1n9) ND ND ND ND 9.2

cis-10-Heptadecanoic acid (C17:1) 0.6 9.3 ND 0.4 ND

Linoleic acid (C18:2n6c) ND ND ND 14.6 2.7

Linolenic acid (C18:2nc) ND ND ND 0.1 ND

cis-11,14-Eicosadienoic acid (C20:2) ND ND 7.2 ND ND

cis-8,11,14-Eicosatrienoic acid (C20:3n3) 3.7 10.3 ND 0.2 ND

Arachidonic acid (C20:4n6) 5.0 19.4 21.7 ND 9.8

cis-13,16-Docosadienoic acid (C22:2) 5.5 16.8 16.7 ND ND

cis-5,8,11,14,17-Eicosapentanoic acid (C20:5n3) 6.4 16.7 19.2 0.2 9.1

cis-4,7,10,13,16,19-Docosahexanoic acid (C22:6n3) 8.2 9.2 17.6 ND ND

Elaidic acid methyl ester(C18:1n9t) ND ND 0.5 ND ND

Total of trans fat ND ND 0.5 ND ND

Total of fatty acids: Saturated 70.6 4.9 17.1 34.6 64.1

Total of fatty acids: Monounsaturated 0.6 22.8 ND 50.1 14.3

Total of fatty acids: Polyunsaturated 28.8 72.4 82.4 15.1 21.6

Total of fatty acids 99.4 100.1 100 99.8 100

ND: Not detected.
Values are means of three independent sets of experiments.

Katre et al. AMB Express 2012, 2:36 Page 7 of 14
http://www.amb-express.com/content/2/1/36
Hence, depending on the neutral lipid content, fatty acid
profile and based on the evaluation put forth by Ramos
et al. (2009), strain 3589 which demonstrated a good neu-
tral lipid content, a high SFA (34.6%) and maximal MUFA
content (50.1%) and comprising of palmitic (C16:0), stearic
(C18:0), palmitoleleic (C16:1) and oleic acid (C18:1) and
low PUFA content (≥ 4 double bonds, 0.2%) was found to
be the most suitable for biodiesel production.

Effect of initial glucose concentration on SCO production
Glucose concentration has a significant effect on cell
growth and lipid accumulation in batch cultures (Li et al.
2007 Papanikolaou et al. 2009 Zhang et al. 2011). Such
preliminary studies are necessary to ascertain the nutrient
conditions in order to select a strain with the relevant
FAME profile. Glucose is often used as a comparison
basis to evaluate the performance of other carbon sub-
strates including wastes. Therefore, we investigated the
effect of initial glucose concentration, ranging from 10
to 100 g L-1, on biomass, SCO yields and glucose con-
sumed (Glucose cons) by strain 3589. As shown in
Figure 3, there was no significant substrate inhibition
on cell growth of Y. lipolytica 3589 up to 50 g L-1 in
48 h. The biomass (X, g L-1) and lipid yield (L, g L-1)
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increased to 8.9 and 1.5 g L-1 for 50 g L-1 glucose
(Figure 3). The lipid/dry biomass yield coefficient (YL/X,
g g-1) however was maximal at 30 gL-1 (0.29 g g-1) which
decreased to 0.14 g g-1 at 100 g L-1 glucose. For all the
initial glucose concentrations studied, significant con-
centrations of residual glucose remained at 48 h.
(Figure 3).
Biomass and SCO yields of Y. lipolytica strains on
different wastes
As expected, an easily utilizable carbon source such as
glucose, affected the variation in lipid yields and FAME
profiles among the different Y. lipolytica strains. It was
noted that on an optimal glucose concentration of
30 g L-1 in lipid accumulation media, strain 3589 exhib-
ited a FAME profile suitable for biodiesel production. It
has also been reported that addition of glucose to wastes
enhances lipid production by yeast cells (Xue et al. 2008;
Bialy et al. 2011). However, the fermentation cost on
high glucose concentrations limits their use for biodiesel
production. The use of inexpensive media for lipid fer-
mentation is one of the possible ways to resolve this
problem. Therefore, the ability of all Y. lipolytica strains
to accumulate lipids on locally available cheap and re-
newable carbon sources was also evaluated. The results
of preliminary studies showing biomass and lipid yields
of these strains when cultivated using these wastes (1%,
w/v or v/v) after 72 h are given in Table 2.
Amongst all the locally available inexpensive wastes

