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Abstract We study the nonexistence of nontrivial solutions for the nonlinear elliptic system

⎧
⎨

⎩

(−�x )
α/2u + |x |2δ(−�y)

β/2u + |x |2η|y|2θ (−�z)
γ /2u = v p,

(−�x )
μ/2v + |x |2δ(−�y)

ν/2v + |x |2η|y|2θ (−�z)
σ/2v = uq ,

where (x, y, z) ∈ R
N1 × R

N2 × R
N3 , 0 < α, β, γ, μ, ν, σ ≤ 2, δ, η, θ ≥ 0, and p, q > 1. Here, (−�x )

α/2,
0 < α < 2, is the fractional Laplacian operator of order α/2 with respect to the variable x ∈ R

N1 , (−�y)
β/2,

0 < β < 2, is the fractional Laplacian operator of order β/2 with respect to the variable y ∈ R
N2 , and

(−�z)
γ /2, 0 < γ < 2, is the fractional Laplacian operator of order γ /2 with respect to the variable z ∈ R

N3 .
Using a weak formulation approach, sufficient conditions are provided in terms of space dimension and system
parameters.
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1 Introduction

Any bounded complex function which is harmonic (or holomorphic) on the entire space is constant. This result
is known as Liouville theorem [17], and was first proved by Cauchy in [2]. Gidas and Spruck [10] extended
Liouville theorem to the case of non-negative solutions of semilinear elliptic equations in the whole space RN

or in half-spaces. In the case of RN , they proved that the unique non-negative solution of

−�u = u p, in RN

is the trivial solution, provided that 1 ≤ p < N+2
N−2 . Chen and Li [3] presented a simple proof based on the

moving planes method for 0 < p < N+2
N−2 . Such result is optimal, i.e., if p ≥ N+2

N−2 , we have infinitely many
positive solutions.

There are several works in the literature dealing with Liouville-type properties for different classes of
degenerate elliptic equations and systems. Serrin and Zou [26] studied p-harmonic functions on the whole
space and exterior domains. In [14], Liouville-type results in halfspaces for a class of evolution hypoelliptic
equations are derived. In [15], a Liouville-type theoremwas proved for X-elliptic operators. Dolcetta and Cutri
[6] considered an elliptic inequality involving the Grushin operator. More precisely, they studied the problem

(−�x )u + |x |2θ (−�y)u ≥ u p, in R
N1 × R

N2 ,

where�x is the Laplacian operator with respect to the variable x ∈ R
N1 , and�y is the Laplacian operator with

respect to the variable y ∈ R
N2 . They proved that if 1 < p <

Q
Q−2 , then the only solution of the above inequality

is the trivial solution. Here, Q is the homogeneous dimension of the space, given by Q = N1 + (θ + 1)N2.
In [1], Anh and My Considered an elliptic system of inequalities involving the �λ Laplace operator. Some
Liouville-type theorems are obtained for such system. For other related results, we refer to [5,22,23,28].

Recently, a lot of attention has been paid to the study of Liouville-type properties for elliptic equations and
systems governed by fractional operators. Ma and Chen [18] considered the system of equations

{
(−�)μ/2u = vq ,

(−�)μ/2v = u p,

where μ ∈ (0, 2), 1 < p, q ≤ N+μ
N−μ

, N ≥ 2, and (−�)μ/2 is the fractional Laplacian operator of order μ/2.
Using the moving plane method, they obtained a Liouville-type result for the above system. Dahmani et al. [4]
extended the result in [18] to various classes of systems involving fractional Laplacian operators with different
orders, using the test function method [20]. Some Liouville-type results were established recently by Quaas
and Xia in [25] for a class of fractional elliptic equations and systems in the half space. For other related works,
we refer to [7–9,11,13], and the references therein.

