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Abstract

Background: The exponential growth of next-generation sequencing (NGS) derived DNA data poses great
challenges to data storage and transmission. Although many compression algorithms have been proposed for DNA
reads in NGS data, few methods are designed specifically to handle the quality scores.

Results: In this paper we present a memetic algorithm (MA) based NGS quality score data compressor, namely
MMQSC. The algorithm extracts raw quality score sequences from FASTQ formatted files, and designs compression
codebook using MA based multimodal optimization. The input data is then compressed in a substitutional manner.
Experimental results on five representative NGS data sets show that MMQSC obtains higher compression ratio than
the other state-of-the-art methods. Particularly, MMQSC is a lossless reference-free compression algorithm, yet
obtains an average compression ratio of 22.82% on the experimental data sets.

Conclusions: The proposed MMQSC compresses NGS quality score data effectively. It can be utilized to improve
the overall compression ratio on FASTQ formatted files.

Background
DNA sequencing provides fundamental data for many
research areas e.g. genomics, bioinformatics, and biology [1].
Rapid progress has been made for DNA sequencing technol-
ogies, especially the high-throughput next-generation
sequencing (NGS), in the last few years. Newly proposed
high efficiency methods significantly stimulate the produc-
tion and usage of NGS data [2]. However the exponential
growth of NGS data poses huge challenge to data storage
and transmission [3]. Thereby efficient compression algo-
rithms are required.
General-purpose compression algorithms e.g. gzip

and bzip2 usually fail to obtain satisfactory results on
NGS data, because they are designed for ordinary plain
text or binary files. To achieve higher compression
ratio, many specialized methods are proposed. For
instance, Cox et al. [4] proposed a Burrws-Wheeler

transform based compression algorithm for large scale
DNA sequence databases. Jones et al. [5] presented
Quip, a high efficient reference-based NGS data com-
pression tool relying on external reference genomes or
light-weight de novo assembly to generate reference
sequences from the target data. Popitsch et al. [6] pro-
posed the NGC tool for SAM format files compression.
Hach et al. [7] proposed SCALCE by introducing
locally consistent parsing in data encoding. More com-
prehensive review on NGS data compression can be
found in [8,9].
Typically, raw NGS data includes a series of sequen-

cing records (called reads). Each record consists of three
major components: a metadata containing the read
name, platform, and other useful information; a DNA
sequence read obtained from one fold of the oversam-
pling; and a quality score sequence estimating accuracies
of the corresponding DNA bases. Existing algorithms
usually focus on the compression of DNA sequence
reads, and utilize conventional methods e.g. Huffman
coding and run-length encoding (RLE) to compress
quality scores [10]. Quality score data is considered
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more important than the metadata, and usually occupies
similar or even more space than the DNA sequences. It
may pose bigger challenges for compression than DNA
sequence reads, due to the larger alphabet size. By intro-
ducing compressor specific for NGS quality scores, the
overall compression ratio of NGS data can be further
improved.
In this paper, we propose a memetic algorithm (MA)

based NGS quality scores compression algorithm, namely
MMQSC. The algorithm consists of three major parts: a
Huffman coding based preprocessing is conducted in the
first place, followed by MA based encoding codebook
design. Finally, quality score data is compressed by using
the codebook. MA is widely known as a synergy of popu-
lation-based evolutionary algorithm and local search or
individual learning procedures. MAs are capable of sol-
ving various complex optimization problems more effec-
tively than their conventional counterparts [11]. In this
work, the self-adaptive differential evolution combining
with neighborhood search (SaNSDE) [12], and Davies,
Swann, and Campey with Gram-Schmidt orthogonaliza-
tion (DSCG) [13], or SaNSDE-DSCG for short, are intro-
duced to MMQSC, to optimize the NGS quality scores
compression codebook, with which most repetitive short
score segments are identified and represented with much
shorter encoding.
In conventional MAs, each individual represents a

candidate solution of the entire problem, i.e., compres-
sion codebook. Its optimization is highly complex,
because the codebook consists of hundreds of quality
score symbols. Multimodal optimization tries to find
all or most of the multiple solutions within a popula-
tion in a single simulation run [14]. Based on multi-
modal optimization, the MMQSC uses an individual to
represent only a single specific code vector, and com-
poses codebook with the entire evolution population.
Thereby computational complexity distributed to each
individual’s fitness evaluation is significantly reduced.
The proposed MMQSC obtains promising performance

on NGS quality scores stored in the widely used FASTQ
format [15]. Experimental results on five representative
NGS data sets show that MMQSC obtains better com-
pression ratio than other state-of-the-art methods. Particu-
larly, MMQSC is a reference-free algorithm for lossless
compression, yet obtains an average compression ratio of
22.82%, i.e., 1.81 bits per quality value (BPQ) on the
experimental data sets.
The remainder of this paper is organized as follows:

Section II describes details of the proposed MMQSC
compression algorithm. Section III presents the
experimental results of MMQSC on the five real-
world NGS data sets. Finally, a conclusion is provided
in Section IV.

Methods
SaNSDE and DSCG based memetic algorithm for
multimodal optimization
MA is introduced whereby the concept of “meme”,
which was coined by Dawkins [16], is employed within
an evolutionary computation framework to improve
search efficiency. Typically, MA utilizes a population-
based global optimization as fundamental framework,
and introduces separate local searches or ‘memes’
embedded in each generation of the global evolution to
refine the population [17]. The procedure of a canonical
MA framework is illustrated in Algorithm 1 [18].
In MAs both global search and local search strategies

can be selected flexibly according to the target problem.
Typically, NGS data consists of thousands or even millions
of read entries, wherein each of them contains hundreds of
quality score symbols. Finding a codebook for compres-
sing such data is naturally a high-dimensional optimiza-
tion problem. Differential evolution (DE) [19] is capable of
solving large scale problems effectively. In this paper, a
high performance DE variant namely the SaNSDE is uti-
lized as the global optimizer. Particularly, SaNSDE uses
three self-adaptive mechanisms to select mutation strate-
gies and control parameter values. By introducing neigh-
borhood search in the optimization process, SaNSDE
obtains higher performance than conventional algorithms.
Moreover, the widely-used local search strategy DSCG is
introduced to increase convergence speed. DSCG is a gra-
dient-based optimizer that searches solution space in a
greedy manner. Combining the exploration of SaNSDE
and exploitation of DSCG, the proposed MA obtains pro-
mising performance on quality scores compression code-
book design.
As shown in Figure 1, multimodal optimization

searches for not only the global best solution gbest (as
single-objective optimization), but also all the local opti-
mal pbesti, i = 1, 2, 3... Multimodal optimization has been
used in a wide range of applications, because it can locate
all or most of the optimal solutions in a single simulation
run. Fitness sharing [20] is introduced in the proposed
SaNSDE-DSCG to conduct multimodal optimization.

Figure 1 Multimodal optimization.
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Given a raw fitness value fR(xi), wherein xi is the candi-
date solution of individual psi. Fitness sharing transforms
it into shared fitness fS(xi) using following equation:

fS(xi) = fR(xi) × τi (1)

in which:

τi =
∑

j∈|ps|, j�=i (1 − di,j
ε
)α (2)

where ε is the niching radius, parameter a controls the
shape of the sharing function, distance di,j is defined as:

di,j =
{
dist

(
xi, xj

)
if dist

(
xi, xj

) ≤ ε

0 otherwise
(3)

where dist(xi, xj) is the Manhattan distance between xi
and xj. If evolution population is gathering in the same
optimal region, its shared fitness values will deteriorate
significantly to disperse the individuals. By utilizing fS(xi)
to guide the search process, SaNSDE-DSCG is capable
of finding all optimums effectively.

Compression codebook design using SaNSDE-DSCG
As shown in Figure 2, a NGS quality score sequence is
compressed by substituting original scores with the
index of its most similar code vector in the codebook,
and their corresponding symbol differences.
Given a quality score sequence Q = “CCCGFF’ and

code vector C = “CCGHFFC”. Sequence Q is encoded
as {i, Q*}, where i is in the index of C, and Q* records
the symbol differences as:

Q = C C C G − F F −
C = C C ∧ G H F F C

Q∗ = U U (I, ”C”) U D U U D
(4)

in which U denotes symbol matching (unchanged), I
stands for insertion (marked with “∧”), D for deletion