studied, the strains exhibited maximal lipid yield coeffi-
cients (Y L/X) on 4 wastes viz., WCO, whey, WMO and
Figure 3 Biomass, lipid yield, glucose consumed and lipid yield coeffi
concentrations of glucose. Biomass (g L-1): ▼; Lipid (g L-1): ●; Glucose con
fish waste (Table 2). For the other wastes, though a good
biomass was achieved, the yields of lipid obtained were
relatively lower and hence were not considered further.
When grown on WCO, the yields obtained were 0.33,
0.45, 0.33, 0.24 and 0.2 g g-1 while on WMO, the yields
obtained were: 0.22, 0.55, 0.17, 0.21 and 0.28 g g-1, re-
spectively for strains 3229, 3450, 3472, 3589 and 3590.
Cheese whey yielded a Y L/X of 0.13 g g-1 for strain 3589
while on fish waste, yields were 0.14 and 0.13 g g−1 for
strains 3589 and 3590, respectively. Thus strain 3589
was able to accumulate SCO to varying degrees on all
these inexpensive substrates. To date, to the best of our
knowledge, no known reports on the substrates chosen
in the present study for SCO production by Y. lipolytica
exist other than WCO (Bialy et al. 2011).
Fatty acid profiles of transesterified SCOs grown on wastes
As the fatty acid composition and degree of unsaturation
varies with growth substrates, the effect of these four
wastes on content and type of fatty acid for all the
strains was investigated. As seen in Table 3 strains 3229,
3472 and 3589 exhibited a good lipid content on WCO
with respect to SFA, MUFA and PUFA. For the other
wastes either the Y L/X yields were low or the content of
SFA, MUFA or PUFA were not desirable for biodiesel.
The FAME profiles obtained were completely different
to those when grown on glucose (Table 4). Though
strain 3229 showed good yields, it exhibited very low
content of the desirable stearic (C18:0) palmitoleic
(C16:1) and oleic (C18:1) acids and hence was not con-
sidered as a suitable feedstock for biodiesel. Strain 3472
cients of Y. lipolytica NCIM 3589 grown on varying
s (g L-1): ○; Lipid/biomass yield (g g-1): ■.



Table 2 Lipid yield coefficient (Y L/X) of Y. lipolytica strains grown on different wastes

Substrate NCIM 3229 NCIM 3450 NCIM 3472 NCIM 3589 NCIM 3590

Bagasse 0.05 ± 0.02 0.06 ± 0.02 0.05 ± 0.02 0.07 ± 0.02 0.05 ± 0.01

Banana peel 0.05 ± 0.01 0.04 ± 0.01 0.06 ± 0.02 0.09 ± 0.02 0.05 ± 0.01

Cheese whey 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.13 ± 0.01 0.05 ± 0.01

Chicken feather waste 0.04 ± 0..02 0.04 ± 0.02 0.05 ± 0.02 0.06 ± 0.03 0.03 ± 0.01

Copra meal 0.04 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.04 ± 0.02 0.03 ± 0.01

Fish waste 0.05 ± .01 0.06 ±0.14 0.11 ± 0.14 0.14 ± 0.02 0.13 ± 0.14

Grape stalk 0.05 ± 0.02 0.04 ± 0.02 0.05 ± 0.02 0.06 ± 0.01 0.05 ± 0.02

Groundnut oil cake 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.03 ± 0.02

Groundnut shell waste 0.02 ± 0.01 0.04 ± 0.003 0.01 ± 0.002 0.03 ± 0.003 0.03 ± 0.005