In this work, we establish Liouville-type results for the system

{
(−�x )

α/2u + |x |2δ(−�y)
β/2u + |x |2η|y|2θ (−�z)

γ /2u = v p,

(−�x )
μ/2v + |x |2δ(−�y)

ν/2v + |x |2η|y|2θ (−�z)
σ/2v = uq ,

(1.1)

where (x, y, z) ∈ R
N1 × R

N2 × R
N3 , 0 < α, β, γ, μ, ν, σ ≤ 2, δ, η, θ ≥ 0, and p, q > 1. Here, (−�x )

α/2,
0 < α < 2, is the fractional Laplacian operator of order α/2 with respect to the variable x ∈ R

N1 , (−�y)
β/2,

0 < β < 2, is the fractional Laplacian operator of order β/2 with respect to the variable y ∈ R
N2 , and

(−�z)
γ /2, 0 < γ < 2, is the fractional Laplacian operator of order γ /2 with respect to the variable z ∈ R

N3 .
We provide sufficient conditions for the nonexistence of nontrivial solutions to System (1.1) in terms of space
dimension and system parameters.

Our approach is based on the test function method, which is based on the scaling invariance property of
the operator. The corresponding literature is very extensive. We only quote the papers in which Mitidieri and
Pohozaev explain how a suitable choice of the test function gives a nonexistence result. A deep description of
this technique can be found in [20], see also [19,21,24]. Note that in our case, the moving plane approach used
by Ma and Chen [18] cannot be applied. Indeed, in such approach an integral representation of the solution is
required, which is not possible in our situation.
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Recall that the nonlocal operator (−�)s , 0 < s < 1, is defined for any function h in the Schwartz class
through the Fourier transform

(−�)sh(x) = F−1 (|ξ |2sF(h)(ξ)
)
(x),

where F stands for the Fourier transform andF−1 for its inverse. It can be also defined via the Riesz potential

(−�)sh(x) = cN ,s PV
∫

RN

h(x) − h(x)

|x − x |N+2s dx,

where cN ,s is a normalisation constant and PV is the Cauchy principal value (see [16,27]).
The following inequality, known as Ju’s inequality, will be useful for the proof of our main result (see

[12]).

Lemma 1.1 Suppose that δ ∈ (0, 2], β + 1 ≥ 0, and ψ ∈ C∞
0 (RN ), ψ ≥ 0. Then the following point-wise

inequality holds:

(−�)δ/2ψβ+2(x) ≤ (β + 2)ψβ+1(x)(−�)δ/2ψ(x).

2 Main results

In this section, we state and prove the main results in this paper.
We consider the system (1.1) under the assumptions

0 < α, β, γ, μ, ν, σ ≤ 2, δ, η, θ ≥ 0, p > 1, q > 1.

Let

N = N1 + N2 + N3 and Q = N1 + (δ + 1)N2 + (η + (δ + 1)θ + 1)N3.

The definition of solutions we adopt for (1.1) is the following.

Definition 2.1 We say that the pair (u, v) is a weak solution of (1.1) if, u ≥ 0, v ≥ 0, (u, v) ∈ Lq
loc(R

N) ×
L p
loc(R

N), and
∫

RN
v pϕ dx dy dz =

∫

RN
u(−�x )

α/2ϕ dx dy dz +
∫

RN
|x |2δu(−�y)

β/2ϕ dx dy dz

+
∫

RN
|x |2η|y|2θu(−�z)

γ /2ϕ dx dy dz,

∫

RN
uqϕ dx dy dz =

∫

RN
v(−�x )

μ/2ϕ dx dy dz +
∫

RN
|x |2δv(−�y)

ν/2ϕ dx dy dz

+
∫

RN
|x |2η|y|2θ v(−�z)

σ/2ϕ dx dy dz,

for every ϕ ∈ C∞
0 (RN ), ϕ ≥ 0.

Let us introduce the following parameters:

L1 = min {α, −2δ + β(δ + 1), −2η − θ(δ + 1)(2 − γ ) + γ (η + 1)} ,

L2 = min {μ, −2δ + ν(δ + 1),−2η − θ(δ + 1)(2 − σ) + σ(η + 1)} ,

Q1 = pq

pq − 1

(

L2 + L1

p

)

,

Q2 = pq

pq − 1

(

L1 + L2

q

)

.

