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placebo-controlled randomised crossover
clinical trial
Nicole J Kellow1*, Melinda T Coughlan2,3, Gayle S Savige1 and Christopher M Reid1
Abstract

Background: Advanced glycation endproducts (AGEs) contribute to the development of vascular complications of
diabetes and have been recently implicated in the pathogenesis of diabetes. Since AGEs are generated within
foodstuffs upon food processing, it is increasingly recognised that the modern diet is replete with AGEs. AGEs are
thought to stimulate chronic low-grade inflammation and promote oxidative stress and have been linked to the
development of insulin resistance. Simple therapeutic strategies targeted at attenuating the progression of chronic
low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of type 2
diabetes in susceptible individuals. Dietary modulation of the human colonic microbiota has been shown to confer
a number of health benefits to the host, but its effect on advanced glycation is unknown. The aim of this article is
to describe the methodology of a double-blind placebo-controlled randomised crossover trial designed to
determine the effect of 12 week consumption of a prebiotic dietary supplement on the advanced glycation
pathway, insulin sensitivity and chronic low-grade inflammation in adults with pre-diabetes.

Methods/Design: Thirty adults with pre-diabetes (Impaired Glucose Tolerance or Impaired Fasting Glucose) aged
between 40–60 years will be randomly assigned to receive either 10 grams of prebiotic (inulin/oligofructose) daily
or 10 grams placebo (maltodextrin) daily for 12 weeks. After a 2-week washout period, study subjects will crossover
to receive the alternative dietary treatment for 12 weeks. The primary outcome is the difference in markers of the
advanced glycation pathway carboxymethyllysine (CML) and methylglyoxal (MG) between experimental and control
treatments. Secondary outcomes include HbA1c, insulin sensitivity, lipid levels, blood pressure, serum glutathione,
adiponectin, IL-6, E-selectin, myeloperoxidase, C-reactive protein, Toll-like Receptor 4 (TLR4), soluble receptor for AGE
(sRAGE), urinary 8-isoprostanes, faecal bacterial composition and short chain fatty acid profile. Anthropometric measures
including BMI and waist circumference will be collected in addition to comprehensive dietary and lifestyle data.

Discussion: Prebiotics which selectively stimulate the growth of beneficial bacteria in the human colon might offer
protection against AGE-related pathology in people at risk of developing type 2 diabetes.
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Background
Advanced Glycation Endproducts (AGEs) are formed via
the Maillard reaction, which consists of a complex net-
work of non-enzymatic reactions involving the carbonyl
groups of reducing sugars which react with the amino
groups of proteins [1]. AGEs are generated in vivo as a
normal consequence of metabolism, but their formation
is accelerated under conditions where blood glucose is
chronically elevated such as poorly controlled diabetes [2].
AGE formation is also increased in the presence of oxida-
tive stress, which is frequently observed in individuals with
the metabolic syndrome [3,4]. Overproduction of reactive
oxygen species (ROS) can result in maladaptive responses
including interruption of cellular glycolysis, which can
generate highly reactive dicarbonyl compounds capable
of rapid AGE formation [5].
Excessive AGE accumulation can lead to several patho-

physiological consequences. AGE-modification of proteins
results in changes in structure and/or function. For example,
the AGE-modification of extracellular collagen reduces
its elasticity and solubility, and results in increased
stiffness, disturbed cellular adhesion and reduced turn-
over contributing to basement membrane thickening
[6]. Intracellularly, AGE-modification of mitochondrial
proteins is associated with suppression in the activity
of respiratory chain enzymes and overproduction of ROS
[7,8]. Indeed, glycated proteins provide stable active sites
for catalysing the formation of free radicals [9]. Finally,
AGEs are able to bind and activate a range of receptors,
which then trigger a downstream cascade of pathogenic
mediators. Interaction of AGEs with the Receptor for
AGEs (RAGE) promotes activation of the transcription
factor nuclear factor kappa-B (NF-κB), with subsequent
upregulation of chemokines, such as MCP-1 and profi-
brogenic mediators such as TGFβ in addition to pro-
inflammatory cytokines which are known to be involved
in thrombogenesis, vascular inflammation and pathological
angiogenesis. These RAGE-mediated events contribute
to many of the long-term complications of diabetes [10].
AGE/RAGE ligation also promotes overproduction of
ROS which can then activate NF-κB [11], a key driver
of inflammation.
More recently, AGEs have been implicated in the patho-