Orange peel 0.03 ± 0.01 0.02 ± 0.02 0.03 ± 0.01 0.02 ± 0.02 0.03 ± 0.01

Orange pulp waste 0.06 ± 0.01 0.05 ± 0.02 0.05 ± 0.02 0.07 ± 0.02 0.07 ± 0.06

Peapod 0.03 ± 0.01 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.02 0.04 ± 0.04

Prawn shell waste 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.02 0.03 ± 0.01

Waste cooking oil(WCO) 0.33 ± 0.2 0.45 ± 0.24 0.33 ± 0.14 0.24 ± 0.02 0.2 ± 0.24

Waste motor oil (WMO) 0.22 ± 0.06 0.55 ± 0.2 0.17 ± 0.2 0.21 ± 0.04 0.28 ± 0.2

Values are means of three independent sets of experiments.
Differences were considered statistically significant for p< 0.05.

Table 3 Biomass, lipid content, yield coefficients and
fatty acid composition of Y. lipolytica strains on wastes

Y. lipolytica
strain

Waste
used

X
(gL-1)

L
(gL-1)

Y L/X

(gg-1)
Fatty acids (wt %)

TSFA TMUFA TPUFA

NCIM 3229 Fish 8.59 0.44 0.05 52.61 34.1 13.3

WCO 7.0 2.33 0.33 56.28 31.33 11.77

Whey 5.91 0.23 0.03 68.4 15.6 15.5

WMO 1.92 0.42 0.22 85.85 ND 14.13

NCIM 3450 Fish 8.57 0.53 0.06 47.6 40.8 11.46

WCO 5.43 2.45 0.45 79.54 14.64 4.15

Whey 6.91 0.29 0.05 97.97 0.45 1.54

WMO 0.59 0.32 0.55 70.27 21.05 8.63

NCIM 3472 Fish 8.92 0.98 0.11 65.94 0.81 33.21

WCO 7.98 2.67 0.33 28.04 71.94 ND

Whey 5.7 0.2 0.04 59.6 12.63 27.74

WMO 2.19 0.38 0.17 90.39 ND 9.59

NCIM 3589 Fish 2.86 0.39 0.14 29.57 10.35 60.03

WCO 5.04 1.19 0.24 56.82 32.5 11.98

Whey 2.6 0.33 0.13 61.98 3.69 34.3

WMO 2.27 0.48 0.21 41.95 6.46 51.57

NCIM 3590 Fish 9.67 1.33 0.13 70.74 1.48 27.7

WCO 7.65 2.2 0.28 77.12 1.2 20.54

Whey 5.49 0.28 0.05 39.68 53.22 7.05

WMO 1.6 0.34 0.2 73.39 ND 26.57

X: Biomass; L: lipid yield; Y L/X: lipid yield coefficient per gram biomass; ND:
Not detected.
T SFA: Total of Saturated Fatty Acids; T MUFA: Total of Monounsaturated Fatty
Acids; TPUFA: Total of Polyunsaturated Fatty Acids.
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exhibited good profile when grown on WCO with a high
content of MUFA (oleic acid, C18:1), reasonable amount
of SFA (lignoceric acid, C24:0) and negligible amounts
of PUFA. This was in complete contrast to the profile
observed when grown on glucose wherein high contents
of PUFAs were obtained. Strain 3589 also exhibited a
reasonable profile with a high content of desirable SFA
(C8:0 and C16:0) and MUFA (C18:1) with a low PUFA
content (C18:2).