Our main result in this paper is the following Liouville-type theorem.
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Theorem 2.2 Let (u, v) be a weak solution of System (1.1). If

Q < max{Q1, Q2}, (2.1)

then (u, v) is trivial, i.e., (u, v) ≡ (0, 0).

Proof Suppose that (u, v) is a weak solution of (1.1) such that (u, v) �≡ (0, 0). Let ω be a real number such
that

ω > max

{
q

q − 1
,

p

p − 1

}

. (2.2)

By the weak formulation of (1.1), for all ϕ ∈ C∞
0 (RN ), ϕ ≥ 0, we have

∫

RN
v pϕω dx dy dz =

∫

RN
u(−�x )

α/2ϕω dx dy dz +
∫

RN
|x |2δu(−�y)

β/2ϕω dx dy dz

+
∫

RN
|x |2η|y|2θu(−�z)

γ /2ϕω dx dy dz, (2.3)

and
∫

RN
uqϕω dx dy dz =

∫

RN
v(−�x )

μ/2ϕω dx dy dz +
∫

RN
|x |2δv(−�y)

ν/2ϕω dx dy dz

+
∫

RN
|x |2η|y|2θ v(−�z)

σ/2ϕω dx dy dz. (2.4)

Using Lemma 1.1 and Hölder’s inequality with parameters q and q
q−1 , we obtain

∫

RN
u(−�x )

α/2ϕω dx dy dz ≤ ω

∫

RN
uϕω−1|(−�x )

α/2ϕ| dx dy dz

= ω

∫

RN
uϕ

ω
q ϕ

(
ω−1− ω

q

)

|(−�x )
α/2ϕ| dx dy dz

≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
ϕ

(
ω−1− ω

q

)
q

q−1 |(−�x )
α/2ϕ| q

q−1 dx dy dz

) q−1
q

= ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
ϕ

ω− q
q−1 |(−�x )

α/2ϕ| q
q−1 dx dy dz

) q−1
q

.

Thanks to the choice (2.2) of the parameter ω, we have
∫

RN
ϕ

ω− q
q−1 |(−�x )

α/2ϕ| q
q−1 dx dy dz < ∞.

Therefore, we have the estimate
∫

RN
u(−�x )

α/2ϕω dx dy dz ≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
ϕ

ω− q
q−1 |(−�x )

α/2ϕ| q
q−1 dx dy dz

) q−1
q

.

(2.5)
Again, using Lemma 1.1 and Hölder’s inequality with parameters q and q

q−1 , we obtain
∫

RN
|x |2δu(−�y)

β/2ϕω dx dy dz

≤ ω

∫

RN
u|x |2δϕω−1|(−�y)

β/2ϕ| dx dy dz

= ω

∫

RN
uϕ

ω
q |x |2δϕ

(
ω−1− ω

q

)

|(−�y)
β/2ϕ| dx dy dz

≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2δq

q−1 ϕ

(
ω−1− ω

q

)
q

q−1 |(−�y)
β/2ϕ| q

q−1 dx dy dz

) q−1
q

= ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2δq

q−1 ϕ
ω− q

q−1 |(−�y)
β/2ϕ| q

q−1 dx dy dz

) q−1
q

.
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Thanks to (2.2), we have
∫

RN
|x | 2δq

q−1 ϕ
ω− q

q−1 |(−�y)
β/2ϕ| q

q−1 dx dy dz < ∞.

Therefore, we obtain the estimate

∫

RN
|x |2δu(−�y)

β/2ϕω dx dy dz ≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2δq

q−1 ϕ
ω− q

q−1 |(−�y)
β/2ϕ| q

q−1 dx dy dz

) q−1
q

.