(marked with “−”), and S for substitution. For insertions
and substitutions, the original symbol should also be
recorded (for instance “C” on the third quality score).
This matching process is conducted by using dynamic
programming (DP).
Data size of the original P-dimensional sequence is

LO = 8 × P, because raw quality scores are stored in 8
bits ASCII format. On the other hand, each difference
type in {U, I, D, S} takes 2 bits to represent. Thereby the
encoded data size is:

LC =
⌈
log2(M)

⌉
+ 2 × P∗ + 8 × R (5)

where M is the number of code vectors in a codebook,
P* denotes length of the symbol differences sequence (i.
e. Q*), and R is the number of all original symbols
recorded for insertions and substitutions. Given the
example above, original quality score sequence takes
LO = 48 bits of storage, while the encoded data uses
only about 24 bits. Usually the encoding process makes
LC smaller than LO, i.e., conducts compression. The
more the code vector is similar to the original quality
score sequence, the higher compression ratio is
achieved. That is, quality of the codebook decides the
overall compression performance.
In this paper, we utilize the proposed SaNSDE-

DSCG to optimize compression codebook design.
During the initialization, code vectors in the codebook
are generated randomly, and encoded as individuals to
form an evolution population. In each fitness evalua-
tion, input candidate solution xi = [xi,1, xi,2,..., xi,N] is
mapped into code vector Ci = “s1 s2 ... sN“ using the
following equation:

sn = S [�xn�] ,n = 1, 2, . . . ,N (6)

where characters set S includes all unique symbols in
the original quality score sequences, variable N is the
predefined code vector length. This mapping is

Figure 2 Codebook based NGS quality score sequences compression.
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conducted because candidate solutions consist of con-
tinuous values, while code vectors are discrete symbol
strings. The Ci is then matched to all quality score
sequences, and calculates the corresponding encoded
data size. Raw fitness value of xi is defined as:

fR(xi) =
∑
k∈K

LC(Ci,Qk) (7)

in which K is the total number of quality score
sequences, LC(Ci, Qk) denotes encoded data size on the
kth sequence Qk using code vector Ci. Small fR(xi) indi-
cates that Ci is more similar to the original score data,
i.e., obtains higher compression ratio. Shared fitness
fS(xi) is then calculated accordingly.
It is noted that accurate symbol differences information,

e.g. mismatched symbol positions, is not necessary for fit-
ness values calculation. In most cases the approximate
Levenshtein distance [21] is good enough to guild the
codebook optimization process. Moreover, calculation of
Levenshtein distance requires much less computational
resources than the DP based matching algorithm. By utiliz-
ing Levenshtein distance in fitness evaluation, we can
achieve similar optimization performance in a relatively
high speed. Approximate size of encoded data can be cal-
culated as:

L′
C =

⌈
log2(M)

⌉
+ 2 × Pk + 4 × lev(Ci,Qk) (8)

in which Pk is the length of Qk, and lev(·) denotes
Levenshtein distance between the two input sequences. It’s
value is multiplied by 4, because there is a half chance (I
and S) in {U, I, D, S} needs to record the original quality
score. Accurate matching information is obtained only after
the codebook design process for actual sequences
compression.
Procedure of the SaNSDE-DSCG based compression

codebook design algorithm is illustrated in Figure 3. In

conventional single-objective optimization based design
algorithms, the entire compression codebook is encoded
in each individual in the evolution population. Typically,
an individual in such methods is constructed by con-
necting all code vectors in the codebook from end to
end, i.e. xi

’ = {C1, C2,..., CM} [22]. Optimal codebook is
obtained by searching the global best solution. Dimen-
sionality of solution space is M × N, and the algorithm
calculates encoded data size (Equ. (8)) for M × N × |ps|
time in each generation of the evolution optimization.
Its computational complexity is too high to be applied
on large NGS data. In contrary, MMQSC searches the
solution space by using multimodal optimization,
wherein each individual is utilized to represent one spe-
cific code vector, and the entire evolution population is
utilized to compose the optimal compression codebook.
MMQSC evolves each individual to make the code vec-
tor more representative to original quality score
sequences, and accordingly the optimal codebook as a
whole can compress input data more effectively. More-
over, dimensionality of solution space in MMQSC is
reduced to N, because individual xi and corresponding
code vector Ci have the same length. In each generation
of the evolution optimization, the encoded data size is
calculated for only M × N times.