Effect of waste cooking oil (WCO) concentration on SCO
yields
The effect of WCO concentrations, ranging from 10 to
100 g L-1 on biomass and SCO yields by strains 3472
and 3589 were performed in shake flasks. The WCO
was composed of C16:0 (40.5%), C18:1 (40.9%) and
C18:2 (10.35%), as determined by GC-FID. As shown in
Figure 4a, for strain 3472, lipid accumulation could be
seen by light microscopy and Nile red fluorescence
(inset). Maximal biomass (7.9 g L-1), lipid yield (3.8 g L-1)
and YL/X (0.47 g g-1) were observed at 30 g L-1 in 72 h.
Higher WCO concentrations were inhibitory for both
growth and lipid yield. For Y. lipolytica 3589, lipid accu-
mulation is shown in Figure 4b inset. No significant sub-
strate inhibition of WCO on cell growth and lipid
content up to 100 g L-1 in 72 h was noted (Figure 4 b).
The cellular biomass as total dry weight (X in g L-1) and
lipid yield (L in g L-1) increased up to 10.1 and 4.3 g L-1

for 100 g L-1 WCO. The lipid/dry biomass yield coeffi-
cient (YL/X, g g-1) was maximal at 100 g L-1 (0.43 g g-1).
Hence the SCOs of both 3472 and 3589 were further
investigated for their biodiesel properties.



Table 4 Fatty acid methyl ester profiles of Y. lipolytica
NCIM 3472 and NCIM 3589 on WCO

% of fatty acid methyl ester NCIM 3472 NCIM 3589

Caprylic acid (C8:0) ND 25

Lauric acid (C12:0) ND 3.20

Myristic acid (C14:0) ND 1.73

Palmitic acid (C16:0) ND 21.13

Stearic acid (C18:0) ND 3.43

Heneicosanoic acid (C21:0) ND 1.79

Behenic acid (C22:0) 1.54 ND

Lignoceric acid (C24:0) 26.5 ND

Palmitoleic acid (C16:1) ND 0.91

Oleic acid (C18:1n9c) 71.94 21.01

cis-11Eicosanoic acid (C20:1) ND 2.00

cis-10-Heptadecanoic acid (C17:1) ND 8.01

Linoleic acid (C18:2n6c) ND 11.77

Total of fatty acids: Saturated 28.04 56.28

Total of fatty acids: Monounsaturated 71.94 31.93

Total of fatty acids: Polyunsaturated ND 11.77

Total of fatty acids 99.9 99.98

ND: Not detected.
The values are the means of three independent determinations.

Figure 4 Biomass, lipid yield and lipid yield coefficients of Y.
lipolytica NCIM 3472 and NCIM 3589 grown on varying
concentrations of WCO. Bar (empty): Biomass (g L-1), Bar (oblique
line): Lipid (g L-1), Bar (checkered): Lipid/biomass yield coefficient
(g g-1). Inset In each graph light microscopy (left panel) and Nile red
fluorescence microscopy (right panel) images of the respective Y.
lipolytica strains under 100× oil immersion objective. Bar indicates
10 μm.

Katre et al. AMB Express 2012, 2:36 Page 10 of 14
http://www.amb-express.com/content/2/1/36
Biodiesel properties of transesterified SCO (FAME) from
strains NCIM 3472 and NCIM 3589
Direct measurement of fuel properties of biodiesel is
quite complex with high cost, error in reproducibility
and requiring a considerable amount of fuel sample
(Tong et al. 2011). Therefore, prediction models and
mathematical equations have been developed to predict
biodiesel properties from FAME composition (Azam
et al. 2005; Demirbas 1998; Gunstone et al. 2007; Knothe
and Steidley 2011; Lapuerta et al. 2010; Pratas et al.
2011; Tong et al. 2011). In the present study, the differ-
ent physicochemical biodiesel properties viz., density,
kinematic viscosity, CN, SN, IV, HHV, TAN, FFA, water
content of the sample, copper strip corrosion test were
determined for transesterified SCO of the yeast strains
3472 and 3589. The results for the physicochemical
properties summarized in Table 5 were performed ex-
perimentally as well as determined using models and/or
equations based on FAME profiles. While the biodiesel
properties for strain 3589 were ascertained when grown
on glucose as well as WCO media those for strain 3472
were carried out for the strain grown on WCO. Biodiesel
properties of 3472 were not determined when grown on
glucose as the strain contained a high amount of PUFA
and negligible MUFA (Table 1) which is undesirable for
biodiesel.
Among physical properties of biodiesel, strain 3589

with glucose as the carbon source, the density was
predicted to be 0.87 g cm-3 and experimentally deter-
mined as 0.81 g cm-3 while viscosity was predicted to be
4.44 mm2 s-1. IV, SN and HHV are three important
chemical properties of biodiesel attributed to the fatty
acid profile. The IV is a crude measure of degree of un-
saturation of the biodiesel and is often used in