genesis of both type 1 and type 2 diabetes. Several studies
have shown that AGEs are associated with insulin resist-
ance [12,13], and can induce low-grade inflammation [14]
and pancreatic beta cell dysfunction [15,16].
In contrast to endogenous AGE formation, AGEs are
also absorbed by the body from exogenous sources such
as cigarette smoke and through consumption of processed
foods [17]. Since AGEs are generated within foodstuffs
upon heating and food processing, it is increasingly
recognised that the modern diet is replete with AGEs
[18]. AGE-restricted diets can arrest the development
of type 2 diabetes in animal models [19]. A recent study
found that excess consumption of AGE-precursors in mice
over several generations led to the development of insulin
resistance [20]. Human trials have found that dietary AGE
restriction can improve insulin sensitivity [21,22] and
decrease markers of oxidative stress [23] or inflamma-
tion [24]. Further studies are required to confirm the
long-term benefits of dietary AGE-restriction in humans
[25]. However, simple, safe and effective interventions
which prevent or minimise excessive AGE accumula-
tion and subsequent AGE-related pathology in people
with diabetes and/or in those at risk of developing the
condition are warranted.
Interventions which influence the human intestinal

microbiota are worthy of further investigation given that
specific micro-organisms have the ability to significantly
affect host metabolism. Gut bacteria play an important
role in the host immune system, modulation of inflamma-
tory processes, extraction of energy from the host’s diet,
fermentation of dietary fibres to produce short-chain fatty
acids, alteration of human gene expression, regulation of
intestinal permeability, production of some vitamins and
promotion of mineral absorption by the host [26-31]. Fur-
thermore, the total quantity and relative proportions of
distinct bacterial species found in the colon differ between
lean and obese individuals as well as between individuals
with and without diabetes [32,33].
It is thought that certain dietary AGEs are largely un-

digested by human gut enzymes and eventually enter
the colon, where they may act as a growth substrate for
detrimental bacteria such as some Clostridium and
Bacteroides species [34]. Therefore it is conceivable
that individuals who consume highly processed diets
(which contain large quantities of AGEs) may adversely
alter their colonic microbial composition, potentially
enhancing their risk for the development of metabolic
diseases such as obesity and type 2 diabetes [35].
Therapeutic manipulation of the gut microbiota and

restoration of normobiosis could potentially reduce cir-
culating AGE levels and improve the metabolic health

https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363624
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of individuals at risk for the development of type 2 diabetes.
Regular consumption of prebiotics to promote the growth
of beneficial gut bacterial flora is one such avenue cur-
rently under investigation. Prebiotics are non-digestable
plant-derived carbohydrates which confer health bene-
fits to the host by acting as a fermentation substrate in
the colon, stimulating the preferential growth and activ-
ity of a limited number of beneficial microbial species
[36]. Supplementation of the human diet with prebiotic
fructans such as inulin or fructo-oligosaccharides alters the
bacterial composition of the large intestine by favouring the
selective proliferation of beneficial lactic acid-producing
species such as bifidobacteria and lactobacilli. Prebiotic-
stimulated increases in intestinal Bifidobacterium spe-
cies have been shown to attenuate the production of
ROS and markers of inflammation in individuals con-
suming high fat diets [37].
While the complex interactions between diet, intestinal

microbiota and host metabolism are still being elucidated,
no studies have investigated the effect of dietary prebiotics
on circulating AGE concentrations. This trial was designed
to investigate the effect of a prebiotic dietary supplement
on AGE accumulation and explore changes to the growth
and activity of specific gut microbiota in adults diagnosed
with prediabetes.

Methods/Design
Study design and setting
This is a 6.5-month randomised crossover controlled
clinical trial (RCT) in which adults aged 40–60 years
with diagnosed pre-diabetes will be enrolled. Potential
study participants will be identified from General Practice
(GP) clinics throughout South Gippsland, Victoria. The
study design is presented in Figure 1.

Inclusion criteria
Individuals aged between 40–60 years and diagnosed with
prediabetes (Impaired Fasting Glucose or Impaired Glucose
Tolerance) within the previous 12 months. Diagnosis
will have been made at each individual’s local GP clinic after
undertaking an Oral Glucose Tolerance Test (OGTT).
Prediabetes was defined as a fasting plasma glucose con-
centration ≥ 6.1 and < 7.0 mmol/L followed by a 2-hour
post glucose load glucose concentration < 7.8 mmol/L,
or a fasting plasma glucose < 7.0 mmol/L followed by a
2-hour post glucose load glucose concentration ≥ 7.8
and < 11.1 mmol/L [38].