(2.6)
Similarly, we have

∫

RN
|x |2η|y|2θu(−�z)

γ /2ϕω dx dy dz

≤ ω

∫

RN
u|x |2η|y|2θϕω−1|(−�z)

γ /2ϕ| dx dy dz

= ω

∫

RN
uϕ

ω
q |x |2η|y|2θϕ

(
ω−1− ω

q

)

|(−�z)
γ /2ϕ| dx dy dz

≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2ηq

q−1 |y| 2θq
q−1 ϕ

(
ω−1− ω

q

)
q

q−1 |(−�z)
γ /2ϕ| q

q−1 dx dy dz

) q−1
q

= ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2ηq

q−1 |y| 2θq
q−1 ϕ

ω− q
q−1 |(−�z)

γ /2ϕ| q
q−1 dx dy dz

) q−1
q

,

which yields the estimate
∫

RN
|x |2η|y|2θu(−�z)

γ /2ϕω dx dy dz

≤ ω

(∫

RN
uqϕω dx dy dz

) 1
q

(∫

RN
|x | 2ηq

q−1 |y| 2θq
q−1 ϕ

ω− q
q−1 |(−�z)

γ /2ϕ| q
q−1 dx dy dz

) q−1
q

. (2.7)

Now, combining (2.3) with the estimates (2.5), (2.6) and (2.7), we obtain

∫

RN
v pϕω dx dy dz ≤ (A1(ϕ) + B1(ϕ) + C1(ϕ))

(∫

RN
uqϕω dx dy dz

) 1
q

, (2.8)

where

A1(ϕ) = ω

(∫

RN
ϕ

ω− q
q−1 |(−�x )

α/2ϕ| q
q−1 dx dy dz

) q−1
q

,

B1(ϕ) = ω

(∫

RN
|x | 2δq

q−1 ϕ
ω− q

q−1 |(−�y)
β/2ϕ| q

q−1 dx dy dz

) q−1
q

,

C1(ϕ) = ω

(∫

RN
|x | 2ηq

q−1 |y| 2θq
q−1 ϕ

ω− q
q−1 |(−�z)

γ /2ϕ| q
q−1 dx dy dz

) q−1
q

.

Similarly, using Hölder’s inequality with parameters p and p
p−1 , we obtain the estimates

∫

RN
v(−�x )

μ/2ϕω dx dy dz ≤ ω

(∫

RN
v pϕω dx dy dz

) 1
p
(∫

RN
ϕ

ω− p
p−1 |(−�x )

μ/2ϕ| p
p−1 dx dy dz

) p−1
p

,

(2.9)

∫

RN
|x |2δv(−�y)

ν/2ϕω dx dy dz ≤ ω

(∫

RN
v pϕω dx dy dz

) 1
p
(∫

RN
|x | 2δp

p−1 ϕ
ω− p

p−1 |(−�y)
ν/2ϕ| p

p−1 dx dy dz

) p−1
p

(2.10)

123



Arab. J. Math.

and
∫

RN
|x |2η|y|2θ v(−�z)

σ/2ϕω dx dy dz

≤ ω

(∫

RN
v pϕω dx dy dz

) 1
p
(∫

RN
|x | 2ηp

p−1 |y| 2θp
p−1 ϕ

ω− p
p−1 |(−�z)

σ/2ϕ| p
p−1 dx dy dz

) p−1
p

. (2.11)

Combining (2.4) with the estimates (2.9), (2.10) and (2.11), we obtain

∫

RN
uqϕω dx dy dz ≤ (A2(ϕ) + B2(ϕ) + C2(ϕ))

(∫

RN
v pϕω dx dy dz

) 1
p

, (2.12)

where

A2(ϕ) = ω

(∫

RN
ϕ

ω− p
p−1 |(−�x )

μ/2ϕ| p
p−1 dx dy dz

) p−1
p

,

B2(ϕ) = ω

(∫

RN
|x | 2δp

p−1 ϕ
ω− p

p−1 |(−�y)
ν/2ϕ| p

p−1 dx dy dz

) p−1
p

,

C2(ϕ) = ω

(∫

RN
|x | 2ηp

p−1 |y| 2θp
p−1 ϕ

ω− p
p−1 |(−�z)

σ/2ϕ| p
p−1 dx dy dz

) p−1
p

.