Table 5 Fuel properties of biodiesel from Y. lipolytica grown on glucose and WCO

Property/Test Strain NCIM
3589 on glucose

Strain NCIM
3589 on WCO

Strain NCIM
3472 on WCO

US biodiesel
standards
ASTM D6751

European biodiesel
standards EN14214

Indian biodiesel
standards
IS15607

Visual test + + + NS + NS

Density (g cm -3)* 0.81 (0.87) 1.04(0.87) 1.19 (0.87) NS 0.8600-0.900 0.8600-0.900

Water content (vol %)* ND ND ND 0.05max 0.25max 0.03max

TAN (mg NaOH/g)* 0.2 2.8 2.3 0.8max 0.5max 0.5max

FFA (%)* 0.1 1.4 1.15 NS NS NS

Cu strip corrosion* Class 1a Class 1a Class 1a Class 3max Class 1max Class 1max

CN*** 56.6 50.8 59 47-65 51 min 51 min

Kinematic viscosity
(40°C; mm2/s) ***

4.44 3.6 6.44 1.9-6.0 3.5-5.0 3.5-5.0

SN* 190.81 (194.48) 256.16 (249.4) 168.5 (177) NS NS NS

IV* 65.7 (70.64) 37.8 (47.9) 54.5 (61) NS 120max NS

HHV(M J kg-1)*** 40.39 36.77 41.25 NS NS NS

Concentration of γ-linolenic
acid (C18:3) (%)*

0.1 0 0 NS 12max NS

FAME having ≥4 double
bonds (%)*

ND ND ND NS 1 max NS

WCO – waste cooking oil. The experimental values are means of three independent determinations.
ND: Not Detected; NS: Not Specified. * Experimentally determined values, followed by predicted ones, if any, in brackets.
** Calculated using experimental SN and IV while the values in brackets determined from predicted ones.
*** Predicted values as mentioned in Materials and Methods.
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connection with its oxidative stability. The SN indicates
the amount of TAG present in total lipid and HHV
depends upon both IV and SN. Therefore, in the present
study the SN and IV were experimentally determined as
well as calculated empirically from fatty ester compos-
ition of transesterified total lipids. The experimentally
determined (65.7) and the predicted (70.64) IVs were
below the EN 14214 specification (120 max) and suggest
good oxidative stability of the transesterified oils from
strain 3589. The calculated and experimentally deter-
mined SNs were found to be 194.48 and 190.81, respect-
ively while HHV was estimated to be 40.39 MJ kg -1.
For biodiesel, CN has been found to increase with an in-

creasing weight percentage of saturated and long chain fatty
ester. In fact, methyl esters of stearic acid (C18:0), which is
of relevance to biodiesel, have been found to possess the
highest CN (> 80) (Knothe 2008). In the present study, me-
thyl esters of long chain saturated fatty acids namely stearic
acid (C18:0) and palmitic acid (C16:0) were also present in
the transesterified yeast oil. The calculated CN was found
to be 56.6 (Table 5), and within the range suggested by the
standard norms. The TAN and FFA content as determined
experimentally according to EN14214 were estimated to be
0.2 mg KOH g-1 and 0.1%, in accordance with the biodiesel
standards. Other chemical properties of biodiesel evaluated
were the concentration of linolenic acid (C18:3) and wt %
of FAMEs having≥4 double bonds. From the fatty acid
profile of the yeast SCO, it can be seen that the concentra-
tion of C18:3 (0.1%) was well below the specified limit of 12
max and fatty esters with≥4 double bonds were not
detected in the transesterified oil (Table 5). These values
are in the acceptable range of international biodiesel stand-
ard norms suggesting the possible suitability of biodiesel
from strain 3589 when grown on glucose.
When grown on WCO as substrate, for strain 3589,