Exclusion criteria
Individuals previously diagnosed with type 1, type 2 diabetes
or impaired renal function (eGFR <90 mL/min/1.73 m2),
individuals with known gastrointestinal pathology (coeliac
disease, inflammatory bowel disease), pregnant women,
smokers, individuals who have taken antibiotics, dietary
prebiotic or probiotic nutritional supplements within
the previous three months, individuals taking aspirin or
Vitamin B, individuals who have made major dietary or
lifestyle changes in the previous three months, individ-
uals who are unwilling to provide blood, urine and stool
samples or are unable to attend their local pathology
collection centre.

Ethics
The trial has received ethical approval from the Monash
University Human Research Ethics Committee.

Sample size calculation
The minimum difference we wish to detect is 0.4
micromol/L serum CML (20% reduction in CML), with
a standard deviation of 0.4 [39] with 5% Significance and
80% Power. This calculates as a total sample size of 18 in-
dividuals, plus 12 individuals to allow for withdrawals = 30
subjects required. Epidemiological studies have demon-
strated a positive correlation between serum CML and all-
cause and cardiovascular mortality, cardiovascular disease,
glucose intolerance, impaired insulin secretion, renal im-
pairment and diabetic vascular complications [40,41]. A
0.4 micromol/L increase in serum CML concentration
represented a 68% increased risk for all-cause mortality
over seven years in a large prospective cohort study [42].

Baseline assessment
The study timeline is presented in Figure 2. Following
recruitment and screening, consenting participants will
undergo a baseline assessment at their local GP clinic.
The baseline assessment will be undertaken by the research
dietitian, who will collect demographic details, medical
and social history (living situation, marital status, current
occupation), physical activity questionnaire, dietary intake
assessment, anthropometric measurements including Body
Mass Index (BMI) and waist circumference. Participants
will also be instructed to attend the local pathology centre
to provide a stool sample, 24-hour urine collection, and
have blood taken for analysis.

Randomisation
Randomisation of participants to intervention/placebo
sequence will be completed by a local pharmacist using
a permuted-block randomisation stratified by gender
via the web site www.randomization.com. The pharma-
cist will distribute the experimental and placebo nutri-
tional supplements to participants in the appropriate
sequence. Other than provision of supplements, the
pharmacist will have no contact with study participants or
involvement in data collection or analysis. Dietary supple-
ments will be provided in sealed opaque packages which
will be weighed at the conclusion of the study in order
to assess compliance. The supplements will be packaged

http://www.randomization.com/
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off-site by an external pharmaceutical packaging agency.
Each package will contain a participant’s study identifi-
cation number and will be labelled as either Supplement
1 or Supplement 2 corresponding to the first and sec-
ond intervention periods. This will ensure all investiga-
tors and participants are blinded to the treatment.
Blinding will cease only after statistical analysis of the
data has been completed.

Intervention
Participants will be randomly assigned to receive either
10 g of chicory-derived inulin/oligofructose powder
(kindly provided by Beneo-Orafti Active Food Ingredients,
Belgium) (intervention) or 10 g of maltodextrin powder
(placebo) daily. Previous studies have demonstrated
the bifidogenic effect of daily consumption of 5 g and
8 g dietary inulin supplements [43]. The inulin and
maltodextrin powders to be consumed are both tasteless
and can be mixed into hot or cold liquids or semi-solid
foods. Participants will be instructed how to incorporate
their supplement into their usual diet, and advised to
gradually increase their dose over ten successive days
until the target dose is reached. This stepped escalation
in supplement dose aims to minimise gastrointestinal
discomfort for participants, as a sudden increase in diet-
ary prebiotic intake may result in increased stool fre-
quency, abdominal bloating and flatulence until the
bowel adapts to the increased fibre intake [44]. Written
instructions will also be provided. Participants will be
advised to consume each dietary supplement daily for
90 days, and otherwise maintain their usual dietary in-
take and level of physical activity. Gastrointestinal toler-
ance to the dietary supplements will be indicated by
each study participant using a visual analogue scale as
described below.

Follow up visits
Visits to the GP clinic will be scheduled for each par-
ticipant at the conclusion of both Intervention 1 and
Intervention 2 treatment periods, in order to provide
follow-up data. Information collected will include an-
thropometric measurements, dietary intake assessment
and physical activity assessment. Each participant will
complete a self-administered questionnaire designed to
assess gastrointestinal tolerance to the dietary supple-
ment. Completed questionnaires will be placed into
sealed opaque envelopes in order to maintain blinding
of the researcher collecting data during the follow-up
visits. Participants will also be instructed to attend the
local pathology centre to provide urine and stool sam-
ples, and have blood taken for analysis.