The MMQSC algorithm
The proposed MMQSC algorithm consists of three major
parts: Huffman coding based preprocessing, SaNSDE-
DSCG based codebook design, and quality score data
compression. Details of SaNSDE-DSCG optimization algo-
rithm and its application on compression codebook design
have been discussed in the previous sections.
During the preprocessing, raw quality score sequences

are extracted from target FASTQ file, and undergo a
Huffman coding. Each sequence is then converted into a

Figure 3 Compression codebook design using SaNSDE-DSCG based multimodal optimization.
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symbol string by mapping every 6 bits of the encoded
binary data to readable ASCII character:

ht = chr(33 + int(huff (Qk)[t × 6 ∼ (t + 1) × 6])) (9)

in which ht is the tth symbol in converted string Hk =
“h1 h2 ... hT “, function huff(·) denotes Huffman coding,
int(·) converts binary data to corresponding integer value,
and chr(·) maps integer number into ASCII character.
Offset value 33 is added to the input number in chr(·) to
ensure exported character is readable. In the majority of
cases Hk consists of fewer symbols than original sequence
Qk. Thereby dimensionality of code vectors is reduced,
and the codebook design problem is simplified.
The SaNSDE-DSCG is conducted afterward on the

encoded sequences. After optimization, MMQSC maps
individuals in the evolution population into code vectors
using Equ. (6) to construct a compression codebook.
This codebook is then utilized to compress the input
data, wherein accurate symbol differences information is
obtained by using DP based matching algorithm.
Procedure of the MMQSC algorithm is demonstrated

in Algorithm 2. It is worth noting that the codebook
design process can also be conducted in an offline man-
ner. That is, a universal compression codebook obtained
from representative NGS quality score data sets is uti-
lized to encode all input sequences. The time-consum-
ing optimization process is performed for only one time.
Successive compressions, which are usually conducted
repeatedly, require much less computational time.

Results and discussion
Five representative NGS data obtained from various spe-
cies, and also of different read numbers and file sizes, are
selected to evaluate the overall performance of MMQSC.
Details of the data sets are summarized in Table 1. All
data are downloaded in FASTQ format from the National
Center for Biotechnology Information - Sequence Read
Archive (NCBI-SRA) database [23].
In SaNSDE-DSCG optimization, the compression

codebook size M is used as the number of individuals,
i.e., |ps|. The value is decided as:

M = (log2(
⌈
K
10

⌉
))2 (10)

The length of code vectors, i.e. dimensionality of solu-
tion space, is calculated using the following equation:

N =
1
2

× (mink∈K Pk + maxk∈K Pk) (11)

Parameters setting for SaNSDE-DSCG based multimo-
dal optimization is listed in Table 2 in which |S| is the
number of unique symbols in the original quality scores,
and FEs denotes the maximum fitness evaluation calls of
the optimization.
Five widely used compression algorithms including

the RLE, Huffman coding, gzip, bzip2, and Lempel-
Ziv-Markov chain algorithm (LZMA) are utilized for
comparison with the proposed algorithm. All algo-
rithms are compared in terms of compression ratios
(CR) and bits per quality value (BPQ). The BPQ is
defined as follows:

BPQ =

∑
k∈K mini∈MLC(Ci,Qk)∑

k∈K Pk
(12)

Compression results of all algorithms on the NGS
data sets are summarized in Table 3.
Results in Table 3 show that, the proposed MMQSC

obtains better performance than the counterpart repre-
sentative algorithms. Particularly, MMQSC obtains aver-
age compression ratio of 22.82%, resulting in an over
77.18% size reduction in the quality score data. The
average 1.81 BPQ result is much smaller than the origi-
nal 8 BPQ in ASCII format. Moreover, performance of
MMQSC remains stable in the experimental data sets,
indicating that the algorithm has good robustness on
different types of NGS data.
Convergence trace of codebook optimization processes

on experimental data sets is illustrated in Figure 4, in
which y-axis, labeled as function value, is the optimal
shared fitness value in SaNSDE-DSCG optimization.
The figure shows that by combining SaNSDE and
DSCG in an MA framework to conduct multimodal
search, compression codebook is optimized effectively.
Particularly, DSCG increases convergence speed in the
early stage of optimization. Premature convergence is
successfully prevented by using the high performance
SaNSDE algorithm.