the density and TAN were found to be slightly higher at
1.04 g cm-3 and 2.8 mg g -1 NaOH, respectively. For
strain 3472, the density (1.19 g cm-3), TAN (2.3 mg g-1

NaOH), CN (59) and kinematic viscosity (6.44 mm2 s-1)
were found to be much higher than the recommended
limits given by the international biodiesel standard
norms. All other values for the SCOs from strains 3472
and 3589 were found to lie within the specified limits of
the biodiesel standards (Table 5). This is in fact the first
report on characterization of biodiesel from any Y. lipo-
lytica strain.

Discussion
In this study, SCO from strains of a known lipid accu-
mulating model organism Y. lipolytica were evaluated to
select a lipid yielding strain with higher level of saturated
and monounsaturated FAMEs for biodiesel production.
All five Y. lipolytica strains tested viz. NCIM 3229, 3450,
3472 3589 and 3590 were able to accumulate > 20% of
their biomass as cellular lipids.
Glucose concentration has previously been shown to

influence the yields of lipid produced, composition of
fatty acids as well as their degree of unsaturation in
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oleaginous yeasts Rhodotorula glacialis DBVPG 4785
(Amaretti et al., 2010) Candida sp. 107 (Gill et al. 1997)
and Trichsporon fermentans (Zhu et al., 2008). A com-
parison with other Y. lipolytica strains grown on glucose
has been tabulated and shown in Table 6. Thus, in this
study, the strains produced biomass (3.77 - 7.42 g L-1)
and lipid yields, (0.84 - 1.48 g L−1) in 30 g L-1 glucose in
a short fermentation time of 48 h. While it can be seen
that the biomass obtained was comparable to earlier
studies, the Y. lipolytica strains used in this study pro-
duced higher lipid yield coefficients (0.22-0.31 g g-1 bio-
mass) to those reported in literature (0.04- 0.14 g g-1

biomass) (Table 6). Amongst the lipids, neutral lipids
comprising of triacylglycerol (TAG) are the most suit-
able for direct conversion to biodiesel. In all the five
strains the neutral lipid fraction was found to be 88-89%
(w/w) of the total lipid content. Since biodiesel is derived
by trans-esterifying the SCO, the fatty acid composition
of the original feedstock determines the quality of bio-
diesel. Methyl esters from MUFAs viz., palmitoleic
(C16:1) and oleic (C18:1) acids are warranted as they are
liquid at room temperature and would help in good flow
Table 6 Comparison of biomass, lipid and fatty acid profiles o