Using (2.8) and (2.12), we obtain

(∫

RN
uqϕω dx dy dz

)1− 1
pq ≤ (A2(ϕ) + B2(ϕ) + C2(ϕ)) (A1(ϕ) + B1(ϕ) + C1(ϕ))

1
p (2.13)

and
(∫

RN
v pϕω dx dy dz

)1− 1
pq ≤ (A1(ϕ) + B1(ϕ) + C1(ϕ)) (A2(ϕ) + B2(ϕ) + C2(ϕ))

1
q . (2.14)

Now, as a test function, we take

ϕ(x, y, z) = ϕ0

( |x |2
R2 + |y|2

R2(δ+1)
+ |z|2

R2(η+(δ+1)θ+1)

)

, (x, y, z) ∈ R
N1 × R

N2 × R
N3 ,

where ϕ0 is the classical cutoff function, that is, ϕ0 ∈ C∞
0 (0, ∞) is a smooth decreasing function such that

0 ≤ ϕ0 ≤ 1, |ϕ′
0(ξ)| ≤ Cξ−1

and

ϕ0(ξ) =
{
1 if 0 < ξ ≤ 1,
0 if ξ ≥ 2.

We use the change of variables

x = Rρ, y = Rδ+1τ, z = Rη+(δ+1)θ+1ϑ.

In this case, we have

κ := |x |2
R2 + |y|2

R2(δ+1)
+ |z|2

R2(η+(δ+1)θ+1)
= |ρ|2 + |τ |2 + |ϑ |2, (ρ, τ, ϑ) ∈ R

N1 × R
N2 × R

N3 .

Let � be the subset of RN1 × R
N2 × R

N3 defined by

� = {(ρ, τ, ϑ) ∈ R
N1 × R

N2 × R
N3 : 1 ≤ |ρ|2 + |τ |2 + |ϑ |2 ≤ 2}.

We have the following estimates.
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• Estimates of Ai (ϕ), i = 1, 2.
Using the above change of variables, we obtain

A1(ϕ) = ωR−α+ Q(q−1)
q

(∫

�

[ϕ0(κ)]ω− q
q−1 |(−�ρ)α/2ϕ0(κ)| q

q−1 dρ dτ dϑ

) q−1
q

.

Therefore, we have

A1(ϕ) = CR−α+ Q(q−1)
q . (2.15)

Similarly, we obtain

A2(ϕ) = CR−μ+ Q(p−1)
p . (2.16)

• Estimates of Bi (ϕ), i = 1, 2.
Under the same change of variables, we obtain

B1(ϕ) = ωR2δ−β(δ+1)+ Q(q−1)
q

(∫

�

|ρ| 2δq
q−1 [ϕ0(κ)]ω− q

q−1 |(−�τ)
β/2ϕ0(κ)| q

q−1 dρ dτ dϑ

) q−1
q

.

Therefore, we have

B1(ϕ) = CR2δ−β(δ+1)+ Q(q−1)
q . (2.17)

Similarly, we obtain

B2(ϕ) = CR2δ−ν(δ+1)+ Q(p−1)
p . (2.18)

• Estimates of Ci (ϕ), i = 1, 2.
A simple computation yields

C1(ϕ) = ωR2η+θ(δ+1)(2−γ )−γ (η+1)+ Q(q−1)
q

(∫

�

|ρ| 2ηq
q−1 |τ | 2θq

q−1 [ϕ0(κ)]ω− q
q−1 |(−�ϑ)γ/2ϕ0(κ)| q

q−1 dρ dτ dϑ

) q−1
q

.