Safety considerations
All adverse events will be documented.
Outcome measurements
The primary outcome of interest is the difference in serum
AGE and AGE-precursor concentration (measured as CML
and MG respectively) between experimental and control
treatments. Secondary outcomes include HbA1c, insulin
resistance (measured indirectly by homeostasis model
assessment), antioxidant capacity (reduced glutathione),
markers of oxidative stress on lipid molecules (urinary
8-isoprostanes), inflammatory biomarkers (serum IL-6,
high sensitivity C-reactive protein, MCP-1, sRAGE), adhe-
sion molecules (E-selectin), gut barrier integrity (TLR4),
24-hour urine and faecal CML and MG concentra-
tions, faecal bacterial composition (Bifidobacterium
spp., Lactobacillus spp., Roseburia spp., Faecalibacterium
prausnitzii and Akkermansia muciniphila) and faecal short
chain fatty acid concentrations. Lipid levels (serum total
cholesterol, LDL, HDL, TG) and blood pressure will
also be measured. Anthropometric measurements in-
cluding BMI and waist circumference will be collected,
in addition to comprehensive dietary and lifestyle data.
Gastrointestinal side-effects will be assessed using a
visual analogue scale adapted from Lecerf et al. [45].
The scale rates nine items including flatulence, bloat-
ing, rumbling, abdominal cramps, a global digestive
tolerance score calculated from the five previous items,
stool consistency, stool frequency and general well-
being through disturbances in usual and professional
activities as well as disturbances in personal and social
activities. Items are scored on a 10 cm linear scale.

Data collection
Dietary intake
An experienced research dietitian will obtain a com-
prehensive dietary history from each study participant
at baseline and at the completion of each intervention
period. A dietary history is a structured interview method
consisting of questions regarding habitual food intake.
It involves a 24-hour diet recall followed by a food fre-
quency questionnaire to clarify information about usual
consumption over the previous month. Usual portion
sizes will be obtained in household measures and with
the use of photographic aids. The dietitian will review
the dietary history with each participant, probing for de-
tails on portion sizes and cooking methods in order to
improve data accuracy. Dietary AGE content will be es-
timated from an open source database which lists the
AGE concentration of foods using validated analytical
techniques [46]. Dietary macro and micronutrient intakes
will be estimated using the Foodworks nutrient software
program (Xyris Software, NSW, Australia). Each partici-
pant will also be randomly contacted by telephone during
the study and asked to provide a 24-hour diet recall, and
changes in urinary urea excretion will be monitored in
order to validate the dietary history data collected [47].
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Physical activity will be estimated by asking participants to
complete the International Physical Activity Questionnaire
(Short Form) prior to and at the completion of experimen-
tal and placebo intervention periods [48].

Anthropometry
Body weight will be measured in participants wearing light
clothes without shoes using a digital scale (Seca, Germany)
to the nearest 0.1 kg. Height will be measured using a
portable stadiometer (Seca, Germany) to the nearest
0.1 cm. BMI is calculated by dividing weight (kg) per
height (m) square. Waist circumference will be measured
at the midpoint of the lowest rib and iliac crest using a
measuring tape to the nearest 0.1 cm. Body compos-
ition (total body water, fat mass, fat-free mass) will be
determined using Bioelectrical Impedance Analysis
(BodyStat-1500, Bodystat, Douglas, Isle of Man, United
Kingdom). Ambulatory blood pressure will be mea-
sured using an electronic blood pressure machine
(Omron Corporation, Kyoto, Japan), with subjects at
rest in a seated position. All anthropometric measure-
ments will be conducted in duplicate, with the mean
measurement recorded.

Laboratory investigations
Biological samples will be collected at baseline and at
completion of each three-month supplement interven-
tion period and stored at −80°C immediately after col-
lection. Twenty ml of fasting venous blood will be
collected from each participant by phlebotomy into a
sodium fluoride EDTA tube, a heparin-lined vacuum
tube and a clean glass test tube. Twenty-four hour urine
collections and morning stool samples will be collected
in sterile containers.
Serum, urinary and faecal CML will be measured using