S No. Strain of
Y. lipolytica

Glucose Time X L Gl

(g L-1) (h) (gL-1) (gL-1) (g

1 LGAM S (7) 1 28 47.5 5 0.35 22

2 W 29 (ATCC 20460) 20 24 - - -

3 ACA-YC-5028 30 98 5.5 - 28

ACA-YC-5029 119 4.9 0.02 23

ACA-YC-5030 119 5.9 - 28

ACA-YC-5031 72 5.6 - 16

ACA-YC-5032 96 5.1 - 13

ACA-YC-5033 94 5.1 0.02 24

LFMB 15 95 5.2 - 13

W 29 142 5.8 0.06 29

ACA-YC-5029 60 219 3.9 0.01 50

ACA-YC-5033 309 5.5 0.02 58

W 29 315 5 0.03 57

4 W 29 (ATCC 20460) 35 72 5.6 0.6 13

ACA-YC-5028 72 - - -

ACA-YC-5033 24 4.2 0.5 5.4

5 NCIM 3229 30 96 7.42 0.83 21

NCIM 3450 24 3.23 1.01 8.3

NCIM 3472 48 3.58 0.89 14

NCIM 3589 48 3.10 0.9 11

NCIM 3590 24 1.05 0.3 7.9

-: Not mentioned; X: Biomass; L: lipid yield; Glu cons: Glucose consumed; Y L/X: lipid y
Total of Monounsaturated Fatty Acids; TPUFA: Total of Polyunsaturated Fatty Acids.
properties. The percentage of unsaturated fatty acids
affects the oxidative stability of the final product and
quality of biofuel during extended storage (Knothe
2005). A high total PUFA content results in increased
viscosity, which again is undesirable for biodiesel. Thus,
an ideal biodiesel is made mainly from methyl esters of
both SFA and MUFA with low PUFA (Ramos et al.
2009). In this study, amongst all the 5 strains studied,
SCO from Y. lipolytica 3589 cultured on 30 g L-1 glucose
in 48 h exhibited a good yield coefficient (YL/X)
(0.29 g g-1), biomass (4.16 g L−1), high neutral lipid frac-
tion (89% w/w of total lipid) and a desirable fatty acid
profile containing palmitic (24.1%), stearic (7.7%), oleic
(38.6%), palmitoleic (11%) acids with a lower content of
unwanted PUFAs, a composition essential for good qual-
ity biodiesel. Strains 3229, 3450, 3472 and 3590 either
contained high amounts of PUFA or were low in MUFAs
when grown on glucose, making them unsuitable for
biodiesel.
The physico-chemical properties of FAMEs of strain

3589 grown on glucose were comparable with the pre-
dicted/estimated values reported for biodiesel obtained
f various strains of Y. lipolytica reported on glucose

u cons Y L/X Fatty acids (%) References

L-1) (gg-1) TSFA TMUFA TPUFA

.5 0.07 17.2 53.1 10.4 Papanikolaou et al. 2006

0.05 11.94 30.46 47.43 Beopoulos et al. 2008

.2 - 20.5 67.3 12.1 Papanikolaou et al. 2009

.9 0.04 17.3 75.4 7.3

.9 - 16.4 78.3 5.3

.9 - - - -

.5 - - - -

.8 0.05 22.6 66.3 11.1

.2 - - - -

.2 0.06 20.4 62.3 17.3

.8 0.1 17.4 72.3 9.1

.8 0.14 20.4 64.5 11.2

.7 0.07 22.4 59.5 18.1

.8 0.11 20.3 61.2 17 Sarris et al. 2011

- 25.6 50.4 24

0.12 23.3 62.4 12.1

.11 0.22 70.6 0.6 28.8 Present study

6 0.31 4.9 22.8 72.4

.02 0.25 17.1 0 82.4

.29 0.29 34.6 50.1 15.1

4 0.28 64.1 14.3 21.6

ield coefficient per gram biomass; T SFA: Total of Saturated Fatty Acids; T MUFA:
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from other oleaginous yeasts (Liu and Zhao 2007; Thiru
et al. 2011). These values lie within the acceptable range
of international biodiesel standard norms and were com-
parable to vegetable oils (Leung et al. 2010). The free
fatty acid (FFA) content was found to be below 0.1% and
FAMEs ≥ 4 double bonds were not detected, well within
the specifications of EN 14214.
Y. lipolytica strains, can induce a notable accumulation