Then

C1(ϕ) = CR2η+θ(δ+1)(2−γ )−γ (η+1)+ Q(q−1)
q . (2.19)

Similarly, we have

C2(ϕ) = CR2η+θ(δ+1)(2−σ)−σ(η+1)+ Q(p−1)
p . (2.20)

• Estimate of A1(ϕ) + B1(ϕ) + C1(ϕ).
Using the estimates (2.15), (2.17) and (2.19), for R large enough, we obtain

A1(ϕ) + B1(ϕ) + C1(ϕ) = C

(

R−α+ Q(q−1)
q + R2δ−β(δ+1)+ Q(q−1)

q + R2η+θ(δ+1)(2−γ )−γ (η+1)+ Q(q−1)
q

)

= CR
Q(q−1)

q

(
R−α + R2δ−β(δ+1) + R2η+θ(δ+1)(2−γ )−γ (η+1)

)

≤ CR
Q(q−1)

q Rmax{−α,2δ−β(δ+1),2η+θ(δ+1)(2−γ )−γ (η+1)}

= CR
Q(q−1)

q −L1,

i.e.,

A1(ϕ) + B1(ϕ) + C1(ϕ) ≤ CR
Q(q−1)

q −L1 . (2.21)

• Estimate of A2(ϕ) + B2(ϕ) + C2(ϕ).
Similarly, using the estimates (2.16), (2.18) and (2.20), for R large enough, we obtain

A2(ϕ) + B2(ϕ) + C2(ϕ) ≤ CR
Q(p−1)

p −L2 . (2.22)
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The estimates (2.13), (2.21) and (2.22) yield

(∫

RN
uqϕω

0

( |x |2
R2 + |y|2

R2(δ+1)
+ |z|2

R2(η+(δ+1)θ+1)

)

dx dy dz

)1− 1
pq

≤ CR
Q

(
pq−1
pq

)
−L2− L1

p . (2.23)

Similarly, the estimates (2.14), (2.21) and (2.22) yield

(∫

RN
v pϕω

0

( |x |2
R2 + |y|2

R2(δ+1)
+ |z|2

R2(η+(δ+1)θ+1)

)

dx dy dz

)1− 1
pq

≤ CR
Q

(
pq−1
pq

)
−L1− L2

q . (2.24)

Observe that condition (2.1) is equivalent to

Q

(
pq − 1

pq

)

− L2 − L1

p
< 0

or

Q

(
pq − 1

pq

)

− L1 − L2

q
< 0.

Therefore, we have two cases.

• Case 1. If

Q

(
pq − 1

pq

)

− L2 − L1

p
< 0.

In this case, passing to the limit as R → ∞ in (2.23), using the monotone convergence theorem, and (2.8), we
obtain

∫

RN
uq dx dy dz =

∫

RN
v p dx dy dz = 0,

which is a contradiction with the fact that (u, v) is a nontrivial solution.

• Case 2. If

Q

(
pq − 1

pq

)

− L1 − L2

q
< 0.

As in the previous case, passing to the limit as R → ∞ in (2.24), using the monotone convergence theorem,
and (2.12), we obtain

∫

RN
uq dx dy dz =

∫

RN
v p dx dy dz = 0,

which is a contradiction.
Therefore, in both cases, we get a contradiction. As a consequence, we infer that the only weak solution

of System (1.1) is the trivial solution, provided that (2.1) is satisfied. 
�
Different Liouville-type results can be deduced from Theorem 2.2 for equations and systems.
Taking α = μ, β = ν = 2, γ = σ = 2, in Theorem 2.2, the following result follows.

Corollary 2.3 Let (u, v) be a weak solution of the system
⎧
⎨

⎩

(−�x )
α/2u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)u = v p,

(−�x )
α/2v + |x |2δ(−�y)v + |x |2η|y|2θ (−�z)v = uq ,

where 0 < α ≤ 2, δ, η, θ ≥ 0, p > 1, and q > 1. If

Q <
α (pq + max{p, q})

pq − 1
,

then (u, v) is trivial.
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Taking α = μ = 2, β = ν, γ = σ = 2, in Theorem 2.2, the following result follows.