a competitive ELISA (AGE-CML ELISA, Microcoat,
Penzberg, Germany) [49]. This assay has been validated
[50], is specific, and shows no cross-reactivity with other
compounds [49]. The within assay and between-assay co-
efficient of variation are both less than 5%, respectively.
Methylglyoxal will be measured by HPLC. Serum total
cholesterol and triglyceride concentrations will be de-
termined by enzymatic colorimetric assay (Technicon
Instruments, Ltd., New York, N.Y., USA), while HDL
cholesterol will be determined enzymatically in the super-
natant after precipitation of other lipoproteins with dextran
sulphate-magnesium. LDL-cholesterol will be calculated
using the Friedewald formula. Plasma glucose levels will be
determined by using an automated glucose oxidase method
(Glucose analyser 2, Beckman Instruments, Fullerton,
California). Insulin will be measured by enzymatic color-
imetry (WAKO Pure-Chemical Industries, Osaka, Japan).
Insulin Resistance (IR) will be estimated by the homeostasis
model assessment (HOMA) index as [FI × (fasting glucose/
22.5)], where FI is insulin in microunits per millilitre and
fasting glucose is in millimoles per litre [51,52]. HbA1c
will be measured by autoanalyser (Roche Diagnostics,
Mannheim, Germany). Plasma IL-6, MCP-1, E-selectin,
hsCRP, TLR4, glutathione (GSH), and myeloperoxidase
will be measured by commercial ELISA kits (Biosource
International, Camarillo, CA, USA). Urine 8-isoprostanes
will be measured by ELISA (Oxford Biomedical Research,
MI, USA).
Stool samples will be homogenised in a blender and

stored at −20°C for SCFA analysis. Samples will be thawed
and 5 g aliquots placed in Centriprep fluid concentrators,
MWCO 30,000 kDa (Amicon Inc., Beverly, MA, USA).
Samples will be centrifuged for 30 minutes at 1000 × g,
room temperature and supernatants placed in 15 ml
polypropylene tubes. 0.3 ml of 25% m-phosphoric acid
will be added to each tube, samples will be vortexed and
incubated at room temperature for 25 minutes. Samples
will be centrifuged at 5000 × g for 15 minutes at room
temperature. Supernatants will be decanted and frozen
overnight. The following day, samples will be thawed
and the pH of each sample adjusted to 6.5 using 4 N
KOH. Oxalic acid will be added at a final concentration
of 0.03% and SCFA concentrations determined by gas
chromatography with use of a Hewlett-Packard 5880A
gas chromatograph (Hewlett Packard, Palo Alto, CA, USA)
containing an 80/120 Carbopack B-DA/4% Carbowax 20 M
column (Supelco Inc., Bellefonte, PA, USA).
Quantitative Real-time PCR will be used to determine

faecal concentrations of Bifidobacterium spp., Lactobacillus
spp., Roseburia spp., Faecalbacterium prausnitzii and
Akkermansia muciniphila. The primers used will be
based on the following 16S rRNA gene sequences:
Bifidobacterium spp: F-CTCCTGGAAACGGGTGG and
R-GGTGTTCTTCCCGATATCTACA [53], Lactobacillus
spp: F-AGCAGTAGGGAATCTTCCA and R-CACCGCT
ACACATGGAG [54], Roseburia spp: F-CGKACTAGAG
TGTCGGAGG and R-GTCATCTAGAGTGTCGGAGG
[55], Faecalbacterium prausnitzii: F-GGAGGAAGAAGG
TCTTCGG and R-AATTCCGCCTACCTCTGCACT
[56], and Akkermansia muciniphila: F-CAGCACGTGAA
GGTGGGGAC and R-CCTTGCGGTTGGCTTCAGAT
[57]. PCR amplification and detection will be achieved with
an ABI 7300 Real-time PCR system (Applied Biosystems,
Foster City, CA, USA) using Mighty Amp for Real-time
(SYBR Plus) and Rox Reference Dye (Invitrogen, Carlsbad,
CA, USA). Each assay will be performed in duplicate
in the same run. The cycle threshold of each sample
will then be compared with a standard curve (per-
formed in duplicate) made by diluting genomic DNA
(tenfold serial dilution). Prior to isolating the DNA,
the cell counts will be determined in culture and
expressed as “colony forming units” (CFU). Data will
be expressed as log CFU/g of faeces.
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Statistical analysis
Outcome analyses will be undertaken on an intention-
to-treat basis. Data will be presented as means ± SD.
The Kolmogorov-Smirnov goodness-of-fit test will be
used to test for normal distribution, and data not nor-
mally distributed will be log-transformed. Correlation
analyses will be performed using the Pearson correlation
coefficient. Significance of changes during the study will
be assessed by comparing change of means between
placebo and prebiotic treatment periods by paired
sample t-tests. Trial data will be analysed using a linear
mixed model design based on repeated measures to ac-
count for fixed factors such as treatment sequence
(inulin – placebo vs placebo - inulin) and treatment period
(intervention 1 vs intervention 2) in addition to participants
as a random factor. Significant differences will be defined as
a value of P < 0.05 based on two-sided tests. Any differences
in physical activity levels, anthropometry, energy or nutri-
ent intake during the course of the trial will be identified
using ANOVA. Gastrointestinal symptom data obtained by
visual analogue scale will be analysed using the Wilcoxon
signed rank test. Effect sizes including 95% confidence
intervals will be calculated for all significant outcomes.
Data analysis will be performed using SPSS 20.0 software
(SPSS, Chicago, IL).