of reserve lipid when grown on hydrocarbons and fatty
substrates. Based on the lipid yield coefficients and
FAME profiles, it was seen that the strains 3472 and
3589 could effectively utilize WCO as an inexpensive
waste substrate for SCO production. An earlier report by
Bialy et al. 2011, has indicated that growth of Y. lipolytica
resulted in an increase in total lipid content (0.58 g g-1)
when grown on frying vegetable oil waste (0.5%, w/v)
supplemented with 10 g L-1 glucose. Recently an oleagin-
ous yeast Y. lipolytica has been shown to produce SCO
(0.59 g g-1) on sugarcane bagasse hydrolysate medium
(Tsigie et al. 2011) while Zygomycetous fungi like Mor-
tierella isabellina have been shown to produce significant
quantities of biomass (23.1 g L-1) and YL/X (0.17 g g-1)
when grown on cheese whey (100%, v/v) (Vamvakaki
et al. 2010). A previous study has reported a lipid yield
coefficient of 0.44-0.54 g g-1 on stearin by Y. lipolytica
ACA-DC-50109 (Papanikolaou and Aggelis 2010) while
ATCC 20460 yielded 0.20 g g -1 on biodiesel-derived gly-
cerol (Andre et al. 2009). Thus, lipid yield coefficients
obtained on WCO in the present study are promising as
preliminary data indicates that strain 3589 was able to
utilize WCO up to 100 g L-1 with Y L/X of 0.43 g g-1 while
strain 3472 exhibited a Y L/X of 0.47 g g-1 on 30 g L-1

WCO with higher concentrations being inhibitory.
Both strains exhibited a different FAME profile when

grown on WCO as compared to glucose which was
reflected in their biodiesel properties. While the TAN
values were higher in both the strains than the expected
norms, all other properties for strain 3589 seemed to lie
within the specified range. For strain 3472, the CN value,
density and kinematic viscosity were also found to be
much higher than the expected range. This would most
likely be due to the high content (26.5%) of the long
chain SFA (C24:0) present in the strain. Generally long
chain SFAs are not desirable for biodiesel as they are
known to increase viscosity thereby affecting flow prop-
erties (Knothe 2005). The fuel properties for strain 3589
could be further improved on WCO supplemented with
glucose during optimization as reported in the case of Y.
lipolytica (Bialy et al. 2011) and Trichosporon fermentans
(Zhu et al., 2008). This approach may not be possible for
strain 3472 as it leads to increased levels of PUFAs when
grown on glucose.
Toxic compounds such as aldehydes, semialdehydes,

hydrocarbons, alkoxy radicals and acids are generated
during the process of reheating WCO which can be in-
hibitory for microbial growth (Kulkarni and Dalai 2006).
Strain 3589 could grow up to 100 g L -1 WCO and ac-
cumulate 0.43 g g-1 lipid indicating the ability of the
strain to tolerate toxic compounds and accumulate lipids
at high WCO concentrations. On the other hand, high
concentrations of WCO were found to be inhibitory for
growth and lipid accumulation in strain 3472 which
showed a steady decrease in Y L/X from 10–100 g L -1

(0.33-0.27 g g -1), making it unsuitable for further op-
timization and scale-up studies.
The results obtained in the present study were com-

parable with those reported for other yeasts. For ex-
ample, a study on Cryptococcus curvatus for biodiesel
production reported a number of fuel properties with
similar values including acid value (0.47), density (0.879 g
cm-3) and iodine value (59) (Thiru et al. 2011). Previ-
ously, Liu and Zhao (2007) predicted CN values of 59.9
and 63.5 for two oleaginous yeasts, Lipomyces starkeyi
and Rhodosporidium toruloides, respectively.
Thus, SCO from the tropical marine yeast Y. lipolytica

3589 seems to be a potential feedstock for biodiesel pro-
duction with the neutral lipid fraction as the major com-
ponent of their total lipids, the presence of higher
quantities of saturated and monounsaturated C16 and
C18 fatty acids and lower concentration of long chain
PUFAs as the major features. The strain could accumu-
late lipids upto 0.43 g g-1 in the presence of 100 g L-1

WCO. The experimentally determined and predicted
biodiesel properties based on FAME composition of the
yeast SCO of strain 3589 grown on glucose and on WCO
are found to lie within the range specified by inter-
national biodiesel standard specifications and was there-
fore identified as a promising strain for further studies.
This is the first report on the physico-chemical
characterization of biodiesel from any Y. lipolytica strain.
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