Corollary 2.4 Let (u, v) be a weak solution of the system
⎧
⎨

⎩

(−�x )u + |x |2δ(−�y)
β/2u + |x |2η|y|2θ (−�z)u = v p,

(−�x )v + |x |2δ(−�y)
β/2v + |x |2η|y|2θ (−�z)v = uq ,

where 0 < β ≤ 2, δ, η, θ ≥ 0, p > 1, and q > 1. If

Q <
(δ(β − 2) + β) (pq + max{p, q})

pq − 1
,

then (u, v) is trivial.

Taking α = μ = 2, β = ν = 2, γ = σ , in Theorem 2.2, the following result follows.

Corollary 2.5 Let (u, v) be a weak solution of the system
⎧
⎨

⎩

(−�x )u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)
γ /2u = v p,

(−�x )v + |x |2δ(−�y)v + |x |2η|y|2θ (−�z)
γ /2v = uq ,

where 0 < γ ≤ 2, δ, η, θ ≥ 0, p > 1, and q > 1. If

Q <
(pq + max{p, q}) (

(γ − 2)(η + θ(δ + 1)) + γ
)

pq − 1
,

then (u, v) is trivial.

Taking α = β = γ = μ = ν = σ = 2 in Theorem 2.2, or α = 2 in Corollary 2.3, or β = 2 in Corollary
2.4, or γ = 2 in Corollary 2.5, the following result follows.

Corollary 2.6 Let (u, v) be a weak solution of the system
⎧
⎨

⎩

(−�x )u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)u = v p,

(−�x )v + |x |2δ(−�y)v + |x |2η|y|2θ (−�z)v = uq ,

where δ, η, θ ≥ 0, p > 1, and q > 1. If

Q <
2 (pq + max{p, q})

pq − 1
,

then (u, v) is trivial.

Taking α = μ, β = ν, γ = σ , p = q , and u = v in Theorem 2.2, the following Liouville-type result
follows.

Corollary 2.7 Let u be a weak solution of

(−�x )
α/2u + |x |2δ(−�y)

β/2u + |x |2η|y|2θ (−�z)
γ /2u = u p,

where 0 < α, β, γ ≤ 2, δ, η, θ ≥ 0, and p > 1. If

Q <
L1 p

p − 1
,

then u is trivial.

Taking β = γ = 2 in Corollary 2.7, the following Liouville-type result follows.
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Corollary 2.8 Let u be a weak solution of

(−�x )
α/2u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)u = u p,

where 0 < α ≤ 2 and δ, η, θ ≥ 0. If

1 < p <
Q

Q − α
,

then u is trivial.

Taking α = γ = 2 in Corollary 2.7, the following Liouville-type result follows.

Corollary 2.9 Let u be a weak solution of

(−�x )u + |x |2δ(−�y)
β/2u + |x |2η|y|2θ (−�z)u = u p,

where 0 < β ≤ 2, δ, η, θ ≥ 0, and p > 1. If

Q <
(δ(β − 2) + β)p

p − 1
,

then u is trivial.

Taking α = β = 2 in Corollary 2.7, the following Liouville-type result follows.

Corollary 2.10 Let u be a weak solution of

(−�x )u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)
γ /2u = u p,

where 0 < γ ≤ 2, δ, η, θ ≥ 0, and p > 1. If

Q <
p
(
(γ − 2)(η + θ(δ + 1)) + γ

)

p − 1
,

then u is trivial.

Taking γ = 2 in Corollary 2.10, we obtain the following result.

Corollary 2.11 Let u be a weak solution of

(−�x )u + |x |2δ(−�y)u + |x |2η|y|2θ (−�z)u = u p,

where δ, η, θ ≥ 0, If

1 < p <
Q

Q − 2
,

then u is trivial.
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