Discussion
AGEs are derived from both exogenous and endogenous
sources, and the rate at which AGEs accumulate in the
body is dependent to a large extent on the chronological
age, lifestyle and metabolic health of an individual. Smoking
cigarettes and consuming foods containing high concentra-
tions of AGEs (and their precursors) increases the accumu-
lation of AGEs from exogenous sources. Endogenous AGE
formation is accelerated under conditions of hyperglycaemia,
dyslipidaemia and increased oxidative stress, conditions that
are common in individuals with diabetes and in those at risk
of developing type 2 diabetes (such as those with prediabetes
and the metabolic syndrome) [58]. Moreover, in individuals
with impaired renal function, urinary AGE excretion
may be diminished resulting in a greater accumulation
of AGEs in the body [59].
Risk factors for the development of type 2 diabetes

include obesity, hypertension and cardiovascular disease;
conditions that are commonly associated with unhealthy
lifestyles including poor food habits. Restricting the intake
of foods high in AGEs might potentially reduce AGE ac-
cumulation, but adherence to such diets can be challen-
ging given that foods high in AGEs are very palatable due
to their enhanced flavour, colour and aroma [60].
Supplementation of the diet with bifidogenic prebiotic

fibres (such as inulin) may reduce or retard the accumula-
tion of AGEs in individuals at risk of developing type 2 dia-
betes. Prebiotics have been shown to improve and restore
optimal microbial balance within the gastrointestinal tract,
potentially reducing AGE absorption and/or production
by the human host. Preliminary investigations indicate
that consuming a high-AGE diet is sufficient to favour the
proliferation of potentially pathogenic colonic bacteria over
more beneficial species. Consumption of glycated pro-
teins [34], fried meats [61] and toasted wheat flakes [62]
encouraged the preferential growth of greater numbers
of detrimental gram negative and sulphate-reducing co-
lonic micro-organisms when compared to control diets.
Short Chain Fatty Acids (SCFAs) produced as a bacterial
by-product of prebiotic fermentation act to lower the in-
testinal pH, inhibiting the growth of protein-degrading
micro-organisms capable of producing potentially toxic
metabolites. SCFAs also stimulate colonic smooth muscle
contractions, speeding intestinal transit and limiting the
time available for protein fermentation and putrefaction
to occur in the gut [63]. Therapeutic manipulation of the
gut microbiota with prebiotics may restore gut normobiosis
and reduce AGE accumulation in humans at risk for type 2
diabetes development by the following mechanisms:

Maintenance of gut barrier function
Kinetic studies have estimated that up to 30% of dietary
AGEs consumed are intestinally absorbed [64]. Under cir-
cumstances of increased intestinal permeability, it is likely
that greater quantities of dietary AGEs and their reactive
dicarbonyl precursors may be able to gain entry into the
systemic circulation. Elevated levels of circulating proin-
flammatory cytokines and ROS frequently observed in indi-
viduals with prediabetes are known to compromise tight
junctions between cells, disrupting the integrity of the intes-
tinal barrier and enabling the absorption of larger, poten-
tially deleterious compounds [65]. Prebiotic fermentation
products may reduce gastrointestinal permeability and as
a result limit the absorption of exogenous AGEs.
The SCFAs acetate and butyrate are intricately involved

in the maintenance of gut epithelial integrity. Acetate in-
creases colonic blood flow and butyrate is the principal fuel
for colonocytes, assisting to optimise epithelial cell health
[66]. Butyrate reduces gastrointestinal permeability by
enhancing the activation of the peroxisomal proliferator-
activated receptor gamma (PPARgamma) gene, a nuclear
receptor involved in the attenuation of inflammation in
colonic epithelial cells [67]. Butyrate also upregulates the
expression of mucin-associated genes important in main-
taining the integrity of the intestinal mucosal barrier [68].
Oligofructose supplementation in mice has been shown to
increase the expression of zonula and occludin, proteins
important in the maintenance of tight junctions between
gastrointestinal cells [69], and a dietary inulin intervention
reduced markers of intestinal permeability in healthy adult
males [70]. Butyrate is a histone deacetylase inhibitor and is
likely to promote the transcription of these tight junction
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proteins. Prebiotic-induced changes in gut microbiota also
increase endogenous production of Glucagon-like peptide 2
(GLP-2), which enhances gut barrier function by promoting
the proliferation of crypt cells [71,72].