Table 1 NGS data sets for MMQSC performance evaluation.

Data Species Number of Reads Number of Bases File Size (MB)

SRR027474 Marine metagenome 28,109 3,580,544 9.2

SRR396942 Homo sapiens 1,199,786 250,755,274 602

SRR824063 Caenorhabditis elegans 711,156 142,231,200 348

SRR824065 Caenorhabditis elegans 64,492 12,898,400 32

SRR932018 Clostridium symbiosum 169,457 8,472,850 27
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Conclusions
This paper presents MMQSC, a MA based NGS quality
scores compression algorithm. The MMQSC utilizes
Huffman coding to preprocess raw quality score
sequences stored in FASTQ format. To obtain higher
performance, a SaNSDE and DSCG based MA is pro-
posed to optimize the compression codebook design. The
Levenshtein distance is used in fitness evaluations to esti-
mate encoded data size, and improves computation
speed. After the codebook optimization, a DP based
matching algorithm is conducted to obtain accurate sym-
bol differences information. This information, as well as
the optimized codebook, is utilized to compress input
quality score data. Experimental results on five NGS
data show that the proposed MMQSC obtains higher
compression ratio than counterpart state-of-the-art

algorithms. Particularly, MMQSC reduces about 77% of
the storage space on the experimental data sets.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JRZ and ZJ conceived and designed the study. JRZ, ZXZ, and SH performed
the experiments. JRZ and ZXZ wrote the paper. ZJ, ZXZ, and SH reviewed
and revised the manuscript. All authors read and approved the manuscript.
Algorithm 1 - Canonical memetic algorithm framework
1: BEGIN
2: Initialize: Randomly generate an initial population |ps|;
3: while stopping criterion is not satisfied do
4: Evolve population |ps| using global optimization;
5: for each individual psi in |ps| do
6: Improve psi using local searches;
7: end for
8: end while
9: END

Table 2 Parameters setting for SaNSDE-DSCG optimization.

Parameter Population Size Dimension Range ε a FEs

Value M N (0, |S|) 0.1 × N 50 1E+4

Table 3 Compression performance on experimental NGS data sets.

SRR027474 SRR396942 SRR824063 SRR824065 SRR932018

RLE CR (%) 38.95 60.52 54.97 47.27 64.29

BPQ 3.11 4.84 4.40 3.78 5.14

Huffman CR (%) 53.22 60.83 42.35 58.12 49.30

BPQ 4.26 4.87 3.39 4.65 3.94

gzip CR (%) 22.70 35.94 30.33 26.79 30.25

BPQ 1.82 2.88 2.43 2.14 2.42

bzip2 CR (%) 16.23 31.12 25.84 21.14 25.07

BPQ 1.30 2.49 2.07 1.69 2.01

LZMA CR (%) 17.63 31.32 25.63 23.08 25.00

BPQ 1.41 2.51 2.05 1.85 2.00

MMQSC CR (%) 14.38 30.96 18.63 27.38 22.75

BPQ 1.15 2.40 1.49 2.19 1.82

Figure 4 Convergence trace of compression codebook optimization on experimental data sets.
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Algorithm 2 - Procedure of MMQSC algorithm
1: BEGIN
2: Preprocessing:
3: Obtain raw quality score sequences {Q1, Q2,..., QK} from target FASTQ file;
4: Conduct Huffman coding, convert input sequences into {H1, H2,..., HK};
5: Compression Codebook Design:
6: Randomly generate evolution population |ps|;
7: while stopping criterion is not satisfied do
8: Evolve population |ps| using SaNSDE;
9: Calculate raw fitness values for |ps| using Equ. (7);
10: Calculate shared fitness values using Equ. (1);
11: for each individual xi in |ps| do
12: Improve xi using DSCG;
13: Calculate raw fitness value fR (xi) using Equ. (7);
14: Calculate shared fitness value fS (xi) using Equ. (1);
15: end for
16: end while
17: Construct optimal compression codebook using |ps|;
18: Quality Scores Compression:
19: Obtain accurate symbol differences information using DP based
matching;
20: Encode each quality score sequence Qk with corresponding code vector
index and symbol differences information as (i, Qk

*);
21: END
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