Reduction of oxidative stress, inflammation and
insulin resistance
Increased production of ROS stimulate endogenous
AGE formation by oxidising glucose and unsaturated
fatty acids to generate reactive dicarbonyls. Experimental
drug treatments which attenuate oxidative stress have pre-
viously demonstrated reductions in serum AGE levels [73].
Cytokine production at sites of inflammation stimulate
immune cell activation of NADPH oxidase (NOX) and pro-
duction of myeloperoxidase, enzymes involved in the oxida-
tion of amino acids to form AGE precursors [74]. Activated
immune cells can also secrete the high-mobility group box
1 (HMGB-1) protein which is capable of binding to RAGE,
thereby inducing further inflammation [75].
A high fat diet (independent of the level of obesity in

the host) is associated with negative changes in bacterial
communities within the colon [76]. In response to a high
fat meal, bacterial lipopolysaccharide (LPS) translocates
from the intestine into the host circulation, resulting in
‘metabolic endotoxemia’ [77,78]. LPS is a major component
of the outer membrane of gram negative bacteria, and is
a potent activator of the mammalian immune system. LPS
interaction with immune cells stimulates macrophage
over-production of ROS, enhances the secretion of pro-
inflammatory cytokines, and contributes to weight gain
and development of insulin resistance [79,80]. Individuals
with type 2 diabetes have been found to possess endotoxe-
mia levels 2-fold higher than people without diabetes [81].
Metabolic endotoxemia also positively correlates with total
energy intake and fasting insulin levels in the general popu-
lation [82]. In mice with high fat diet-induced metabolic
endotoxemia, nutritional supplementation of the diet with
prebiotics restored intestinal levels of gram positive bacteria
(particularly Bifidobacterium species) and subsequently
improved glucose tolerance and reduced circulating
concentrations of LPS and pro-inflammatory cytokines
[83]. Human trials involving dietary prebiotic supplementa-
tion have successfully reduced serum LPS levels [45] and
markers of lipid peroxidation (a process which generates
AGE precursors), possibly through the reduction of ROS
production or the direct antioxidant ability of some
Bifidobacterium and Lactobacillus bacterial species [84,85].
SCFAs produced as a bacterial by-product of prebiotic

fermentation are absorbed into the host circulation,
effecting the expression of a wide range of genes in
distal tissues associated with cell proliferation, differ-
entiation and apoptosis. SCFAs are ligands for the
G-protein coupled receptors (GPRs) GPR41 and GPR43
[86] on immune cells. These receptors are involved in
down-regulating inappropriate immune cell production
of pro-inflammatory cytokines, chemokines and ROS [87].
The SCFAs acetate, proprionate and butyrate exhibit a
variety of anti-inflammatory actions through inhibition of
NFκB activation, prevention of LPS-stimulated TNFα pro-
duction in neutrophils and suppression of cytokine pro-
duction [31,88-90].
Numerous other immune modulating effects have been

observed secondary to gut bacterial activity including the
production of anti-inflammatory compounds such as poly-
saccharide A [91], peptidoglycan [92] and conjugated lino-
leic acid [93], and the induction of T-regulatory cells [26].

Promotion of weight reduction
An energy-restricted diet resulting in weight loss has
been shown to reduce serum AGE levels in overweight
and obese individuals [94]. The consumption of prebiotics
in human clinical trials has promoted self-reported satiety
[95], weight reduction, reduced production of the orexi-
genic hormone grehlin and stimulated expression of the
appetite-reducing hormone peptide YY (PYY) [96]. Inter-
action with GPR41 by the SCFAs proprionate and butyrate
increases satiety [97], upregulates PYY production and
modulates the expression of leptin, a hormone import-
ant in controlling energy intake and expenditure [31].
In mice, the selective growth of certain lactobacillus

species in the colon reduced body fat storage through
the up-regulation of fiaf (fasting induced adipose factor)
gene expression and inhibition of lipoprotein lipase (LPL)
[98-100]. These findings may have the potential to affect
weight reduction in humans and subsequently reduce cir-
culating AGE levels.

Enhanced antioxidant capacity
Inulin enhances the proliferation of lactic acid producing
bacteria capable of synthesising B-group vitamins, some of
which have an antioxidant capacity [101]. These vita-
mins can be utilised by the human host to neutralise ROS.
Vitamins B1 and B6 trap the carbonyl groups of highly re-
active AGE precursors before they can react with proteins
[102]. Some Lactobacillus and Bifidobacterium species
are efficient scavengers of the lipid peroxidation product
malandialdehyde, protecting the host from excessive ac-
cumulation of this toxic AGE precursor [84]. Inulin also
exhibits antioxidant properties independent of altering
gut bacterial growth and is able to scavenge a number of
ROS, which may help to reduce lipid peroxidation in
the stomach [103].
The SCFA butyrate, produced as a bacterial by-product

of inulin fermentation, has been shown to increase colonic
glutathione production [104]. Glutathione is an antioxi-
dant co-factor required for glyoxalase I activity, an en-
zyme which degrades the AGE precursor methylglyoxyl.
Increased production of ROS is also thought to deplete
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glutathione levels. Through the reduction of oxidative
stress, prebiotics may assist in the maintainance or up-
regulation of the glyoxylase pathway.

Reduction of hyperglycemia
Both transient and chronic elevations in blood glucose in-
crease endogenous AGE generation. Activation of GPR43
in adipocytes by proprionate inhibits lipolysis and lowers
glycemia in healthy individuals [105]. Butyrate has been
shown to reverse diet-induced insulin resistance in animal
studies [106], possibly by enhancing PPARgamma expres-
sion which increases fatty acid oxidation in muscle.
Glucagon-like peptide 1 (GLP-1) is an incretin hormone

released from intestinal L-cells in response to consump-
tion of carbohydrates and fats. GLP-1 potentiates glucose-
induced insulin secretion, reducing post-prandial blood
glucose levels. GLP-1 also enhances satiety and slows gas-
tric emptying. Prebiotic feeding in rats promoted L-cell
differentiation in the colon and increased GLP-1 produc-
tion [107,108], probably through an increase in bacterial
production of butyrate.
The consumption of inulin as a dietary supplement

may also influence circulating AGE concentrations inde-
pendently of its prebiotic function. High glycemic index
(GI) diets and their resultant hyperglycemic effect have
been shown to enhance AGE formation in healthy individ-
uals [109]. Inulin is a soluble fibre which when consumed
daily may play a role in the reduction of the GI of the diet.
Many soluble fibres are known for their ability to delay
gastric emptying and slow the rate of intestinal nutrient
absorption, reducing the GI of the carbohydrates in the
meal. Regular consumption of prebiotic soluble fibre
reduces fasting and post-prandial serum glucose levels
in people with impaired glucose tolerance [110] and
type 2 diabetes [111].

Study strengths

� To our knowledge, this is the first trial to investigate
the potential effects of gut bacterial modulation on
advanced glycation.

� Random allocation of participants to treatment
sequence and intention to treat analysis will ensure
study bias is minimised.

� Double-blind crossover placebo-controlled trial.
� Dietary data will be obtained to determine dietary

patterns as well as estimates of total energy intake,
fat and AGE consumption.

� CML in this study will be measured using a
validated ELISA method.

� Dietary AGE consumption will be estimated from
an open-source food AGE database, containing
AGE values obtained using validated measurement
techniques.
Study limitations
Type 2 diabetes is a chronic condition which often de-
velops over decades, making it difficult to conduct inter-
vention studies using the presence or absence of diabetes
as the primary biological end-point. This study will meas-
ure surrogate biochemical markers of early type 2 diabetes
pathogenesis, which could be considered a limitation of
the trial. Long-term studies will need to be conducted in
order to confirm the results of this research.
This study will measure serum CML as an indicator of

AGE concentration in blood samples. Multiple other forms
of AGEs exist, many of which have not yet been charac-
terised, so the findings of this trial cannot be applied to all
members of the AGE family. However, serum CML con-
centration shows a moderate to high correlation with other
known circulating AGEs [39].
Applicability of research findings
In Australia, conservative estimates predict that at least
2 million adults will have been diagnosed with type 2
diabetes by 2025 [112]. The burden of disease associated
with diabetes has a substantial impact on costs associated
directly with health care as well as loss of productivity and
decreased quality of life. The widespread consumption of
high fat, heat processed foods and the increasing prevalence
of obesity in Australia warrant simple interventions includ-
ing those that prevent AGE-mediated damage. If dietary
treatments aimed at altering the gut microbiota prove to be
effective strategies for preventing or slowing the develop-
ment of type 2 diabetes, they could become mainstream
therapies for individuals with diabetes risk factors.
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